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Appendix
Proof of Lemma 2.

The parameter set of (α, β) is compact by assumption A2. The parameter set for Λ is

compact relative to the weak topology. Theorem 5.14 of van der Vaart (1998) shows that the

distance between (α̂, β̂, Λ̂) and the set of maximizers of the Kullback-Leibler distance converges

to zero. Lemma 2 follows from the identifiability assumption A4.

Proof of Lemma 3.

Definition (Bracketing number). Let (F, || · ||) be a subset of a normed space of real

function f on some set. Given two functions f1 and f2, the bracket [f1, f2] is the set of all

functions f with f1 ≤ f ≤ f2. An ε bracket is a bracket [f1, f2] with ||f1 − f2|| ≤ ε. The

bracketing number N[](ε,F, || · ||) is the minimum number of ε brackets needed to cover F. The

entropy with bracketing is the logarithm of the bracketing number.

Lemma 25.84 of van der Vaart (1998) shows that there exists a constant K3 such that

for every ε > 0, log N[](ε, {Λ}, L2(P )) ≤ K3(
1
ε
), if assumption A3 is satisfied. Since the log-

likelihood function l1 is Hellinger differentiable and considering the compactness assumptions

A2 and A3, we have log N[](ε, {l1(α, β, Λ)}, L2(P )) ≤ K4(
1
ε
), for a constant K4.

Apply Theorem 3.2.5 of van der Vaart and Wellner (1996). Considering the consistency

result in Lemma 2, we have

P∗ sup
d((α,β,Λ),(α0,β0,Λ0))<η

|√n(Pn − P)(l1(α, β, Λ)− l1(α0, β0, Λ0))|

= Op(1)η1/2

�
1 +

η1/2

η2
√

n
K5

�
, (7.1)

for a constant K5, where P∗ is the outer expectation. So conditions of Theorem 3.2.1 of van

der Vaart and Wellner (1996) are satisfied. Equation(7.1) and assumption A4 imply

d((α̂, β̂, Λ̂), (α0, β0, Λ0)) = Op(n−1/3).

Proof of Lemma 5.

Lemma 5 can be proved using Theorem 3.4 of Huang (1996). A slightly different version

is presented as Theorem 1 in Ma and Kosorok (2005b). We refer to those papers for details.

Since Pnl1(α, β, Λ) is maximized at (α̂, β̂, Λ̂), we have

Pn l̇1α(α̂, β̂, Λ̂) = 0, Pn l̇1β(α̂, β̂, Λ̂) = 0, and Pn l̃1Λ(α̂, β̂, Λ̂)a = 0,
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for any a ∈ A. We also have

1. (Consistency and convergence rate). ||α̂− α0|| = Op(n−1/3); ||β̂ − β0|| = Op(n−1/3) and

||Λ̂− Λ0||2 = Op(n−1/3) from Lemma 3.

2. (Positive information) The Fisher Information matrix is positive definite and component

wise bounded from assumption A5.

3. (Stochastic equicontinuity). For any δn → 0 and constant K6 > 0, within the neighbor-

hood {||α− α0|| < δn, ||β − β0|| < δn, ||Λ− Λ0||2 < K6n
−1/3},

sup
√

n|(Pn − P)(l̇1α(α, β, Λ)− l̇1α(α0, β0, Λ0))| = op(1),

sup
√

n|(Pn − P)(l̇1β(α, β, Λ)− l̇1β(α0, β0, Λ0))| = op(1),

sup
√

n

����(Pn − P)

�
l̃1Λ(α, β, Λ)

P(l̇1α l̃1Λ|C)

P(l̃1Λ l̃1Λ|C)

−l̃1Λ(α0, β0, Λ0)
P(l̇1α l̃1Λ|C)

P(l̃1Λ l̃1Λ|C)

����� = op(1),

sup
√

n

����(Pn − P)

�
l̃1Λ(α, β, Λ)

P(l̇1β l̃1Λ|C)

P(l̃1Λ l̃1Λ|C)

−l̃1Λ(α0, β0, Λ0)
P(l̇1β l̃1Λ|C)

P(l̃1Λ l̃1Λ|C)

����� = op(1).

The above equations can be proved by applying Theorem 3.2.5 of van der Vaart and

Wellner (1996) and the entropy result.

4. (Smoothness of the model). For (α, β, Λ) within the neighborhood {||α− α0|| < δn, ||β −
β0|| < δn, ||Λ − Λ0||2 < K6n

−1/3}, the expectations of l̇1α, l̇1β and l̃1Λ are Hellinger

differentiable.

Conditions in Theorem 3.4 of Huang (1996) are satisfied and hence Lemma 5 follows.

Proof of Lemma 7.

van de Geer (2000) shows that for the class

H̃ = {h : [0, 1] → [0, 1]

Z
(h(s0)(x))2dx < 1},

we have log N[](ε, H̃, L2(P )) ≤ K7ε
−1/s0 , for a fixed constant K7, s0 ≥ 1 and all ε. This result,

combined with the entropy calculation for {Λ}, gives that

log N[](ε, {l2(α, β, h, Λ)}, L2(P )) ≤ K8ε
−1, (7.2)

for a fixed constant K8.

From the definition of the PMLE, we have

Pnl2(α̂, β̂, ĥ, Λ̂)− λ2
nJ2(ĥ) ≥ Pnl2(α0, β0, h0, Λ0)− λ2

nJ2(h0), (7.3)
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which can also be written as

λ2
nJ2(ĥ) + P[l2(α0, β0, h0, Λ0)− l2(α̂, β̂, ĥ, Λ̂)] (7.4)

≤ λ2
nJ2(h0) + (Pn − P)[l2(α0, β0, h0, Λ0)− l2(α̂, β̂, ĥ, Λ̂)]

Apply the entropy result in (7.2). We have

(Pn − P)[l2(α0, β0, h0, Λ0)− l2(α̂, β̂, ĥ, Λ̂)] = (1 + J(h0) + J(ĥ))op(n−1/2). (7.5)

Combine inequalities (7.4) and (7.5). Simple calculations show that λnJ(ĥ) = op(1).

Equation (7.4) and assumption B3 hence yield

K2d
2((α̂, β̂, ĥ, Λ̂), (α0, β0, h0, Λ0)) ≤ op(1) + (1 + J(h0) + J(ĥ))op(n−1/2).

We can then conclude that the PMLE is consistent.

To prove the rate of convergence, we use the following result.

(Theorem in van de Geer 2000, Page 79). Consider a uniformly bounded class of functions

Γ, with supγ∈Γ |γ − γ0|∞ < ∞ with a fixed γ0 ∈ Γ, and log N[](ε, Γ, P ) ≤ K9ε
−b for all ε > 0,

where b ∈ (0, 2) and K9 is a fixed constant. Then for δn = n−1/(2+b),

sup
γ∈Γ

|(Pn − P)(γ − γ0)|
||γ − γ0||1−b/2

2 ∨√nδ2
n

= Op(n−1/2), (7.6)

where x∨y = max(x, y). Considering the compactness assumptions A2, A3 and B1, uniqueness

assumption B2 and the smoothness of the objective function, we have

K2d
2((α̂, β̂, ĥ, Λ̂), (α0, β0, h0, Λ0)) ≤ P[l2(α0, β0, h0, Λ0)− l2(α̂, β̂, ĥ, Λ̂)]

≤ K10d
2((α̂, β̂, ĥ, Λ̂), (α0, β0, h0, Λ0)), (7.7)

for a fixed constant K10.

Combining (7.4) with (7.6) for b = 1 and (7.7), we have

λ2
nJ2(ĥ) + K2d

2((α̂, β̂, ĥ, Λ̂), (α0, β0, h0, Λ0)) (7.8)

≤ λ2
nJ2(h0) + (1 + J(h0) + J(ĥ))Op(n−1/2)

× (d1/2((α̂, β̂, ĥ, Λ̂), (α0, β0, h0, Λ0)) ∨ n−1/6).

We thus conclude from (7.8) that

λ2
nJ2(ĥ) ≤ λ2

nJ2(h0) + (1 + J(h0) + J(ĥ))Op(n−1/2)

× (d1/2((α̂, β̂, ĥ, Λ̂), (α0, β0, h0, Λ0)) ∨ n−1/6),

K2d
2((α̂, β̂, ĥ, Λ̂), (α0, β0, h0, Λ0)) ≤ λ2

nJ2(h0) + (1 + J(h0) + J(ĥ))

×Op(n−1/2)(d1/2((α̂, β̂, ĥ, Λ̂), (α0, β0, h0, Λ0)) ∨ n−1/6).

Simple calculations give that

J(ĥ) = Op(1) and d((α̂, β̂, ĥ, Λ̂), (α0, β0, h0, Λ0)) = Op(n−1/3).
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Proof of Lemma 9.

The proof of Lemma 9 follows from arguments similar to those in proof of Lemma 5.

Note that in the proof of Lemma 5, we only need (α̂, β̂, ĥ, Λ̂) to nearly maximize the empirical

likelihood function, i.e.,

Pnl2(α̂, β̂, ĥ, Λ̂) ≥ maxPnl2(α, β, h, Λ)− op(n−1/2).

Note that assumption B3 assumes λn = Op(n−1/3) and Lemma 5 proves that J(ĥ) = Op(1). So

the above nearly maximization requirement is satisfied and Lemma 9 can be proved.


