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Abstract: An important challenge in neuroimaging multi-subject studies is to take

into account that different brains cannot be aligned perfectly. To this end, we

extend the classical mass univariate model for group analysis to incorporate uncer-

tainty on localization by introducing, for each subject, a spatial “jitter” variable

to be marginalized out. We derive a Bayes factor to test for the mean popula-

tion effect’s sign in each voxel of a search volume, and discuss a Gibbs sampler to

compute it. This Bayes factor, which generalizes the classical t-statistic, may be

combined with a permutation test in order to control the frequentist false positive

rate. Results on both simulated and experimental data suggest that this test may

outperform conventional mass univariate tests in terms of detection power, while

limiting the problem of overestimating the size of activity clusters.
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1. Introduction

In a typical cognitive study in functional magnetic resonance imaging (fMRI),

several subjects are recruited from a population of interest and scanned while sub-

mitted to the same series of stimuli. A sequence of three-dimensional (3D) images

of the brain is thus acquired for each subject, measuring over time a vascular ef-

fect of neural activity known as the blood oxygenation level dependent (BOLD)

effect. From the time series recorded in each voxel, and the occurrence times

for each stimulus, one may compute an estimate of the BOLD effect in response

to any given stimulus, and more generally to any difference or combination of

stimuli (contrast) (Friston (1997) and Worsley et al. (2002)).

Activation maps associated with a given contrast are obtained in this fash-

ion for each subject, and used as input data for inference at the between-subject

level, where the goal is to evidence a general brain activity pattern. A major

issue of multi-subject cerebral studies lies in in the high morphological variability
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of the human brain (Brett, Johnsrude and Owen (2002)). A traditional way to

compensate for this is to register each individual anatomical image onto a com-

mon brain template (Ashburner and Friston (1999)), such as the widely used

Montreal Neurological Institute (MNI) template. A comparative study of several

normalization methods can be found in Hellier et al. (2003).

Any location in the brain can then be marked in a standard coordinate

system, such as the one developed by Talairach and Tournoux (1988). However,

registration is prone to errors (even assuming the existence of point-to-point

correspondences between different brains), hence it does not seem reasonable

to assume that homologous points are aligned across subjects. To date however,

most methods for group analysis compare individual images on a voxelwise basis,

thus making an implicit assumption that each subject is in perfect match with

the template. Consequently, they tend to produce a stretching effect on group

activity patterns due to the “jitter” induced by inaccurate registration. This

effect can only be reinforced by preliminary linear spatial smoothing of the data,

as is the traditional heuristic.

Alternatives to voxel-based methods have been developed recently, as in

Thirion et al. (2007b), Xu, Johnson, and Nichols (2007) and Kim, Smyth, and

Stern (2006). These techniques are feature-based in the sense that they extract

key features from the individual images (critical points, activation regions cen-

ters), which are then matched across subjects. While providing a way to address

imperfect registration of individual images, these methods rely crucially on the

segmentation step, as well as on the ensuing feature-matching algorithm.

In this paper, we advocate a “low-level”, as opposed to feature-based, ap-

proach that generalizes existing voxel-based methods while relaxing the assump-

tion that the effects are well localized in the standard space. The method is

developed in Section 2, where we start by extending the hierarchical model de-

veloped in Beckmann, Jenkinson and Smith (2003), Worsley et al. (2002) and

Mériaux et al. (2006) by incorporating a simple model of spatial uncertainty.

We then derive a Bayes factor to test for the mean population effect’s sign in

a given voxel, and justify a Metropolis-within-Gibbs sampling scheme to effec-

tively compute this Bayes factor. Our approach is illustrated in Section 3 on

both simulated and real data, and further discussed in Section 4.

2. Method

2.1. Classical two-level model

Considering a particular voxel v ∈ R
3 in the standard space, let Xi be the

BOLD effect in v for subject i in response to a certain contrast of experimental

conditions. A noisy estimate of Xi, denoted Yi, is available from a within-subject
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analysis on the fMRI time series that typically uses a general linear model (Friston

(1997) and Worsley et al. (2002)). Under sufficient degrees of freedom, it is

reasonable to consider Yi as being normally distributed around Xi with known

standard deviation si.

To address questions regarding the variability of the effect in a population,

the unobserved effects X1, . . . ,Xn are further modeled as independent random

variables drawn from an unknown distribution which characterizes the across-

subject variability of BOLD responses. When this distribution is assumed Gaus-

sian with unknown mean and variance (µ, σ2), we obtain the same hierarchical

model as in Beckmann, Jenkinson and Smith (2003), Worsley et al. (2002) and

Mériaux et al. (2006).

• First level (within-subject):

Yi|Xi
ind.
∼ N(Xi, s

2
i ), (2.1)

• Second level (between-subject):

Xi|(µ, σ2)
i.i.d.
∼ N(µ, σ2), (2.2)

where independence sampling assumptions at both levels imply that the pairs

(X1, Y1), . . . , (Xn, Yn) are mutually independent conditionally on the population

parameters (µ, σ2). By integrating out the hidden variables Xi, we see that the

observed effects are drawn independently but, in general, non-identically from

the Gaussian distributions:

Yi|(µ, σ2)
ind.
∼ N(µ, s2

i + σ2). (2.3)

That is to say, the observations are generally heteroscedastic unless all first-

level deviations si are equal. In this special case, the model boils down to a

simple sampling model, that is computationally attractive but lacks robustness

against unreliable observations.

2.2. Incorporating spatial uncertainty

An important limitation of the two-level model, however, is that it describes

the data separately in each voxel, thus making an implicit assumption that images

from different subjects are comparable on a voxelwise basis. We now relax this

assumption by incorporating localization uncertainty into the model. Given a

voxel of interest v ∈ R
3 in the standard space, we consider that its homologous

voxel in subject i is shifted according to an unknown displacement ui ∈ R
3 which
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(a) (b)

Figure 1. (a) Illustration of the spatial displacement ui, representing the

unknown registration error for subject i in a certain voxel v. (b) Graphical

representation of the local hierarchical model.

reflects the registration error, as illustrated in Figure 1 (a). We thus generalize

the within-subject model (2.1) as follows:

Y i(v + ui)|(Xi,ui) ∼ N(Xi, s
2
i (v + ui)), (2.4)

where ui is the discretization on the image grid of a 3D zero-mean Gaussian

variable N(0, ν2
i I3) assumed independent from the subject’s response Xi. Dis-

cretization is simply achieved by rounding towards the nearest voxel coordinates.

We restrict ourselves to the case of a scalar covariance matrix ν2
i I3, where νi

therefore represents an isotropic standard registration error. In practice, we may

use a subjective estimate for νi as registration procedures generally do not pro-

vide introspective performance measures.

Importantly here, we use bold letters for both Y i and s
2
i to stress that they

are spatial maps, as opposed to Yi = Y i(v) and s2
i = s

2
i (v), respectively the val-

ues of Y i and s
2
i at location v, which may not be in correspondence with v given

spatial uncertainty. While (2.4) models the displaced effect Y i(v + ui), a gener-

ative model of the whole image Y i is needed since our analysis now involves data

from potentially any voxel location. We address this issue by specifying other

voxels than the homologous of v as being drawn independently from uniform

distributions, yielding

p(Y i|Xi,ui) = N
(

Y i(v + ui);Xi, s
2
i

)

×
∏

v′ 6=v+ui

1

2r
1|Y i(v′)|<r, (2.5)

where the radius r is an arbitrarily large constant. The hierarchical structure of

our model can be summarized in a graph, as illustrated in Figure 1 (b).

This model is arguably not a realistic generative model of the data for at

least two reasons. First, it ignores spatial correlations in the images, which



DEALING WITH SPATIAL NORMALIZATION ERRORS IN fMRI GROUP INFERENCE 1361

are potentially informative about the displacements ui. Second, this is only a

local model in the sense that it is defined conditionally on a particular voxel of

interest v, and we cannot exhibit an unconditional density that is compatible

with (2.5) for all v. It is important, however, to realize that our aim here is not

to perform a multivariate model-based analysis, but rather to guide the selection

of a decision statistic for hypothesis testing (the test itself is to be calibrated

under a less restrictive set of assumptions, as discussed in Section 2.6). With

this in mind, the simplicity of the model may be regarded as a key advantage

from a computational perspective.

2.3. Bayes factor as a decision statistic

Based on our “spatially noisy” two-level model, we now design a test of the

presence of a positive mean population effect in a given voxel, that is, we test

the null hypothesis H0 : µ ≤ 0 against the alternative H1 : µ > 0. To that end,

we may use the following Bayes factor as a decision statistic:

K =
p(Y |H0)

p(Y |H1)
=

∫

R−

∫

R∗

+

π(µ, σ2)L(µ, σ2) dσ2dµ
∫

R
∗

+

∫

R
∗

+

π(µ, σ2)L(µ, σ2) dσ2dµ
, (2.6)

where L(µ, σ2) =
∏n

i=1 p(Y i|µ, σ2) is the likelihood function associated with the

model given by (2.5) and (2.2). K compares the respective integrated likelihoods

of both H0 and H1, and definition relies on a prior distribution π(µ, σ2), an

issue that we postpone to Section 2.4. The smaller K, the higher the evidence

against H0, hence the critical region of the test will be of the form K ≤ k.

A frequentist alternative to K is the maximum likelihood ratio,

R =

sup
µ≤0,σ2∈R

∗

+

L(µ, σ2)

sup
µ>0,σ2∈R

∗

+

L(µ, σ2)
,

as proposed in Mériaux et al. (2006) for the two-level model discussed in Section

2.1, that corresponds to the special case of our model in which the localization

errors vanish (νi ≡ 0). R may be seen as a prior-independent variant of K using

likelihood maximizations instead of integrations.

The computation of either K or R raises algorithmic challenges as no closed

form exists. We discuss in Section 2.5 a Markov Chain Monte-Carlo (MCMC)

technique to compute K numerically. In its simple version under no spatial

uncertainty (νi ≡ 0), this algorithm may be seen as a stochastic version of the

expectation-maximization (EM) algorithm described in Mériaux et al. (2006) and

Roche et al. (2007) for R. While it might be feasible to extend the EM algorithm
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to the more general case of spatial uncertainty, one advantage of the stochastic

approach is that it is relatively robust to local convergence problems inherent to

iterative deterministic procedures.

2.4. Prior specification

We now address the choice of a prior distribution for the population param-

eters (µ, σ2), which may be seen as a third level in our hierarchical model. Under

limited information about the possible values of (µ, σ2), it is natural to use a

weak prior. The Jeffreys prior turns out to be intractable in our case, thus we

consider the scale invariant (improper) prior, π(µ, σ2) ∝ σ−2, which is also the

Jeffreys prior associated with the second level of the model (2.2) or, equivalently,

the special case of exact observations (νi ≡ 0, si ≡ 0). However, the scale in-

variant prior is known to lead to an improper posterior in linear mixed models

(Natarajan and Kass (2000)).

We instead adopt a proper prior for (µ, σ2) that is conjugate to the second

level of the model, yielding a Normal-Inverse Gamma distribution, as shown in

Bernardo and Smith (2000):

µ|(σ2, λ,m) ∼ N
(

m,σ2/λ
)

σ2|(α, β) ∼ IG(α, β),

where IG(α, β) is the Inverse-Gamma distribution with parameters (α, β), and

density function

IG(z;α, β) =
βα

Γ(α)
z−α−1 exp

(−β

z

)

.

m ∈ R, λ, α, and β > 0 are hyperparameters. In order to tune α, and β, we

followed the guidelines in Spiegelhalter et al. (1996), which suggests the use of a

“just” proper prior for σ2 in absence of prior knowledge, defined by α = β = 10−3.

This means that the precision parameter τ = 1/σ2 has a prior mean of 1, and a

prior variance of 103. From practical experience, we consider that in real fMRI

datasets, σ2 ranges from 10−2 to 102, hence our prior is roughly flat on the range

of realistic values for σ. The prior mean is set to m = 0 so as not to bias the

Bayes factor towards positive or negative effects. Finally, the scale parameter is

set to λ = 10−3, which may be interpreted as the weight given to the prior mean

m with respect to one observation.

2.5. Monte-Carlo estimate of the Bayes factor

A characterization of K at (2.6) is

K =
1

p(µ > 0|Y )
− 1,
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given that the prior assigns equal probabilities to H0 : µ ≤ 0 and H1 : µ > 0.

Therefore, K may be computed by sampling from the posterior distribution of µ

and counting the frequency of positive values. This can be done by means of a

Gibbs sampler, as detailed hereafter.

We start with introducing the auxiliary variable Ỹ 1, . . . , Ỹ n such that, for

any subject i,

p(Ỹ i|Xi,ui) = δ
(

Ỹ i(v + ui) − Xi

)

×
∏

v′ 6=v+ui

1

2r
1|Ỹ i(v′)|<r.

By letting r → ∞, we see that the map Ỹ i(v
′) + εi, where εi ∼ N(0, s2

i (v
′))

is an independent noise, has the same distribution as Y i, therefore Ỹ i may be in-

terpreted as the badly localized effects before they are corrupted with observation

noise.

From there, we design a Gibbs sampler to generate a sequence of samples

from the joint posterior density p(µ, σ2,u,X, Ỹ |Y ) by sampling successively one

of the following three blocks conditionally on the others: the population param-

eters (µ, σ2), the auxiliary “badly localized effects” Ỹ , and the displacements u.

We now briefly summarize each step (the details are given in Appendix A).

• Population parameters. This step is straightforward, exploiting the conjugacy

of our prior. The conditional posterior distribution of (µ, σ2) is again from the

Normal-Inverse Gamma class, with hyperparameters α′, β′,m′, and λ′ given

by simple functions of the effects X1, . . . ,Xn.

• Badly localized effects. For each subject i, Ỹ i(v
′) is Gaussian, with mean

Y i(v
′) and variance s

2
i in each voxel v

′, except in v + ui where the mean and

variance also depend on the population parameters (µ, σ2). Notice that this

step is straightforward in the special case si ≡ 0, as we then have Ỹ = Y

almost surely.

• Spatial displacements. There is no simple way of sampling directly from the

conditional distribution of the spatial displacements ui. Instead, we use an

independent Metropolis-Hastings step, wherein the discretized Gaussian prior

N(0, ν2
i I3) is used as a proposal distribution to draw a new displacement

ui which is accepted with a certain probability. This means that our sam-

pling scheme is actually a Metropolis-within-Gibbs algorithm (see for instance

Tierney (1994)). In our experiments, the average acceptance rate was around

20%, reflecting a limited match between the proposal distribution and the

actual posterior. This observation suggests that the data provides strong,

possibly anisotropic information on the displacements, and that the proposal

distribution could be improved.
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We note that under no spatial uncertainty (νi ≡ 0), our method yields an

alternative to the procedure in Woolrich et al. (2004) for sampling the posterior

distribution of parameters in a mixed-effect linear model. By further assuming

exact observations (s2
i ≡ 0), our model becomes similar to that developed in

Friston et al. (2002) up to the prior. In this case, p(µ|Y ) enjoys an explicit

expression, hence providing a useful ground truth for the Gibbs sampler.

2.6. Thresholding

Depending on the value of the Bayes factor K in a particular voxel, our final

task is to decide whether the voxel is active (in the sense that H1 : µ > 0 holds)

or inactive (H0 : µ ≤ 0). From a Bayesian perspective, this is a straightforward

problem given the very definition of the Bayes factor. For instance, according to

Jeffreys’ scale of interpretation (Jeffreys (1961)), all voxels for which K ≤ 1/3

exhibit a substantial evidence in favor of H1, which becomes strong for those

statisfying K ≤ 1/10.

However, this simple thresholding may not be completely satisfactory in our

context. First, as discussed earlier in Section 2.2, our Bayes factor does not rely

on a proper multivariate model of the data, but rather on different voxel-specific

models, that make it difficult to interpret the results in rigorous Bayesian terms.

Importantly too, the neuroimaging research community has had a long tradition

of classical hypothesis testing, and researchers are used to reporting functional

brain regions in terms of frequentist risk. At least for the purpose of comparison

with existing detection methods, we may consider tuning the threshold k so as

to control the type I risk P (K ≤ k|H0) below a fixed level α. The idea of using a

Bayes factor for frequentist hypothesis testing is not new; see for instance Good

(1992) and Aerts, Claeskens and Hart (2004) and, in a neuroimaging context,

Woolrich et al. (2004).

While the type I risk may be calibrated under the model underlying K (up to

the above conceptual warnings), a strong advantage of the frequentist approach

is that it is easy to work under much more general assumptions. It is justified in

Nichols and Holmes (2002) under mild nonparametric assumptions regarding the

multivariate distribution of the data (in particular, the effects are symmetrically

distributed in the population), as well as natural conditions regarding the decision

statistic, that the type I risk is conservatively approximated by the probability of

K ≤ k computed by sign permutations, i.e., by resampling K across all possible

sign flips Y i → −Y i of the effect maps (for a total of 2n possible permutations).

This argument was extended to the case of noisy observations in Mériaux et al.

(2006) and can easily be further extended to the case of spatial uncertainty by

assuming that, for each subject i, the registration errors are independent of the

well-localized effects.
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This justifies using a sign permutation test to calibrate the type I risk asso-

ciated with K. In practice, in order to keep computation time within reasonable

bounds, we can pool the values of K across a limited number of randomly se-

lected voxels, and generate a few random permutations for each. As shown in

Mériaux et al. (2006), this trick makes it possible to control the overall false posi-

tive rate (the type I risk averaged across voxels) when using a uniform threshold k.

3. Results

3.1. Implementation

The above method was implemented in Python language, as part of the NiPy

project (Neuroimaging in Python). The source code is freely downloadable from

a bazaar repository at https://launchpad.net/nipy.

This is a rather computer intensive method. Using a parallel implementa-

tion over ten processors, the computation time for a typical analysis in 3D is

of the order of one day (see Section 3.3), which is huge compared to a stan-

dard analysis as implemented e.g., in the Statistical Parametric Mapping (SPM)

software (Friston (1997)), but still very small compared to the time required to

design an fMRI experiment and acquire a complete group dataset. We believe

that code optimization may enable us to divide computation time by one order

of magnitude.

3.2. Simulations

We now illustrate from a simplistic simulation that standard voxelwise tech-

niques (not accounting for spatial uncertainty) may lead to overestimating the

size of positive effected regions, an undesirable “stretching effect” that our tech-

nique has the potential to reduce.

Synthetic datasets of n subjects were generated as follows. We defined a

volume of 20×20×20 voxels, containing a single spherical activated region in its

center, with uniform intensity value 5 (the background was set to 0) and a fixed

diameter of 5 voxels. This idealized activation was then jittered according to

a discretized random Gaussian vector with standard deviation 0.5 voxels along

each axis, an optimistically low estimate of spatial uncertainty. Independent

heteroscedastic Gaussian noise was then added to each voxel v, the variance of

which was taken equal to 1 + s
2(v), with s

2(v) ∼ χ2(1). A total of n pairs

(Y i, s
2
i ) of effect and variance maps were generated in this fashion.

We then computed two Bayes factor maps as defined in Section 2, respectively

without spatial uncertainty (νi ≡ 0), and with spatial uncertainty (setting νi ≡

0.5 voxels). We performed this simulation for different values of n, and report

the results for n = 200, as the discrepancies between the two techniques were

less obvious for smaller n.
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No spatial modeling Spatial modeling Original signal

No spatial modeling Spatial modeling Original signal

Figure 2. Top: Bayes factor maps on simulated data. Bright voxels corre-

spond to small Bayes factor values (strong evidence for activation). Bottom:

Oracle thresholding of each Bayes factor map.

Figure 2 displays the Bayes factor maps, showing as expected a noticeable

stretching effect using the method without spatial uncertainty, which disappears

when spatial uncertainty is accounted for. The method with spatial uncertainty

achieves better detection at all thresholds, as shown on the receiving operator

characteristic (ROC) curves in Figure 3. Those curves were plotted by counting

for each possible threshold the number of detected voxels inside the original

sphere (true positives) and outside (false positives).

For illustration, the bottom row in Figure 2displays the binary images ob-

tained after thresholding the maps using the Oracle threshold (i.e., the threshold

that minimizes bad classifications), confirming that the original sphere is better

recovered under spatial uncertainty modeling.

As seen in Figure 3 from the posterior distributions of the mean population

effect, both methods differ essentially near the sphere boundaries, where the

method without spatial uncertainty finds a distribution whose support is far

from the actual parameter value.
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Figure 3. Left: ROC curves for detecting activations on simulated data.
Right: Posterior distributions of the mean population effect in the sphere
center (top), just outside (middle) and in the background (bottom). The

solid line corresponds to the Bayes factor accounting for spatial uncertainty.

This simulation study shows that our method behaves according to intuition

and therefore provides a consistency check. We remark that even a moderate

amount of spatial uncertainty may yield a massive difference in the results of the

two methods, provided that the number of subjects is large enough.

3.3. Data

We used an event-related fMRI protocol involving a relatively large cohort

of 38 right-handed subjects. The participants were presented with a series of

stimuli or were engaged in tasks such as passive viewing of horizontal or vertical

checkerboards, left or right click after audio or video instruction, computation

(subtraction) after video or audio instruction, sentence listening, and reading.

Events occurred randomly in time (mean inter stimulus interval: 3s), with ten

occurrences per event type, and ten event types in total.

The subjects gave informed consent and the protocol was approved by the

local ethics committee. Functional images were acquired on a General Electric

Signa 1.5T scanner using an Echo Planar Imaging sequence (time of repetition

= 2, 400 ms, time to echo = 60 ms, matrix size = 64 × 64, field of view = 24

cm2). Each volume consisted of 34 64 × 64 3 mm-thick axial contiguous slices.

A session comprised 130 scans. Anatomical T1 weighted images were acquired

on the same scanner, with a spatial resolution of 1 × 1 × 1.2 mm3. Finally, the
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cognitive performance of the subjects was checked using a battery of syntactic

and computational tasks.

First-level analyses were conducted using SPM5 (freely downloable from

http://www.fil.ion.ucl.ac.uk). Data were submitted successively to motion cor-

rection, slice timing and normalization to the MNI template. For each subject,

BOLD contrast images were obtained from a fixed-effect analysis on all sessions.

Group analyses were restricted to the intersection of all subjects’ whole-brain

masks, comprising 43, 367 voxels.

As in the simulation (see Section 3.2), we computed two Bayes factor maps,

respectively without and with spatial uncertainty modeling, setting this time νi ≡

0.7 voxels. This value was chosen by analogy with the size of the Gaussian kernel

classically used to spatially smooth the data, and corresponds to a full width

at half maximum (FWHM) of 5 mm, a standard value (the intuition underlying

our choice is to interpret spatial smoothing as a crude heuristic to work around

spatial uncertainty). 105 iterations of the Metropolis-within Gibbs sampler were

used to approximate the Bayes factor in each voxel, following 104 preliminary

iterations that were discarded, corresponding to the so-called “burn-in period”.

We then used a randomized permutation test to threshold each statistical

map. A total of 12, 500 permutations was generated by performing 500 ran-

dom sign permutations of the individual effect maps and, for each permutation,

computing the statistic in 25 randomly selected voxels. The computations were

parallelized over ten processors. Computing the Bayes factor map took approxi-

mately 20 hours (3 hours without spatial uncertainty) and the permutation-based

calibration required about 6 hours (respectively, 1 hour).

For comparison, we also included in our study the parametric t-test per-

formed on the data after preliminary Gaussian smoothing (using 5 × 5 × 5 mm3

FWHM), as it is the reference method for fMRI group analysis. Note that,

in this case, parametric thresholding yields very similar results to permutation-

based thresholding, which comes as no surprise given the relatively large number

of subjects and the asymptotic convergence of the permutation t test toward the

Student distribution (Good (2005)).

We report results from the “calculation–sentences” contrast, which subtracts

activations due to reading or hearing instructions from the overall activations

detected during the mental calculation tasks. This contrast may thus reveal

regions that are specifically involved in the processing of numbers. As seen in

Figure 4, the three tested methods find qualitatively similar activation patterns,

with large bilateral suprathreshold clusters in the parietal lobe, known to be

involved in number processing.

When comparing the Bayes factor maps under νi ≡ 0 and νi ≡ 0.7 voxels

(both maps being obtained without Gaussian smoothing), we do not observe a
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Spatial uncertainty

No spatial uncertainty

Standard t-map, preliminary smoothing

Figure 4. Bayes factor maps for the Calculation–Sentence contrast, thresh-

olded for a false positive rate at 5% (left), 1% (center) and 0.1% (right) in

an axial slice (z = 45 mm in Talairach space).

difference in the size of the detected clusters, contrary to what could be antic-

ipated from the simulation results (see Section 3.2). However, the less noisy

aspect of the map accounting for spatial uncertainty suggests higher detection

power, along with the fact that the method with νi ≡ 0 detected no cluster at

0.1% false positive rate. While still speculative, these findings are supported by a
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large number of (moderately dependent) tests. Here, the lack of detection power

might conceal the “stretching effect” observed in the simulations.

Not surprisingly, the standard t-test combined with preliminary smoothing

yields wider suprathreshold clusters, as a predictable outcome of smoothing.

On the other hand, we observe that most clusters survive longer to increasing

thresholds in the standard analysis than in the first two analyses, suggesting

a beneficial impact of smoothing on detection power. One obvious reason for

smoothing the data is to increase the signal to noise ratio (under the terms

of our model, reduce the first-level errors si) by exploiting the intrinsic spatial

correlation of the signal. Such pre-processing may be useful considering the fact

that the model underlying group inference ignores spatial correlations, mainly

for computational reasons (see Section 2).

4. Discussion

In summary, we have introduced a new method for fMRI group data anal-

ysis that addresses the spatial variability of brain activation patterns. Contrary

to previous feature-based approaches, our approach relies on a rather natural

generalization of massively univariate voxel-based models, in which registration

errors are treated as additional hidden variables.

In practice, registration is performed via T1-weighted images, hence the

spatial mappings relating different brains are implicitly defined in an anatomical

sense. This is to say that the method does not compensate for intrinsic functional

variabilities in the extent or location of functional areas, but rather assesses

variations in functional responses across homologous anatomical sites. Yet the

fact that the analysis is carried out on a voxel-by-voxel basis (for computational

reasons) implies that it can only provide limited geometrical characterization of

functional areas. This should be kept in mind when interpreting group inference

results. Typically, the shape of a multi-subject activity cluster (defined by local

hypothesis testing) may not tell us much about the average shape of individual

activation patterns.

Our preliminary experiments indicate that our method has a regularizing ef-

fect over conventional massively univariate inference (employed without prelimi-

nary image smoothing), and has the potential to reduce an artifactual “stretching

effect” that arises in absence of spatial uncertainty modeling. The latter effect

was demonstrated on a simulation but was not observed on the real dataset,

probably due to the relatively limited number of subjects involved. We antici-

pate, however, that this effect would become prevalent in larger cohorts, which

are increasingly used in neuroimaging (Thirion et al. (2007a)).
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We do not dismiss traditional linear pre-smoothing, which may help boost-

ing detection power, yet at the price of degraded spatial resolution. An ideal

trade-off is still to be found. It might be useful, in practice, to use the pro-

posed method after moderate image smoothing. We would however recom-

mend nonlinear smoothing strategies, such as cortical surface-constrained filter-

ing (Andrade et al. (2001)) or anisotropic diffusion (Kim et al. (2005)), in order

to limit the blurring effect inherent to Gaussian and other linear filters.
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Appendix

A. Details of the Gibbs sampler

Our sampling algorithm is based on the model defined by Equations (2.5)

and (2.2) after introduction of auxiliary variables, as described in Section 2.5.

The joint posterior density of the hidden variables (u, Ỹ ) and the parameters

(µ, σ2) is proportional to

p(u, Ỹ µ, σ2|Y ) ∝ p(Y |Ỹ )p(Ỹ |u, µ, σ2)p(u)π(µ, σ2).

The posterior conditional density of each block is deduced from this joint

density by considering variables from all other blocks as fixed.

A.1. Population parameters

The posterior conditional density of the parameters (µ, σ2) is given by

p(µ, σ2|u, Ỹ ,Y ) ∝ p(Ỹ |u, µ, σ2)π(µ, σ2)

∝

n
∏

i=1

{

N(Ỹ i

(

v + ui);µ, σ2
)}

π(µ, σ2),

so that they depend on the other variables only through the hidden effects Xi =

Ỹ i(v + ui). Exploiting the conjugacy of our prior, the conditional posterior

distribution of (µ, σ2) is again from the Normal-Inverse Gamma class, as defined

in Section 2.4, with hyperparameters m′, λ′, α′, and β′ given by

m′ =
nX + λm

n + λ
; λ′ = n + λ; α′ = α +

n

2
; β′ = β +

nS2

2
+

nλ(m − X)2

2(n + λ)
,

where X = n−1
∑n

i=1 Xi and S2 = n−1
∑n

i=1(Xi − X)2.
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A.2. Badly localized effects

Conditionally on u and (µ, σ2), the badly localized effects Ỹ i are indepen-
dent, with density

p(Ỹ i|ui, µ, σ2,Y i) ∝ p(Y i|Ỹ i)p(Ỹ i|ui, µ, σ2).

This expression can be further factored across voxels. Thus Ỹ i(v + ui) is
Gaussian, with mean mi and variance γ2

i given by

mi =
σ2 × Y i(v + ui) + s

2
i (v + ui) × µ

σ2 + s
2
i (v + ui)

; γ2
i =

σ2 × s
2
i (v + ui)

σ2 + s
2
i (v + ui)

.

In any location v
′ other than v + ui, Ỹ i(v

′) is Gaussian with mean Y i(v
′)

and variance s
2
i (v

′). In the special case of no estimation errors (s2
i ≡ 0), Ỹ = Y

almost surely, and this step can be dropped from the Gibbs sampler.

A.3. Spatial displacements

In this section, the ui are discretized to the voxel grid only when evaluat-

ing Ỹ i(v + ui), otherwise they are considered as continuous random variables.
Conditionally on the parameters (µ, σ2) and the badly localized effects Ỹ , the

spatial displacements ui are independent, with density

p(ui|Ỹ i, µ, σ2) ∝ p(Ỹ i|ui, µ, σ2)p(ui)

∝ N(Ỹ i(v + ui);µ, σ2)N(ui; 0, ν
2
i I3).

We use an independent Metropolis step to sample from this distribution, by

drawing a proposal ui from the ‘prior’ Gaussian N(0, ν2
i I3). If u

t
i is the cur-

rent spatial displacement, the proposal is accepted (ut+1
i = ui) with probability

min{1, a}, where

a =
p(ui|Ỹ i, µ, σ2)N(ut

i; 0, ν
2
i I3)

p(ut
i|Ỹ i, µ, σ2)N(ui; 0, ν2

i I3)
=

N(Ỹ i(v + ui);µ, σ2)

N(Ỹ i(v + ut
i);µ, σ2)

.

If the proposal is not accepted, then the current value is retained: u
t+1
i = u

t
i. In

the special case of no spatial uncertainty (νi ≡ 0), ui is frozen to 0, a ≡ 1 and
this step may be dropped out from the sampling scheme.

When observations are exact (νi ≡ 0, s2
i ≡ 0), the posterior distribution of

the population mean µ in a given voxel is tractable, and given by

µ
D
=

nY

n + λ
+

√

S2 + λY
2
+ 2β

n

n + 2α
T,

where Y = n−1
∑n

i=1 Yi, S2 = n−1
∑n

i=1(Yi − Y )2, and T is a Student variate

with n + 2α degrees of freedom.



DEALING WITH SPATIAL NORMALIZATION ERRORS IN fMRI GROUP INFERENCE 1373

References

Aerts, M., Claeskens, G. and Hart, J. D. (2004). Bayesian-motivated tests of function fit and

their asymptotic frequentist properties. Ann. Statist. 32, 2580-2615.

Andrade, A., Kherif, F., Mangin, J.-F., Worsley, K., Paradis, A.-L., Simon, O., Dehaene, S. and

Poline, J.-B. (2001). Detection of fMRI activation using cortical surface mapping. Hum.

Brain Mapp. 12, 79-93.

Ashburner, J. and Friston, K. (1999). Nonlinear spatial normalization using basis functions.

Hum. Brain Mapp. 7, 254-66.

Beckmann, C., Jenkinson, M. and Smith, S. (2003). General multi-level linear modelling for

group analysis in fMRI. Neuroimage 20, 1052-1063.

Bernardo, J. and Smith, A. (2000). Bayesian Theory. John Wiley & Son Ltd.

Brett, M., Johnsrude, I. and Owen, A. (2002). The problem of functional localization in the

human brain. Nature Reviews Neuroscience 3, 243-249.

Friston, K., Penny, W., Phillips, C., Kiebel, S., Hinton, G. and Ashburner, J. (2002). Classical

and bayesian inference in neuroimaging: Theory. Neuroimage 16, 465-483.

Friston, K. J. (1997). Human Brain Function (Chapter 2, pages 25-42). Academic Press.

Good, I. J. (1992). The Bayes/non-Bayes compromise: a brief review. J. Amer. Statist. Assoc.

87, 597-606.

Good, P. (2005). Permutation, Parametric, and Bootstrap Tests of Hypotheses, 3rd Edition.

Springer.

Hellier, P., Barillot, C., Corouge, I., Gibaud, B., Le Goualher., G., Collins, D. L., Evans, A.,

Malandain, G., Ayache, N., Christensen, G. E. and Johnson, H. J. (2003). Retrospective

evaluation of intersubject brain registration. IEEE Trans. Med. Imag. 22, 1120-1130.

Jeffreys, H. (1961). The Theory of Probability. Oxford University Press.

Kim, H. Y., Giacomantone, J. and Cho, Z. H. (2005). Robust anisotropic diffusion to pro-

duce enhanced statistical parametric map from noisy fMRI. Computer Vision and Image

Understanding 99, 435-452.

Kim, S., Smyth, P. and Stern, H. (2006). A nonparametric Bayesian approach to detecting

spatial activation patterns in fMRI data. In: Proc. 9th MICCAI. LNCS 4190, 217-224.

Springer Verlag, Copenhagen.

Mériaux, S., Roche, A., Dehaene-Lambertz, G., Thirion, B. and Poline, J.-B. (2006). Combined

permutation test and mixed-effect model for group average analysis in fMRI. Hum. Brain

Mapp. 27, 402-410.

Natarajan, R. and Kass, R. E. (2000). Reference bayesian methods for generalized linear mixed

models. J. Amer. Statist. Assoc. 95, 227-237.

Nichols, T. and Holmes, A. (2002). Nonparametric permutation tests for functional neuroimag-

ing: A primer with examples. Hum. Brain Mapp. 15, 1-25.

Roche, A., Mériaux, S., Keller, M. and Thirion, B. (2007). Mixed-effects statistics for group

analysis in fMRI: A nonparametric maximum likelihood approach. Neuroimage 38, 501-

510.

Spiegelhalter, D., Thomas, A., Best, N. and Gilks, W. (1996). BUGS 0.5: Bayesian Inference

Using Gibbs Sampling - Manual. Tech. rep., MRC Biostatistics Unit, Cambridge.

Talairach, J. and Tournoux, P. (1988). Co–Planar Stereotaxic Atlas of the Human Brain. 3-

Dimensional Proportional System : An Approach to Cerebral Imaging. Thieme Medical

Publishers, Inc., Georg Thieme Verlag, Stuttgart, New York.



1374 MERLIN KELLER, ALEXIS ROCHE, ALAN TUCHOLKA AND BERTRAND THIRION

Thirion, B., Pinel, P., Mériaux, S., Roche, A., Dehaene, S. and Poline, J.-B. (2007a). Analysis of

a large fMRI cohort: Statistical and methodological issues for group analyses. Neuroimage

35, 105-120.

Thirion, B., Tucholka, A., Keller, M., Pinel, P., Roche, A., Mangin, J.-F. and Poline, J.-

B. (2007b). High level group analysis of FMRI data based on Dirichlet process mixture

models. In: IPMI. Vol. 4584 of LNCS, 482-494. Springer Verlag.

Tierney, L. (1994). Markov Chains for Exploring Posterior Distributions. Ann. Statist. 22, 1701-

1728.

Woolrich, M., Behrens, T., Beckmann, C., Jenkinson, M. and Smith, S. (2004). Multi-level linear

modelling for fMRI group analysis using Bayesian inference. Neuroimage 21, 1732-1747.

Worsley, K., Liao, C., Aston, J., Petre, V., Duncan, G., Morales, F. and Evans, A. (2002). A

general statistical analysis for fMRI data. Neuroimage 15, 1-15.

Xu, L., Johnson, T. and Nichols, T. (2007). Bayesian spatial modeling of fMRI data: A multiple-

subject analysis. Tech. rep., The University of Michigan Department of Biostatistics.

CEA, Neurospin, Gif-sur-Yvette, France.

E-mail: merlin.keller@cea.fr

INRIA, Saclay, France

E-mail: alexis.roche@cea.fr

CEA, Neurospin, Gif-sur-Yvette, France.

E-mail: alan.tucholka@cea.fr

CEA, Neurospin, Gif-sur-Yvette, France.

E-mail: bertrand.thirion@cea.fr

(Received April 2007; accepted June 2008)


	1. Introduction
	2. Method
	2.1. Classical two-level model
	2.2. Incorporating spatial uncertainty
	2.3. Bayes factor as a decision statistic
	2.4. Prior specification
	2.5. Monte-Carlo estimate of the Bayes factor
	2.6. Thresholding

	3. Results
	3.1. Implementation
	3.2. Simulations
	3.3. Data

	4. Discussion
	Appendix
	A. Details of the Gibbs sampler
	A.1. Population parameters
	A.2. Badly localized effects
	A.3. Spatial displacements


