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This online supplement to ‘Continuous-Time Filters for State Estimation

from Point Process Models of Neural Data,’ by Eden, U.T. and Brown, E.N.,

provides extended information about the theory and methods discussed in the

manuscript. The first section provides a step-by-step derivation of the contin-

uous time approximate filter detailed in section VII of the paper. The second

section provides details about the simulation methods and parameters used in

the decoding example presented in section VIII of the paper.

I. Step-by-step derivation of the continuous time approximate filter

In Eden, Frank, Barbieri, Solo and Brown (2004), we constructed a discrete

time point process filter based on a Gaussian approximation to the posterior

distribution of the state given the observed spiking activity to the current time,

called the Stochastic State point Process Filter (SSPPF). When the state equa-

tion is expressed in discrete time as in equation 3.2 and the observations are point

processes with conditional intensities λi(tk) as defined in equation 3.3, then the

recursive update equations for estimators of the variance and mean of the poste-

rior distribution are respectively,

(Wk|k)
−1 = (FkWk−1|k−1F

T
k + Qk)

−1 +

C
∑

j=1

[

(

∂ log λj

∂xk

)T

[λj∆tk]

(

∂ log λj

∂xk

)

−(∆N j
k − λj∆tk)

∂2 log λj

∂xk∂xT
k

]

xk=Fkxk−1|k−1

and,

xk|k = Fkxk−1|k−1 + Wk|k

C
∑

j=1

[

(

∂ log λj

∂xk

)T

(∆N j
k − λj∆tk)

]

xk=Fkxk−1|k−1

.



S2 URI T. EDEN AND EMERY N. BROWN

When expressed equivalently in terms of the parameters of the continuous

time state equation (3.1), the filter equations become,
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and,
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For the derivation of a continuous time analogue to the SSPPF, we exam-

ine, without loss of generality, the observation interval [0,∆t] , and the values

of the estimated mean and variance process at the beginning and end of this

interval in the limit as ∆t → 0. We define x̂ and Ŵ as our continuous time

expressions for the posterior mean and variance respectively, in this limit, and

write x̂− = lim∆t→0 W0|0 and x̂+ = lim∆t→0 W1|1 for the mean estimator and

Ŵ− = lim∆t→0 W0|0 and Ŵ+ = lim∆t→0 W1|1 for the variance estimator.

We can expand each of the exponential terms in a Taylor series about the

point ∆t = 0, and rewrite the posterior variance equation (W1|1)
−1 = P−1 + C,

where

P = (I + A∆t)W0|0(I + AT ∆t) + BBT∆t + O(∆t2), (S.3)
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Once again, we deal with the case of spike times and non-spike times sep-

arately. When a spike occurs, we are interested in the change in the estimator

from immediately before to immediately after the spike. Therefore we can drop
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any terms of order O(∆t). Clearly, if ∂2 log λj/∂x∂xT = 0, the estimated vari-

ance process will not jump when there is a spike at t. When this term is nonzero,

we first use the matrix inversion lemma to write,

W1|1 = P − P (P + C−1)−1P, (S.5)

and use the fact that in the limit lim∆t→0 P = Ŵ− and
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We similarly compute the jump in the mean estimator following a spike by taking

the limit of equation S.2,
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Now for non-spike intervals, we use the matrix inversion lemma again on the

inverse in equation S.5,

w1|1 = P − PCP + PC(P−1 + C)−1CP. (S.8)

Examining the limit of the observed component of the variance equation, we see

that in the non-spike interval,
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Since P is positive definite and C = O(∆t), the final term of equation S.8 vanishes

in the limit. Subtracting W0|0 from both sides of equation S.8, dividing by ∆t,

and taking the limit, we obtain an expression for the derivative of the covariance

estimator in the absence of spiking activity,
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We can construct a similar expression for the derivative of the mean estimator

with respect to time when neurons are not spiking,
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We obtain a continuous time stochastic differential equation describing the co-

variance estimator by combining equations S.6 and S.10, and another describing

the mean estimator by combining equations S.7 and S.11,
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where,
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From any starting point, this system of differential equations completely describes

the evolution of the Gaussian approximation to the posterior density in time.

In some rare cases, this system of equations can be solved exactly. For

example, if the state is fixed, that is A = 0 and B = 0, and the firing model is a

generalized linear model with a logarithmic link function, λ(t) = exp(α+ βx(t)),
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and no spike is observed in some interval [t0, t], then the solution in that interval

is given by,

x̂ = β−1
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, (S.14)
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When a spike occurs x̂ jumps to x̂ + βŴ and follows equation S.14 with new

initial conditions given by the estimates at the time of the spike. Ŵ does not

jump at spike times since d2 log λ/dx2 = 0, but it does follow a new trajectory

determined by equation S.15 with the new initial conditions. In most cases,

however, it is not possible to solve the differential equations given by S.12 and

S.13 symbolically.

II. Simulation details for neural decoding example

The hand movement trajectories were simulated using an AR(100) process,

with autoregressive parameters suggested from previous analyses of a monkey

performing continuous reaching movements to randomly appearing targets (be-

havioral methods in Truccolo, Eden, Fellows, Donoghue and Brown (2005)).

Specifically, to simulate an arm movement with speed, v(t), and direction, φ(t),

the state vector, x(t) =

[

v(t) cos(φ(t))

v(t) sin(φ(t))

]

, was drawn randomly at discrete time

points using the AR(100) equation:

x(tk) =

100
∑

i=1

[

ai 0

0 bi

]

x(tk−1) +

[

σx

σy

]

Gk, (S.16)

where tk are discrete time points spaced a 1 msec intervals, Gk ∼ N(0, I) is

drawn from a zero-mean bivariate Gaussian distribution, σx = 1.35 · 10−6, σy =

1.76 · 10−6, and ai and bi are the autoregressive parameters for movement in

the x and y directions respectively, whose values are given in Figure S1. This

autoregressive process was initialized with a sequence of zeros. The values of

x(t) at times different from the 1 ms discretized times were defined as the linear

interpolation between the values at the discrete time points.

We simulated spiking activity from neural insensity models of the form:

λi(t|Ht) = exp

{

αi + βi|v(t + 150ms)| cos
(

φ(t + 150ms) − φi
pref

)

+

130ms
∑

τ=1

γi
τ∆N i

[t−τ,t−(τ−1))

}

, (S.17)
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Figure S1. Autoregressive parameters used to generate smooth arm trajectories.

where as before, v(t) and φ(t) are the speed and direction of the arm movement,

∆N i
[a,b) is the total number of spikes fired by the ith neuron in the interval

[a, b), and αi, βi, φi
pref , {γ

i
τ}

130
τ=1 are the model parameters related to the baseline

firing rate, velocity modulation, preferred direction and history dependence of

the neuron. This form of kinematic tuning is based on a model by Moran and

Schwartz (1999).

We simulated 20 neurons generated by selecting αi, βi, φi
pref , {γ

i
τ}

130
τ=1 ran-

domly over a range of realistic parameter values identified during previous anal-

yses. Specifically, αi ∼ N(5, 1), βi ∼ N(0.05, 0.0001), φi
pref ∼ U([−π, π]), and

γi
τ ∼ N(γ̂τ, .01), where γ̂τ are mean history parameters taken from Figure 2B

of Truccolo, Eden, Fellows, Donoghue and Brown (2005). For each such neuron,

spikes were generated by drawing a sample from an exponential distribution, and

time-rescaling using the conditional intensity λi(t|Ht) (Brown, E. N., Barbieri,

R., Ventura, V., Kass R. E. and Frank L. M. (2001)) to compute the simulated

interspike intervals (ISIs).

Using this simulated spiking activity, we constructed point process likeli-

hoods for each neuron, and estimated each parameter by maximum likelihood.

The neural intensity models of the form of equation S.17 fall within the class

of generalized linear models (GLM) allowing for straightforward estimation us-

ing a method such as iteratively reweighted least squares. Figure S2B shows

the resulting maximum likelihood estimates of the spatial parameters from 120

sec. of simulated spiking activity from each neuron. The estimated receptive
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Figure S2. Encoding analysis. (A) True receptive field properties for each
of the 20 simulated neurons as a function of arm direction (x-ordinate) and
speed (y-ordinate). (B) Maximum likelihood estimates of receptive fields for
each simulated neuron based on spiking activity over 120 sec. (C) Conver-
gence of spatial receptive field parameter estimates as a function of amount
of time observed. Black line represents true parameter values, gray region
represents 95% confidence region of encoding estimates generated by simulat-
ing data 1,000 times. (D) True (blue line) and estimated history parameters
from neuron 1, based on 120 sec of spiking observations.

field properties are nearly identical to their true values. Figure S2C shows how

these estimates converge to their true values as a function of the amount of data

observed for a single neuron. Here we simulated 1,000 trials of spiking activity

for the same neurons and constructed 95% confidence regions for the resulting

estimates, shown in gray. Within 60 seconds, these confidence regions converge

nearly exactly to the true values for each of these parameters. The estimates of

the history parameters take longer to estimate accurately. Figure S2D shows the

true values of these parameters and the maximum likelihood estimates following

20 minutes of simulated spiking data.

Figure S3. illustrates the results of a goodness-of-fit analysis on the estimated

neural intensity models. The spike times for each neuron over 120 seconds of
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Figure S3. Illustration of goodness-of-fit analysis for first estimated neural
receptive field. Spike times over 120 seconds of movement were rescaled ac-
cording to the estimated intensity function. A) KS plot of rescaled empirical
CDF versus exponential CDF. The plot remains within the 95% confidence
interval for the KS statistic at all times. B) Correlation coefficient of rescaled
times as a function of spike lag.

movement were rescaled according to their estimated neural intensity. Figure

S3A shows a KS plot for the first neuron. The KS plot remains within its 95%

confidence interval, suggesting that the estimated models are able to accurately

describe the statistical structure in the observed spiking activity. Figure S3B

shows that this rescaled sequence of spike times are uncorrelated across many

lags, suggesting that the estimated neural intensity model is able to disentangle

history dependent correlations in the spiking activity. Examining all 20 simulated

neurons in this manner, we found that 18/20 fit completely within the 95% KS

confidence bounds, suggesting that this estimation method is appropriate across

all the simulated data.

Next, we used the continuous-time approximate filter in equations S.12 and

S.13 to estimate an arm trajectory from the simulated spike data. We adopt

a state space model for the arm movement trajectory as in equation 3.1, with

x(t) =

[

v(t) cos(φ(t))

v(t) sin(φ(t))

]

, A = 0 and B = 10 · I. The initial value for the mean

estimator was drawn randomly from x̂(0) ∼ N(0, 4 · I), and the initial variance

estimator was set to 4 · I.

The filtering equations were solved numerically using an Euler’s method at

a time step of 1 msec, for non-spike intervals, and computing the jumps directly

at the spike times. Notice that the state equation used to construct the trajec-

tory estimate is different from the model used to generate the arm trajectories,

given by equation S.16. Whereas it would be possible to improve the decoded

estimates by using the true model generating the data, in real neural systems no



CONTINUOUS-TIME POINT PROCESS FILTERING S9

such model will be known. We use the simple state model above to construct the

filter estimates to emulate this situation. The accuracy of the resulting decoded

trajectories suggests that the filter works well even with this model misspecifica-

tion.

Department of Mathematics and Statistics, 111 Cummington St., Boston University, Boston,

MA 02215, U.S.A.

E-mail: tzvi@bu.edu

Department of Brain and Cognitive Sciences, Harvard/MIT Division of Health Sciences and

Technology, Massachusetts Institute of Technology, Cambridge, MA, U.S.A.

E-mail: brown@neurostat.mgh.harvard.edu

(Received April 2007; accepted March 2008))


	I. Step-by-step derivation of the continuous time approximate filter
	II. Simulation details for neural decoding example

