ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS

Jian Huang ${ }^{1}$, Shuangge Ma^{2} and Cun-Hui Zhang ${ }^{3}$
${ }^{1}$ University of Iowa, ${ }^{2}$ Yale University, ${ }^{3}$ Rutgers University

Supplementary Material

In this supplement, we prove Theorems 1 and 3.
Let $\psi_{d}(x)=\exp \left(x^{d}\right)-1$ for $d \geq 1$. For any random variable X its ψ_{d}-Orlicz norm $\|X\|_{\psi_{d}}$ is defined as $\|X\|_{\psi_{d}}=\inf \left\{C>0: E \psi_{d}(|X| / C) \leq 1\right\}$. Orlicz norm is useful for obtaining maximal inequalities, see Van der Vaart and Wellner (1996) (hereafter referred to as VW (1996)).

Lemma 1. Suppose that $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are iid random variables with $\mathrm{E} \varepsilon_{i}=0$ and $\operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}$. Furthermore, suppose that their tail probabilities satisfy $P\left(\left|\varepsilon_{i}\right|>\right.$ $x) \leq K \exp \left(-C x^{d}\right), i=1, \ldots, n$, for constants C and K, and for $1 \leq d \leq 2$. Then, for all constants a_{i} satisfying $\sum_{i=1}^{n} a_{i}^{2}=1$,

$$
\left\|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right\|_{\psi_{d}} \leq \begin{cases}K_{d}\left\{\sigma+(1+K)^{\frac{1}{d}} C^{-\frac{1}{d}}\right\}, & 1<d \leq 2 \\ K_{1}\{\sigma+(1+K) C \log n\}, & d=1\end{cases}
$$

where K_{d} is a constant depending on d only. Consequently

$$
q_{n}^{*}(t)=\sup _{a_{1}^{2}+\cdots+a_{n}^{2}=1} P\left\{\sum_{i=1}^{n} a_{i} \varepsilon_{i}>t\right\} \leq \begin{cases}\exp \left(-\frac{t^{d}}{M}\right), & 1<d \leq 2 \\ \exp \left(-\frac{t^{d}}{\{M(1+\log n)\}}\right), & d=1\end{cases}
$$

for certain constant M depending on $\{d, K, C\}$ only.
Proof. Because ε_{i} satisfies $P\left(\left|\varepsilon_{i}\right|>x\right) \leq K \exp \left(-C x^{d}\right)$, its Orlicz norm $\left\|\varepsilon_{i}\right\|_{\psi_{2}} \leq$ $[(1+K) / C]^{1 / d}$ (Lemma 2.2.1, VW 1996). Let d^{\prime} be given by $1 / d+1 / d^{\prime}=1$. By Proposition A.1.6 of VW (1996), there exists a constant K_{d} such that

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right\|_{\psi_{d}} & \leq K_{d}\left\{\mathrm{E}\left|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right|+\left[\sum_{i=1}^{n}\left\|a_{i} \varepsilon_{i}\right\|_{\psi_{d}}^{d^{\prime}}\right]^{\frac{1}{d^{\prime}}}\right\} \\
& \leq K_{d}\left\{\left[\mathrm{E}\left(\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right)^{2}\right]^{\frac{1}{2}}+(1+K)^{\frac{1}{d}} C^{-\frac{1}{d}}\left[\sum_{i=1}^{n}\left|a_{i}\right|^{d^{\prime}}\right]^{\frac{1}{d^{\prime}}}\right\}
\end{aligned}
$$

$$
\leq K_{d}\left\{\sigma+(1+K)^{\frac{1}{d}} C^{-\frac{1}{d}}\left[\sum_{i=1}^{n}\left|a_{i}\right|^{d^{\prime}}\right]^{\frac{1}{d^{\prime}}}\right\}
$$

For $1<d \leq 2, d^{\prime}=d /(d-1) \geq 2$. Thus $\sum_{i=1}^{n}\left|a_{i}\right|^{d^{\prime}} \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right)^{d^{\prime} / 2}=1$. It follows that

$$
\left\|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right\|_{\psi_{d}} \leq K_{d}\left\{\sigma+(1+K)^{\frac{1}{d}} C^{-\frac{1}{d}}\right\}
$$

For $d=1$, by Proposition A.1.6 of VW (1996), there exists a constant K_{1} such that

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right\|_{\psi_{1}} & \leq K_{1}\left\{\mathrm{E}\left|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right|+\left\|\max _{1 \leq i \leq n}\left|a_{i} \varepsilon_{i}\right|\right\|_{\psi_{1}}\right\} \\
& \leq K_{1}\left\{\sigma+K^{\prime} \log (n) \max _{1 \leq i \leq n}\left\|a_{i} \varepsilon_{i}\right\|_{\psi_{1}}\right\} \\
& \leq K_{1}\left\{\sigma+K^{\prime}(1+K) C^{-1} \log (n) \max _{1 \leq i \leq n}\left|a_{i}\right|\right\} \\
& \leq K_{1}\left\{\sigma+K^{\prime}(1+K) C^{-1} \log (n)\right\}
\end{aligned}
$$

The last inequality follows from

$$
P\left(X>t\|X\|_{\psi_{d}}\right) \leq\left\{\psi_{d}(t)+1\right\}^{-1}\left(1+E \psi_{d}\left(\frac{|X|}{\|X\|_{\psi_{d}}}\right)\right) \leq 2 e^{-t^{d}}, \forall t>0
$$

in view of the definition of $\|X\|_{\psi_{d}}$.
Lemma 2. Let $\widetilde{\mathbf{s}}_{n 1}=\left(\left|\widetilde{\beta}_{n j}\right|^{-1} \operatorname{sgn}\left(\beta_{0 j}\right), j \in J_{n 1}\right)^{\prime}$ and $\mathbf{s}_{n 1}=\left(\left|\eta_{n j}\right|^{-1} \operatorname{sgn}\left(\beta_{0 j}\right), j \in\right.$ $\left.J_{n 1}\right)^{\prime}$. Suppose (A2) holds. Then,

$$
\begin{equation*}
\left\|\widetilde{\mathbf{s}}_{n 1}\right\|=\left(1+o_{P}(1)\right) M_{n 1}, \quad \max _{j \notin J_{n 1}}\left\|\left|\widetilde{\beta}_{n j}\right| \widetilde{\mathbf{s}}_{n 1}-\left|\eta_{n j}\right| \mathbf{s}_{n 1}\right\|=o_{P}(1) \tag{S.1}
\end{equation*}
$$

Proof. Since $M_{n 1}=o\left(r_{n}\right), \max _{j \in J_{n 1}}| | \widetilde{\beta}_{n j}\left|/\left|\eta_{n j}\right|-1\right| \leq M_{1 n} O_{P}\left(1 / r_{n}\right)=o_{P}(1)$ by the r_{n}-consistency of $\widetilde{\beta}_{n j}$. Thus, $\left\|\widetilde{\mathbf{s}}_{n 1}\right\|=\left(1+o_{P}(1)\right) M_{n 1}$. For the second part of (S.1), we have

$$
\begin{equation*}
\max _{j \notin J_{n 1}}\left\|\left(\left|\eta_{n j}\right| \widetilde{\mathbf{s}}_{n 1}-\left|\eta_{n j}\right| \mathbf{s}_{n 1}\right)\right\|^{2} \leq M_{n 2}^{2} \sum_{j \in J_{n 1}}\left|\frac{\left|\widetilde{\beta}_{n j}\right|-\left|\eta_{n j}\right|}{\left|\widetilde{\beta}_{n j}\right| \cdot\left|\eta_{n j}\right|}\right|^{2}=O_{P}\left(\frac{M_{n 1}^{2}}{r_{n}^{2}}\right)=o_{P}(1) \tag{S.2}
\end{equation*}
$$

and $\max _{j \notin J_{n 1}}\left\|\left(\left|\widetilde{\beta}_{n j}\right|-\left|\eta_{n j}\right|\right) \widetilde{\mathbf{s}}_{n 1}\right\|=O_{P}\left(M_{n 1} / r_{n}\right)=o_{P}(1)$.
Proof of Theorem 1. Let $J_{n 1}=\left\{j: \beta_{0 j} \neq 0\right\}$. It follows from the Karush-Kunh-Tucker conditions that $\widehat{\boldsymbol{\beta}}_{n}=\left(\widehat{\beta}_{n 1}, \ldots, \widehat{\beta}_{n p}\right)^{\prime}$ is the unique solution of the
adaptive Lasso if

$$
\begin{cases}\mathbf{x}_{j}^{\prime}\left(\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}}_{n}\right)=\lambda_{n} w_{n j} \operatorname{sgn}\left(\widehat{\beta}_{n j}\right), & \widehat{\beta}_{n j} \neq 0 \tag{S.3}\\ \left|\mathbf{x}_{j}^{\prime}\left(\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}}_{n}\right)\right|<\lambda_{n} w_{n j}, & \widehat{\beta}_{n j}=0\end{cases}
$$

and the vectors $\left\{\mathbf{x}_{j}, \widehat{\beta}_{n j} \neq 0\right\}$ are linearly independent. Let $\widetilde{\mathbf{s}}_{n 1}=\left(w_{n j} \operatorname{sgn}\left(\beta_{0 j}\right), j \in\right.$ $\left.J_{n 1}\right)^{\prime}$ and

$$
\begin{equation*}
\widehat{\boldsymbol{\beta}}_{n 1}=\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1}\left(\mathbf{X}_{1}^{\prime} \mathbf{y}-\lambda_{n} \widetilde{\mathbf{s}}_{n 1}\right)=\boldsymbol{\beta}_{01}+\frac{1}{n} \Sigma_{n 11}^{-1}\left(\mathbf{X}_{1}^{\prime} \varepsilon-\lambda_{n} \widetilde{\mathbf{s}}_{n 1}\right) \tag{S.4}
\end{equation*}
$$

where $\Sigma_{n 11}=\mathbf{X}_{1}^{\prime} \mathbf{X}_{1} / n$. If $\widehat{\boldsymbol{\beta}}_{n 1}={ }_{s} \boldsymbol{\beta}_{01}$, then the equation in (S.3) holds for $\widehat{\boldsymbol{\beta}}_{n}=\left(\widehat{\boldsymbol{\beta}}_{n 1}^{\prime}, \mathbf{0}^{\prime}\right)^{\prime}$. Thus, since $\mathbf{X} \widehat{\boldsymbol{\beta}}_{n}=\mathbf{X}_{1} \widehat{\boldsymbol{\beta}}_{n 1}$ for this $\widehat{\boldsymbol{\beta}}_{n}$ and $\left\{\mathbf{x}_{j}, j \in J_{n 1}\right\}$ are linearly independent,

$$
\widehat{\boldsymbol{\beta}}_{n}={ }_{s} \boldsymbol{\beta}_{0} \quad \text { if } \quad\left\{\begin{array}{l}
\widehat{\boldsymbol{\beta}}_{n 1}={ }_{s} \boldsymbol{\beta}_{01} \tag{S.5}\\
\left|\mathbf{x}_{j}^{\prime}\left(\mathbf{y}-\mathbf{X}_{1} \widehat{\boldsymbol{\beta}}_{n 1}\right)\right|<\lambda_{n} w_{n j}, \forall j \notin J_{n 1}
\end{array}\right.
$$

This is a variation of Proposition 1 of Zhao and Yu (2007). Let $\mathbf{H}_{n}=\mathbf{I}_{n}-$ $\mathbf{X}_{1} \Sigma_{n 11}^{-1} \mathbf{X}_{n 1}^{\prime} / n$ be the projection to the null of \mathbf{X}_{1}^{\prime}. It follows from (S.4) that $\mathbf{y}-\mathbf{X}_{1} \widehat{\boldsymbol{\beta}}_{n 1}=\boldsymbol{\varepsilon}-\mathbf{X}_{1}\left(\widehat{\boldsymbol{\beta}}_{n 1}-\boldsymbol{\beta}_{01}\right)=\mathbf{H}_{n} \varepsilon+\mathbf{X}_{1} \Sigma_{n 11}^{-1} \widetilde{\mathbf{s}}_{n 1} \lambda_{n} / n$, so that by (S.5)

$$
\widehat{\boldsymbol{\beta}}_{n}={ }_{s} \boldsymbol{\beta}_{0} \quad \text { if } \quad \begin{cases}\operatorname{sgn}\left(\beta_{0 j}\right)\left(\beta_{0 j}-\widehat{\beta}_{n j}\right)<\left|\beta_{0 j}\right|, & \forall j \in J_{n 1} \tag{S.6}\\ \left|\mathbf{x}_{j}^{\prime}\left(\mathbf{H}_{n} \varepsilon+\mathbf{X}_{1} \Sigma_{n 11}^{-1} \widetilde{\mathbf{s}}_{n 1} \lambda_{n} / n\right)\right|<\lambda_{n} w_{n j}, & \forall j \notin J_{n 1}\end{cases}
$$

Thus, by (S.6) and (S.4), for any $0<\kappa<\kappa+\epsilon<1$

$$
\begin{align*}
P\left\{\widehat{\boldsymbol{\beta}}_{n} \not{ }_{s} \boldsymbol{\beta}_{0}\right\} \leq & P\left\{\frac{1}{n}\left|\mathbf{e}_{j}^{\prime} \Sigma_{n 11}^{-1} \mathbf{X}_{1}^{\prime} \varepsilon\right| \geq \frac{\left|\beta_{0 j}\right|}{2} \text { for some } j \in J_{n 1}\right\} \\
& +P\left\{\left|\mathbf{e}_{j} \Sigma_{n 11}^{-1} \widetilde{\mathbf{s}}_{n 1}\right| \frac{\lambda_{n}}{n} \geq \frac{\left|\beta_{0 j}\right|}{2} \text { for some } j \in J_{n 1}\right\} \\
& +P\left\{\left|\mathbf{x}_{j}^{\prime} \mathbf{H}_{n} \varepsilon\right| \geq(1-\kappa-\epsilon) \lambda_{n} w_{n j} \text { for some } j \notin J_{n 1}\right\} \\
& +P\left\{\frac{1}{n}\left|\mathbf{x}_{j}^{\prime} \mathbf{X}_{1} \Sigma_{n 11}^{-1} \widetilde{\mathbf{s}}_{n 1}\right| \geq(\kappa+\epsilon) w_{n j} \text { for some } j \notin J_{n 1}\right\} \\
= & P\left\{B_{n 1}\right\}+P\left\{B_{n 2}\right\}+P\left\{B_{n 3}\right\}+P\left\{B_{n 4}\right\}, \quad \text { say }, \tag{S.7}
\end{align*}
$$

where \mathbf{e}_{j} is the unit vector in the direction of the j-th coordinate.
Since $\left\|\left(\mathbf{e}_{j}^{\prime} \Sigma_{n 11}^{-1} \mathbf{X}_{1}^{\prime}\right)^{\prime}\right\| / n \leq n^{-1 / 2}\left\|\Sigma^{-1 / 2}\right\| \leq\left(n \tau_{n 1}\right)^{-1 / 2}$ and $\left|\beta_{0 j}\right| \geq b_{n 1}$ for $j \in J_{n 1}$,

$$
P\left\{B_{n 1}\right\}=P\left\{\frac{1}{n}\left|\mathbf{e}_{j}^{\prime} \Sigma_{n 11}^{-1} \mathbf{X}_{1}^{\prime} \varepsilon\right| \geq \frac{\left|\beta_{0 j}\right|}{2}, \exists j \in J_{n 1}\right\} \leq k_{n} q_{n}^{*}\left(\frac{\sqrt{\tau_{n 1} n} b_{n 1}}{2}\right)
$$

with the tail probability $q_{n}^{*}(t)$ in Lemma 1. Thus, $P\left\{B_{n 1}\right\} \rightarrow 0$ by (A1), Lemma 1 , (A4) and (A5).

Since $w_{n j}=1 /\left|\widetilde{\beta}_{n j}\right|$, by Lemma 2 and conditions (A4) and (A5)

$$
\left|\mathbf{e}_{j} \Sigma_{n 11}^{-1} \widetilde{\mathbf{s}}_{n 1}\right| \frac{\lambda_{n}}{n} \leq \frac{\left\|\widetilde{\mathbf{s}}_{n 1}\right\| \lambda_{n}}{\tau_{n 1} n}=O_{P}\left(\frac{M_{n 1} \lambda_{n}}{\tau_{n 1} n}\right)=o_{P}\left(b_{n 1}\right),
$$

where $b_{n 1}=\min \left\{\left|\beta_{0 j}\right|, j \in J_{n 1}\right\}_{\text {. }}$. This gives $P\left\{B_{n 2}\right\}=o(1)$.
For $B_{n 3}$, we have $w_{n j}^{-1}=\left|\widetilde{\beta}_{n j}\right| \leq M_{n 2}+O_{P}\left(1 / r_{n}\right)$. Since $\left\|\left(\mathbf{x}_{j} \mathbf{H}_{n}\right)^{\prime}\right\| \leq \sqrt{n}$, for large C

$$
\begin{aligned}
P\left\{B_{n 3}\right\} & \leq P\left\{\left|\mathbf{x}_{j}^{\prime} \mathbf{H}_{n} \varepsilon\right| \geq \frac{(1-\kappa-\epsilon) \lambda_{n}}{C\left(M_{n 2}+\frac{1}{r_{n}}\right)}, \exists j \notin J_{n 1}\right\}+o(1) \\
& \leq m_{n} q_{n}^{*}\left(\frac{(1-\kappa-\epsilon) \lambda_{n}}{C\left(M_{n 2}+\frac{1}{r_{n}}\right) \sqrt{n}}\right) .
\end{aligned}
$$

Thus, by Lemma 1 and (A4), $P\left\{B_{n 3}\right\} \rightarrow 0$.
Finally for $B_{n 4}$, Lemma 2 and condition (A5) imply

$$
\begin{aligned}
& \max _{j \notin J_{n 1}}\left(\frac{\left|\mathbf{x}_{j}^{\prime} \mathbf{X}_{1} \Sigma_{n 11}^{-1} \widetilde{\mathbf{s}}_{n 1}\right|}{n w_{n j}}-\left|\eta_{n j} \mathbf{x}_{j}^{\prime} \mathbf{X}_{1} \Sigma_{n 11}^{-1} \mathbf{s}_{n 1}\right|\right) \\
& \quad \leq \max _{j \nexists J_{n 1}}\left(\frac{\left\|\left(\mathbf{x}_{j}^{\prime} \mathbf{X}_{1} \Sigma_{n 11}^{-1}\right)^{\prime}\right\|}{n}\right)\left\|\left|\widetilde{\beta}_{n j}\right| \widetilde{\mathbf{s}}_{n 1}-\left|\eta_{n j}\right| \mathbf{s}_{n 1}\right\| \leq \tau_{n 1}^{-\frac{1}{2}} o_{P}(1)=o_{P}(1),
\end{aligned}
$$

due to $\left\|\mathbf{x}_{j}\right\|^{2} / n=1$. Since $\left|\eta_{n j} \mathbf{x}_{j}^{\prime} \mathbf{X}_{1} \Sigma_{n 11}^{-1} \mathbf{s}_{n 1}\right| \leq \kappa$ by (A3), we have $P\left\{B_{n 4}\right\} \rightarrow 0$.
Proof of Theorem 3. Let $\boldsymbol{\mu}_{0}=E \mathbf{y}=\sum_{j=1}^{p_{n}} \mathbf{x}_{j} \beta_{0 j}$. Then,

$$
\widetilde{\beta}_{n j}=\frac{\mathbf{x}_{j}^{\prime} \mathbf{y}}{n}=\eta_{n j}+\frac{\mathbf{x}_{j}^{\prime} \varepsilon}{n}
$$

with $\eta_{n j}=\mathbf{x}_{j}^{\prime} \boldsymbol{\mu}_{0} / n$. Since $\left\|\mathbf{x}_{j}\right\|^{2} / n=1$, by Lemma 1 , for all $\epsilon>0$

$$
P\left\{r_{n} \max _{j \leq p_{n}}\left|\widetilde{\beta}_{n j}-\eta_{n j}\right|>\epsilon\right\}=P\left\{r_{n} \max _{j \leq p_{n}} \frac{\left|\mathbf{x}_{j}^{\prime} \varepsilon\right|}{n}>\epsilon\right\} \leq p_{n} q_{n}^{*}\left(\frac{\sqrt{n} \epsilon}{r_{n}}\right)=o(1)
$$

due to $r_{n}(\log p)(\log n)^{I\{d=1\}} / \sqrt{n}=o(1)$. For the second part of (A2) with $M_{n 2}=$ $\max _{j \notin J_{n 1}}\left|\eta_{n j}\right|$, we have by (B3)

$$
\sum_{j \in J_{n 1}}\left(\frac{1}{\eta_{n j}^{2}}+\frac{M_{n 2}^{2}}{\eta_{n j}^{4}}\right) \leq \frac{k_{n}}{\widetilde{b}_{n 1}^{2}}\left(1+c_{n}^{2}\right)=o\left(r_{n}^{2}\right)
$$

To verify (A3), we notice that

$$
\left\|\mathbf{X}_{1}^{\prime} \mathbf{x}_{j}\right\|^{2}=\sum_{l \in J_{n 1}}\left(\mathbf{x}_{l}^{\prime} \mathbf{x}_{j}\right)^{2} \leq k_{n} n^{2} \rho_{n}^{2}
$$

and $\left|\eta_{n j}\right| \times\left\|\mathbf{s}_{n 1}\right\| \leq k_{n}^{1 / 2} c_{n}$ for all $j \notin J_{n 1}$. Thus, for such j, (B2) implies

$$
\left|\eta_{n j}\right| n^{-1}\left|\mathbf{x}_{j}^{\prime} \mathbf{X}_{1} \Sigma_{n 11}^{-1} \mathbf{s}_{n 1}\right| \leq \frac{c_{n} k_{n} \rho_{n}}{\tau_{n 1}} \leq \kappa .
$$

The proof is complete.

Department of Statistics and Actuarial Science, University of Iowa, Iowa City, Iowa 52242, U.S.A.
E-mail: jian@stat.uiowa.edu
Division of Biostatistics, Department of Epidemiology and Public Health, Yale University, New Haven, Connecticut 06520-8034, U.S.A.
E-mail: shuangge.ma@yale.edu
Department of Statistics, 504 Hill Center, Busch Campus, Rutgers University, Piscataway NJ 08854-8019, U.S.A.
E-mail: cunhui@stat.rutgers.edu
(Received November 2006; accepted May 2007)

