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Supplementary Material A – Abbreviations

AFC average functional connectivity.

AR1 first-order autoregressive.

AR1B first-order autoregressive model combined with bootstrap of the

residuals.

CBB circular block bootstrap.

cdf cumulative distribution function.

DB double bootstrap.

DGP data-generating process.

FDB fast double bootstrap.

FDR False discovery rate.

FPR False positive rate.

GSST Gaussian separable in space and time.

HMMS hidden-Markov multi-states.

i.i.d. independent and identically distributed.

iidB independent and identically distributed bootstrap.

MVC maximum variance criterion.

pdf probability distribution function.

sC spatial correlation(s).

ROC receiver-operating characteristic.

tC time correlation(s).

YADB yet another double bootstrap.

Supplementary Material B – Parametric models of

space-time stationary processes

Models of generation for space-time processes are still under active develop-

ment (Stein (2005). In this section, we present a sampling procedure for space-

time stationary processes, and prove the validity of some parametric models for

space correlations (sC) and time correlations (tC) adapted to the case of regional
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fMRI time series with multiple networks. The material presented here is based on

classical theory of stationary processes yet some results are not standard, such as

the validity of the homogeneous model of sC for 3 networks and the non-Gaussian

process called hidden-Markov multi-states model. Short proofs are included for

all results.

The following notations apply in this section. The letters i, j, k, l and r, s, t, u

are used as indices in space and time, respectively. Matrices are denoted by

a boldface characters, while scalars are noted in normal font. For a random

variable Y, y is a sample from Y, pr(Y = y) or pr(y) is the pdf of Y at point

y, E(Y) is the mathematical expectation. For y a scalar, abs(y) is the absolute

value of y. For Y a space-time variable or matrix, Y′ is the regular matrix

transposition and for t and i some temporal and spatial indices, respectively, Yt

and Yi are the vectors (Yti, i = 1, . . . , N) and (Yti, t = 1, . . . , T ) respectively.

The covariance between two univariate variables cov(Y,Z) is E {(Y −E(Y ))(Z−

E (Z))}, the variance of Y , var(Y ), is cov(Y, Y ), and the correlation corr(Y,Z) is

cov(Y,Z)/{var(Y )var(Z)}1/2. For a multivariate random variable Y of size T ×

N , the correlation matrix of Y is the TN ×TN matrix ΣΣΣ = (corr(Yti, Yuj), t, u =

1, . . . , T, i, j = 1, . . . , N).

The following procedure can be applied to generate space-time processes

assuming that some models of sC and tC are provided.

Theorem 1.(A data-generating process for space-time variables)

Let Z = (Zti, t = 1, . . . , T, i = 1, . . . , N) be a real-valued random variable

of size T × N with second-order moments, such that the elements of Z are in-

dependent and identically distributed (i.i.d.) with zero mean and unit variance :

∀t = 1, . . . , T, ∀i = 1, . . . , N, E(Zti) = 0, var(Zti) = 1. (S.1)

Let ΣΣΣτ = (τtu)Tt,u=1 be the so-called tC matrix, and ΣΣΣη(t) = (ηij)
N
i,j=1, t = 1, . . . T ,

be a series of so-called sC matrices. If ΣΣΣτ and ΣΣΣη(t) are valid correlation matri-

ces, i.e. definite-positive symmetric with ones on the diagonal, their square root ΥΥΥ

and ΛΛΛ(t) can be defined via Cholesky decomposition (Harville (1997, pp.215-235))

as matrices of size T × T and N × N , respectively, such that :

ΥΥΥ′ΥΥΥ = ΣΣΣτ , ΛΛΛ(t)′ΛΛΛ(t) = ΣΣΣη(t). (S.2)

For t = 1, . . . , T , let Yt be defined as (ΥΥΥ′Z)t ΛΛΛ(t). The variable Y has a zero

mean and its variance matrix is given by :

var(yti) = 1, corr(yti, yuj) = cov(yti, yuj) = τtu

(

ΛΛΛ(t)′ΛΛΛ(u)
)

ij
. (S.3)
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In particular, the spatial correlations at a given time point (t = u) are given by

corr(yti, ytj) = ηij(t). Moreover, we have the following upper bound on space-time

correlations :

|corr(yti, yuj)| ≤ |τtu|. (S.4)

If T tends towards +∞ and the series of sC (ΣΣΣη(t))t is stationary, then the

process Y is also stationary. Samples y of Y can be generated using samples z

of Z and deriving (ΥΥΥ′z)t ΛΛΛ(t) for t = 1, . . . , T .

If Z follows a Gaussian distribution, the marginal variables Yti all follow

a univariate Gaussian distribution (with zero mean and unit variance). If in

addition the sC matrices are constant (ΣΣΣη(t) = ΣΣΣη), then the variable Y follows

a joint Gaussian distribution and the correlations are separable in space and time

(GSST), i.e., corr(yti, yuj) = τtuηij .

Proof of Theorem 1. Let υtu and λij(t) denote the elements of the matrices ΥΥΥ

and ΛΛΛ(t), respectively. Let X be defined as the T ×N matrix ΥΥΥ′Z, with elements

Xti. The expectation of X is zero because the expectation is linear and E(Z) = 0.

Moreover, we have :

∀i, j = 1, . . . , N, E(XiX
′
j) = E(ΥΥΥ′ZiZ

′
jΥΥΥ) = ΥΥΥ′

E(ZiZ
′
j)ΥΥΥ. (S.5)

Using the fact that E(ZiZ
′
j) equals the null matrix for i 6= j and equals the

identity matrix for i = j, as well as ΥΥΥ′ΥΥΥ = ΣΣΣτ , the second-order moments of X

are :

cov(Xti,Xui) = τtu, cov(Xti,Xuj) = 0, ∀i 6= j, (S.6)

The elements Yti of Y can be expressed as
∑N

k=1 Xtkλki(t). We thus have E(Yti) =

0 by linearity, and the following expression for the covariance :

cov(Yti, Yuj) =

N
∑

k,l=1

λki(t)λlj(u)cov(Xtk,Xul) = τtu

(

ΛΛΛ(t)′ΛΛΛ(u)
)

ij
, (S.7)

Note that ΛΛΛ(t)′ΛΛΛ(t) = ΣΣΣη(t), so Equation (S.7) applied for t = u and i = j,

together with τtt = 1 and ηii = 1, also implies that var(Yti) = 1, which completes

the proof of Equation (S.3). Equation (S.4) is a consequence of Schwartz’s in-

equality applied to Equation (S.3). The stationarity of Y under the assumption

that (ΣΣΣη(t))t is stationary is straightforward. If Z is Gaussian, then X is Gaus-

sian as a linear transform of a Gaussian variable, and the same argument applies

to Yti, i.e. Y is marginally Gaussian. If in addition the sC matrices are constant

equal to ΣΣΣη, then Y is simply equal to ΥΥΥ′ZΛΛΛ and is thus jointly Gaussian as a

linear transform of a Gaussian variable, and the separability of correlations is a

direct consequence of Equation (S.3).
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The sampling procedure in Theorem 1 requires to specify valid models for

tC and sC. We start by defining a parametric tC model and state conditions of

validiy.

Proposition 1.(Exponential model of tC)

The tC matrix ΣΣΣτ in the exponential model is defined as (Cressie (1993)) :

ΣΣΣτ = (τtu = a|t−u|, t, u = 1, . . . , T ), (S.8)

where a is a real parameter. The exponential model is valid, i.e. ΣΣΣτ is symmetric

definite-positive and τtt = 1, if and only if |a| < 1.

The validity of the exponential model is a consequence of the following result,

relating the exponential model to more classical theory of space-time processes,

i.e., autoregressive processes.

Proposition 2.(Equivalence between the exponential and AR1 tC)

Let (Et)
+∞
t=1 be independent and identically distributed univariate Gaussian

random variables with zero mean and variance (1 − a2), with |a| < 1. Let Y1 be

a univariate Gaussian variable with zero mean and unit variance independent of

(Et)
+∞
t=1 . The temporal AR1 process (Yt)

+∞
t=1 is defined iteratively :

Yt = aYt−1 + Et−1, ∀t ≥ 2. (S.9)

The time series (Yt)
+∞
t=1 is stationary and finite subseries follow a joint Gaussian

distribution with tC matrix given by the exponential model with parameter a.

Propositions 1 and 2. A recursive proof shows that for all t > 0 and K ≥ 0,

the variable Yt is independent of Et+K and moreover :

Yt+K = aKYt +
K
∑

k=1

aK−kEt+k−1, ∀t > 0, K > 0. (S.10)

Let T be a positive integer and Y, E be (Yt)
T
t=1 and (Et−1)

T
t=1 respectively,

with E0 = Y1 by convention. Equation S.10 shows that Y = ME, with M the

T × T matrix such that Mtu = at−u for t ≥ u and Mtu = 0 otherwise. As

E follows a joint Gaussian distribution, Y also follows a Gaussian distribution.

Equation S.10 moreover shows that Y has the following moments of order 2 :

∀t > 0, var(Yt) = 1, corr(Yt+K , Yt) = aK . (S.11)

The series (Yt)
+∞
t=1 is thus stationary, because Gaussian variables are completely

determined by their first and second-order moments. Moreover, the correlations

of finite samples (Yt)
T
t=1 exactly follow the exponential model of tC wih parameter

a, which proves the validity of the exponential model.
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The next paragraph defines the so-called homogeneous model of sC Tononi

et al. (1998)), where the correlations within and between networks are constant.

The model is presented in the general case, and then some sufficient conditions

of validity are provided in the case M = 3 networks.

Definition 1.(Homogeneous sC model)

Let (Sm)Mm=1 be a partition of the spatial indices i = 1, . . . , N into M subsets,

called networks. In the homogeneous model, the correlations between two spatial

locations depend only on the networks these locations belong to, which means

that the sC matrix ΣΣΣη = (ηij , i, j = 1, . . . , N), has the following form:

ηii = 1, ηij = θmm′ , ∀(i, j) ∈ Sm × Sm′ , i 6= j, ∀m,m′ = 1, . . . ,M, (S.12)

where the matrix (θmm′)Mm,m′=1 have elements bounded by −1 and 1. Because the

correlations are constant within and between networks, the values θmm′ exactly

match the expected average functional connectivity (AFC) measures within and

between networks and (θmm′)Mm,m′=1 is called the AFC matrix.

Proposition 3.(Validity of the homogeneous sC model for 3 networks)

Let ΣΣΣη be a sC matrix following an homogeneous model with M = 3 networks

and AFC matrix (θmm′)3m,m′=1, |θmm′ | < 1 for all m,m′. We consider the case

of positive intra-network AFC, i.e., 0 < θmm for all m. The following conditions

on the AFC parameters are sufficient to ensure that the matrix ΣΣΣη is valid, i.e.

symmetric definite-positive, independently of the number of regions N or the

respective size of the networks :

∆1 > 0, ∆2 > 0,

∆2 > θ−1
11 ∆1, ∆4∆2 > ∆1∆

2
3,

∆2∆5 > ∆2
3, ∆2∆5 − ∆2

3 < θ11∆2(∆4∆
2
2 − ∆1∆

2
3),

(S.13)

where the quantities ∆k, k = 1, . . . , 6, are defined as follows :

∆1 = θ2
11 − θ2

12, ∆2 = θ11θ22 − θ2
12, ∆3 = θ11θ23 − θ12θ13,

∆4 = θ2
11 − θ2

13, ∆5 = θ11θ33 − θ2
13.

(S.14)

Proof of Proposition 3. We first establish a sufficient condition on the validity

of the homogeneous model with one network and an AFC parameter θ. Let ΣηΣηΣη

be the N × N sC homogeneous matrix and x = (xi)
N
i=1 be a vector of R

N . The

2-norm associated with ΣηΣηΣη is :

x′ΣΣΣηx = (1 − θ)

N
∑

i=1

x2
i + θ

(

N
∑

i=1

xi

)2

. (S.15)



S6 PIERRE BELLEC, GUILLAUME MARRELEC AND HABIB BENALI

A sufficient condition for the positivity of (S.15) for all non-null vector x is 0 ≤

θ < 1. Under this condition, ΣΣΣη is definite-positive and is moreover symmetric

with ones on the diagonal, and therefore the model is valid.

The demonstration of sufficient conditions on the validity of the homogeneous

model in the case of M = 3 networks proceeds by actually building a spatial

process whose sC matrix follows the model. More precisely, this process is built

using a linear mixture of independent homogeneous process in the case M = 1.

Let Zm be independent processes of size N × 1 following a homogeneous model

with M = 1 network and with respective AFC parameters hm, 0 < hm < 1, for

m = 1, 2, 3. Define the variable Y of size N × 1 by a sparse linear combination

of Zm :

Yi = Z1
i , ∀i ∈ S1, (S.16)

Yj = aZ1
j + Z2

j , ∀j ∈ S2, (S.17)

Yk = bZ1
k + cZ2

k + Z3
k , ∀k ∈ S3. (S.18)

Let (i, i′), (j, j′), (k, k′) be spatial indices in S1, S2, S3, respectively. The

variable Y has the following moments of order 2 :

θ11 = corr(Zi, Zi′) = h1, (S.19)

θ22 = corr(Zj , Zj′) = (1 + a2)−1(a2h1 + h2), (S.20)

θ33 = corr(Zk, Zk′) = (1 + b2 + c2)−1(b2h1 + c2h2 + h3), (S.21)

θ12 = corr(Zi, Zj) = (1 + a2)−
1

2 ah1, (S.22)

θ13 = corr(Zi, Zk) = (1 + b2 + c2)−
1

2 bh1, (S.23)

θ23 = corr(Zj , Zk) = (1 + a2)−
1

2 (1 + b2 + c2)−
1

2 (abh1 + ch2), (S.24)

so the variable Y follows an homogeneous model with M = 3 networks, and

the Equations (S.19-S.24) relate the parameters a, b, c and h1, h2, h3 to the six

AFC parameters (θm,m′)3m,m′=1. Conversely, let (∆k)
6
k=1 be the functions of

some arbitrary parameters θm,m′ as defined in Equations S.13, such that (∆k)
6
k=1

satisfy the conditions stated in Equations S.14. The system of equations (S.19-

S.24) is then invertible, and the inverse parameters are :

h1 = θ11, (S.25)

h2 = θ11∆2∆
−1
1 , (S.26)

h3 = θ11∆2(∆2∆5 − ∆2
3)(∆4∆

2
2 − ∆1∆

2
3)

−1, (S.27)

a = θ12∆
− 1

2

1 , (S.28)

b = θ13∆2(∆4∆
2
2 − ∆1∆

2
3)

− 1

2 , (S.29)
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c = ∆
1

2

1 ∆3(∆4∆
2
2 − ∆1∆

2
3)

− 1

2 . (S.30)

Before introducing the hidden-Markov multi-states (HMMS) model, sym-

metric binary Markov chains need to be defined.

Proposition 4.(Asymptotic stationarity of binary Markov chain)

Let S0 be an even random binary state, i.e., pr(S0 = 0) = pr(S0 = 1) = 1/2,

and let p be a probabity value, with 0 < p < 1. The states of the binary Markov

chain (St)
+∞
t=0 are defined through first-order conditional probability, i.e. for all

T > 0, for all state series (st)
T
t=0 in {0, 1}T+1 :

pr(sT |st, ∀t < T ) = pr(sT |sT−1) = abs(abs(sT − sT−1) − p). (S.31)

The process (St)
+∞
t=t0 is stationary and both states are marginally equiprobable, i.e.

pr(St = 0) = pr(St = 1) = 1/2, and the binary Markov chain is therefore called

symmetric. The parameter (1 − p) is the probability of transition from one state

to the other.

Proof of Proposition 4. The marginal probability at time t is the vector pt

equals to (pr(St = 0),pr(St = 1))′. The transition matrix M is such that :

∀s, s′ ∈ {0, 1}, Mss′ = pr(St+1 = s|St = s′) = abs(abs(s − s′) − p). (S.32)

By definition of the binary Markov chain, we have pt+1 = Mpt. A simple recur-

rence shows that pt = (1/2, 1/2)′ for all t > 0. Moreover, for all t0 > 0, T > 0

and for all states (st)
t0+T
t=t0 we have :

pr(st, t = t0, . . . , T ) =
1

2

t0+T
∏

t=t0+1

abs(abs(st − st−1) − p). (S.33)

This distribution does not depend on t0, so the series (St)
+∞
t=0 is stationary.

The HMMS model is a hierarchical model of space-time data where the

sC at each time point is dependent on the state of a binary symmetric Markov

chain :

Proposition 5.(Hidden-Markov multi-states process)

Let (st)
T
t=1 be a finite sample of a stationary binary symmetric Markov chain

with transition probability (1 − p). Let ΣΣΣ0
η and ΣΣΣ1

η be two valid sC matrices

and let the series (ΣΣΣη(t))
T
t=1 be defined as ΣΣΣst

η for all t. Samples of the hidden-

Markov multi-states process Y are generated using Theorem 1 with sC parameters

(ΣΣΣη(t))
T
t=1, any valid temporal tC parameters, and a Gaussian variable Z. The

process Y is stationary with zero mean and unit variance and therefore for all t

the spatial correlation matrix is simply E(Y′
tYt) which is equal to the average of
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the sC matrices of each state (ΣΣΣ0
η +ΣΣΣ1

η)/2. A HMMS process does not generally

have a joint Gaussian distribution.

Note that if ΣΣΣ0
η and ΣΣΣ1

η follow an homogeneous model with identical net-

works and respective AFC parameters (θ0
mm′)3mm′=1 and (θ1

mm′)3mm′=1, this last

proposition implies that E(Y′
tYt) also follows a homogeneous model with the

same networks and with AFC parameters equal (
{

θ0
mm′ + θ1

mm′

}

/2)3mm′=1.

Proof Proposition 5. The stationarity property is a direct implication of the

stationarity of a binary symmetric Markov chain and Theorem 1. Moreover, we

have :

E(Y′
tYt) =

1
∑

s=0

E(Y′
tYt|St = s)pr(St = s), (S.34)

= (
1

2
)(ΣΣΣ1

η + ΣΣΣ2
η). (S.35)

The fact that a HMMS process does not in general follow a joint Gaussian

distribution can be demonstrated using an example. Consider the case of two

networks with one region each, no temporal corretation, i.e. τtu = 0 for t 6= u,

and the AFC θ0
12 = ρ in state 0, θ1

12 = −ρ in state 1. According to Equations

(S.35,S.3), all correlations in the process Y are zero. If the process followed a

joint Gaussian distribution, the variables (Yti)
i=1,2
t=1,...,T should therefore be jointly

i.i.d. Informally, for θ > 0, observing the values yti and ytj informs on the sC

matrix and therefore on the state value st. If the transition probability (1− p) is

very small, the state st+1 is likely to be the same as st, and thus the distribution

pr(yt+1) will be different of pr(yt+1|yt), which contradicts the joint independence

of variables.



A TEST TO INVESTIGATE CHANGES IN CONNECTIVITY S9

Supplementary Material C – Further results on simulations

Figure C1. Effective false positive rate of the testing procedures for an
expected p̂ < 0.05, estimated through Monte-Carlo simulations. For GSST

simulations (top row), the AR1B DGP allowed for a correct control of the

false-positive rate, CBB produced satisfactory results for T = 200 (effective

false-positive rate smaller than 0.1) while iidB was too liberal. In this type
of simulation, simple bootstrap produced very similar results to YADB. By

contrast, for HMMS simulations (bottom row), the CBB DGP combined

with the YADB algorithm was the only procedure which allowed for a

satisfactory control of the effective false-positive rate at T = 200.
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Figure C2. Effective false discovery rate of the testing procedures for an

expected q̂ = 0.05, estimated through Monte-Carlo simulations. For GSST

simulations (top row), the AR1B DGP allowed for a correct control of the

false discovery rate, CBB produced satisfactory results for T = 200 (effective
false discovery rate smaller than 0.1) while iidB was too liberal. For HMMS

simulations (bottom row), the CBB was the only DGP which allowed for a

satisfactory control of the effective false-discovery rate at T = 200. In both

types of simulations, simple bootstrap produced very similar results to the
YADB algorithm.
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Figure C3. Receiver-operating characteristic (ROC) curves of the YADB al-
gorithm on Monte-Carlo simulations with a number T of time samples equal
200. The CBB DGP was the one which performed the worst, yet all three
DGP had close performance, regardless of the difficulty of the comparison
and the type of simulations.
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