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Abstract: The processing of massive data generated by bioinformatic and neuro-

science studies is a current challenge to statisticians since they require the devel-

opment of computationally efficient and stable algorithms that can deal with many

more variables than observations. In neuroscience, a clear example of this situation

is the estimation of brain physiological interactions through the analysis of fMRI

time series. The widespread use of the General Linear Model in the resolution of

these problems has now been enhanced by the addition of prior assumptions, such

as the sparseness and/or the spatiotemporal smoothness of a desirable solution

(Valdes-Sosa (2004)). In this context, the use of Local Quadratic Approximation

(LQA) (Fan and Li (2001)) and the Minorization-Maximization (MM) Hunter and

Li (2005)) algorithms are practical ways for estimating the sparse models. Recently,

we have extended these techniques to allow the combination of these attractive

properties (Valdes-Sosa et al. (2006)). Here, we further formalize the methods and

introduce a feature selection algorithm for feasible implementation. The method-

ology is then applied to the estimation of voxel-based brain effective connectivity

using simulated and neuroimaging data.
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1. Introduction

There is consensus in the Neuroscience Community that understanding the
neural substrates of cognitive processes (language, object recognition, working
memory, motor planning, awareness, etc.) will involve much more than just lo-
calizing the “functions” subserved by specific brain regions. The objective rather
is to identify the widespread and continuously changing networks of neuronal
populations that transiently engage with each other to carry out computations.
Thus, the problem of estimating brain connectivity has become one of the main
current methodological problems in brain research. There are several excellent
reviews on this expanding area (Lee, Harrison and Mechelli (2003), Bullmore
et al. (2004) and Jirsa and McIntosh (2007)) and, particularly, a project that
establishes the study of the “Human Connectome” as a means for uncovering the
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structural and functional determinants of brain activity through the combined
study of anatomical, functional and effective connectivity (Sporns, Tononi and
Kotter (2005)). This fortells an immediate increase in connectivity research as
well as community agreement in the development of neuroinformatic databases
and statistical tools (Kotter (2001) and Stephan et al. (2001)).

Methods for brain connectivity can be distinguished on the basis of their
dealing with the structural (anatomical) or physiological interrelationship be-
tween their neuronal populations. Anatomical connectivity studies of the human
brain have been guided by investigation in primates, using invasive tracing exper-
iments for accurate fiber tracking inside the brain (Buchel and Friston (1997)).
The emergence of non-invasive techniques for studying the brain connectivity in
vivo, in particular Diffusion Tensor Imaging (DTI), have allowed the characteri-
zation of the major pathways in the human brain (Le Bihan (2003)). However,
the insufficient spatial resolution of DTI and some limitations in data acquisition
and processing algorithms have hindered the creation of human brain anatomical
maps based on DTI data (see however Iturria-Medina et al. (2007)).

Similarly, functional Magnetic Resonance Imaging (fMRI) has been increas-
ingly used to study the principles of functional integration and segregation. Ev-
idence supports that these phenomena have origin in the patchy and selectivity
pattern of fibers linking cortico-cortical and thalamo-cortical regions (Friston,
Ashburner, Stefan, Thomas and Penny (2006)). In the absence of an accurate
structural mapping of these associations, functional and effective connectivity
have become the target of novel statistical tools for exploring these connections
and their relationships with functional specialization (Table 1).

Table 1. Modes of Brain Connectivity.

Brain connectivity Techniques

Anatomical
Lesion studies using manganese (invasive).
Diffusion Wighted Imaging (In vivo)

Physiological
Functional (Association)
Effective (Causality)

EEG, fMRI, Optical Imaging, Transcranial
Magnetic Stimulation (TMS)

A major tool for studying physiological connectivity is fMRI, which is based
on the Blood Oxygenation Level Dependent (BOLD) contrast, which in turn
is based on the oxygen consumption of the active neuronal population and the
magnetic properties of the deoxyhaemoglobin and haemoglobin contained within
the red blood cells (Ogawa and Sung (2007)). A temporary increase in neuronal
activity produces a smoothed and retarded function known as the haemodynamic
response function (HRF) (Heeger and Ress (2002)). This signal is characterized
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on some occasions by an initial dip because oxygen is rapidly consumed by active
neurons and, in consequence, increases the relative level of deoxyhaemoglobin in
the blood. After that, an oversupply of oxygenated blood causes a maximum
point in the signal at six seconds after the initial neuronal activity. Finally, in
absence of subsequent neuronal activity, the oxygen concentration and the HRF
signal return to their baselines (Figure 1).

Figure 1. Left: discretization of the brain into voxels as units to reflect
the brain activity. Right: the HRF signal produced by transient activity in
neuronal populations.

Although fMRI signals are an indirect result of neuronal activations
(Logothetis et al. (2001)) and Heeger and Ress (2002)), they has been established
as an indispensable technique for brain imaging (Friston et al. (2006) and Penny
and Friston (2007)). The spatial resolution achieved by this technique at 1.5
tesla is 2-5 mm, which is equivalent to having a 3D segmentation of the brain
volume with cubes (voxels) of these dimensions. A BOLD measure for a time
instant t is recorded at each voxel. This vector is known as a scan or image.
In a typical experiment, we have N equal to hundreds of scans, with a time
resolution of 1-4 seconds, producing a time series vector for each voxel. The
problem is that the number of voxels (p) is of the order of hundreds of thousands.
Thus, neuroimaging together with bioinformatics are the two main driving forces
requiring statistical inferences for p À N with p → ∞.

Anatomical, functional and effective connectivity must be gathered from the
context of functional imaging as the structural and dynamical relationship be-
tween the neuronal populations. In this context brain connectivity analyses can
be conducted using a voxel-based strategy, dealing with the voxels’ time series,
or between segmented Regions Of Interest (ROIs) selected by specialists attend-
ing to prior knowledge, where the ROIs’ dynamics is estimated by combining
the interior voxels’ recordings. The latter serves the purpose of dimensionality
reduction and focuses the attention on specialized structures that are supposedly
involved in some cognitive processes (Figure 2).
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Figure 2. Time series for six preselected ROIs. VC: Visual Cortex, 647
(voxels); TH: Thalamus, 177; LS: Left Somatosensory area, 29; RS: Right
Somatosensory area, 31; LI: Left Insula, 28; RI: Right Insula, 33. At both
sides are shown ROIs’ activity for scans 30, 50 and 83 for a superior (right)
and inferior (left) horizontal view.

On the other hand, functional connectivity must be understood as the sta-
tistical association between spatially remote neurophysiological events, and can
be quantified using covariance or mutual information analyses. This is frequently
done in the exploratory mode. Instead, effective connectivity is concerned with
the causal influence that neuronal populations exert over others (Friston (1994)).
Several algorithms are reported in the literature for the assessment of effective
connectivity, in general they estimate the weights of the structural connections
assumed in a model, based on a priori selection of ROIs, or guided by anatomi-
cal investigation in primates (Buchel and Friston (1997) and Jirsa and McIntosh
(2007)). Some explorations of effective connectivity using the fMRI time series
deserve special mention: a study in the frequency domain (Salvador et al. (2005))
and the Multivariate Autoregressive (MAR) models (Harrison, Penny and Friston
(2003) and Valdés-Sosa et al. (2005)) that directly approach temporal causation
in time series, and the Dynamic Causal Modeling (DCM) technique (Friston,
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Harrison and Penny (2003)), which models the hidden neural activity that orig-
inates the haemodynamic response based on intrinsic and extrinsic connections
and neural dynamics. Moreover, MAR models have been used for focal explo-
ration of effective connectivity using voxel-based time series, which constitutes a
current challenge for statistical data analysis (Valdés-Sosa et al. (2006)).

The use of Graph Theory is a convenient way to characterize brain connectiv-
ity. The anatomical information could be embodied in matrix format with binary
entries representing the presence or absence of a structural connection linking two
regions. In functional terms, connectivity is represented as a weighted matrix,
with entries representing densities or strength of the connections between the
regions. Functional connectivity graphs are rendered by symmetric matrices and
effective connectivity’s are produced by non-symmetric ones. When the subja-
cent structural model is barely known, effective connectivity could also be used
in an exploratory fashion. In this situation, a thresholded version of the latter
produces a rough estimation of the structure and directions of the physical con-
nections. The graph elements, known as nodes and edges, represent ROIs (or
voxels) and “paths” respectively. Paths are an abstract entity that stand for the
anatomical or communication links (synapses or statistical dependencies between
the nodes’ dynamics) (Figure 3).

Figure 3. Graphical and matrix representation of a connected network (top
row). Nodes represent voxels or ROIs and edges stand for bundles of fibers
(anatomical) or statistical dependencies between the constituent elements.
An edge linking i and j with a filled circle at the tip of i, indicates influence of
j onto i. In the bottom row, matrices of structural, functional and effective
connectivity are shown.
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The multivariate autoregressive (MAR) modeling of the nodes’ time series
allows the computation of the network weights and must be understood as the
estimation of effective connectivity. Autoregressive models take into account
the causation of past activations on current dynamics, addressing the temporal
aspects of causality in time series. Thus, the activation at time instant t, derived
from the BOLD signal in fMRI, is modeled as the linear combination of the Nk

previous activations vector:

zt =
Nk∑
k=1

Akzt−k + et, t = Nk + 1, . . . , Nt.

The fMRI activations for the p nodes at time instant t are collected in
zt (p×1) and the white noise input et ∼ N(0,Σ) is introduced for modeling
spatial correlation between nodes. The matrices of autoregressive coefficients
Ak (p×p) = {ak

ij}1≤i,j≤p for the different time lags, k = 1, . . . , Nk, represent the
influence that node j exerts on node i after k time instants. In general, a row
(column) of Ak corresponds to the influence field of ingoing (outgoing) connec-
tions from (to) the other nodes in the graph, and this can be represented as the
corresponding rows (columns) of the topologies shown as matrices in Figure 3.
Setting

Y =

zT
Nk+1
...

zT
Nt

 ,X =

 zT
Nk

· · · zT
1

...
. . .

...
zT
Nt−1 · · · zT

Nt−Nk

 ,B =

 AT
1
...

AT
Nk

 and E =

eT
Nk+1
...

eT
Nt

 ,

we can recast the dynamics of the network as a multivariate regression model

Y = XB + E,

where Y is (Nt − Nk)×p, X is (Nt − Nk)×pNk, and B is pNk×p. In this formula,
each row of Y corresponds to a typical scan of the fMRI and the columns contain
the time series for each node.

Solving MAR models for a large p is a current challenge in statistics. In
fMRI this corresponds to the number of voxels, which can be as many as 50,000.
Currently it is common to estimate effective connectivity based on ROIs. How-
ever, omission or cancellation of activity due to this strategy can lead to miss-
estimation or bias. In this paper, we argue that the use of methods that deal
with huge dimensionalities through exploiting appropriate priors is a valid and
useful procedure to surmount these difficulties. In this case, realistic priors are
those reflecting the patchy pattern of inter-area connectivity (smoothness) and
the selectivity of the connections between areas (sparseness).
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The Bayesian framework and penalized least squares regression are two of
the most appealing approaches. In the latter, Fan and Li (2001) proposed the
use of non-convex functions (continuous and with a singularity at the origin)
as penalties, in order to guarantee the estimation of sparse and stable solu-
tions. For estimating models involving non-convex penalties, the Local Quadratic
Approximation (LQA) (Fan and Li (2001) and Fan and Peng (2004)) and the
Minorization-Maximization (MM) (Hunter and Li (2005)) algorithms have been
introduced. They use quadratic approximation in order to apply a modified
Newton-Raphson (MNR) technique and approximate the solution in successive
steps. Therefore, LQA and MM share the convergence properties of the MNR
algorithm, using a robust local quadratic approximation. In both cases, the Hes-
sian matrix is guaranteed to be positive definite, driving convergence at least to
a local minimum.

Recently, our group has used the penalized least squares approach in the
analysis of brain functional connectivity (Valdés-Sosa et al. (2005)). This was
assessed using a two-step process involving (i) penalized regression using the MM
algorithm, then (ii) edge removal using the false discovery rate (FDR) to detect
spurious connections. The FDR (Benjamini and Hochberg (1995)) allows one to
remove statistically non-significant connections, highlighting the results and the
interpretability.

On the other hand, combinations of penalty functions have also been explored
in the literature. The Elastic Net method (Zou and Hastie (2005)) proposes
a penalty that is a combination of l1 an l2 norms, rendering solutions where
covariates having high correlation are selected from background. The Fused Lasso
(Tibshirani et al. (2005)) uses a Lasso modification that penalizes differences
between coefficients to produces sparseness patches as solutions. In general,
this family of regression methods can be joined in a common framework, and a
generalization of LQA and MM algorithms can be used for parameter estimation
(Valdés-Sosa et al. (2006)).

In this paper, we put forward the combined use of several penalties in an ap-
proach called the Multiple Penalized Least Squares (MPLS) method. This is pre-
sented in Section 2. Moreover, we introduce an algorithm based on the mixture of
a feature selection strategy with the generalized LQA and FDR techniques. We
argue that this methodology allows us to deal with the high-dimensional fMRI
data, as in the estimation of voxel-wise connectivity as an alternative to the
use of ad-hoc ROI analysis. In Section 3 this algorithm, named LQA-Fext, is ex-
plained and applications to simulated and actual neuroimaging connectivity data
are presented in Section 4. Finally, some considerations and recommendations
are posed in the conclusion.
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2. The MPLS Model

Consider the multivariate linear regression model

Y = XB + E,

where Y is an N × q matrix of responses or observations, X is the N × p design
matrix, and B is the p× q matrix of coefficients to be estimated. As usual, rows
of the residual matrix E are settled in the model as independent samples from a
q-variate normal distribution N (0,Σ), with finite covariance matrix Σ. Assume
that response columns and covariates (columns of X) have been centered, so the
intercepts are excluded from the regression model.

The least squares solution to this model is obtained by the minimization of
the functional f(B) = trace{(Y−XB)T (Y−XB)Σ−1}, and can be analytically
expressed as B =

(
XTX

)−1 XTY.
The solution assumes that X is of full column rank, so XTX is invertible.

However, this is not a feasible solution if we are dealing with an ill-conditioned
problem where XTX is almost singular or, in the case of p À N , when this is
a singular matrix. To avoid this situation, it is convenient to make assumptions
on the shape of the coefficients. These can be imposed applying hard-edge or
soft-edge constraints on the matrix B (Ramsay and Silverman (1997)). The use
of soft edge constraints is equivalent to adding a penalty term to the least squares
fitting criterion. This penalization produces the estimator

B̂=argmin
B

{
trace

(
(Y − XB)T (Y − XB)

)
+ λΨ(B)

}
,

where Ψ is a scalar penalization function that imposes some constraints on the
space of coefficients, while the positive scalar λ quantifies the relative importance
between the error fitting term and the term of constraints. Note that Σ is omitted
since its influence can be modeled by the penalty term. The simplest case is
Ridge regression (Hoerl and Kennard (2000)), which corresponds to the penalty
Ψ (B) = trace

(
BTB

)
, producing the solution

B =
(
XTX+λIp

)−1
XTY.

The ridge regression technique is frequently used to obtain stable estimators.
The penalty term can also be enriched with smoothness constraints on B, for
example to produce smooth variations of its rows or columns. Smoothness can
be required on rows of B by using Ψ (B) = trace

(
BTLTLB

)
, where L is the prior

information matrix, usually taken as the first or second order difference operator
(Valdés-Sosa et al. (2005)). In both cases, estimators can also be obtained by
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solving the equation separately for each column of Y. However, this cannot be
done if constraints are applied on columns of B, since the problem becomes non-
separable, leading to a more computationally difficult case that we do not detail
here. The MPLS model for a single column of B can be stated as

β̂ = argmin
β

{
(y − Xβ)T (y − Xβ) +

Nk∑
k=1

λkΨk (β)
}

,

with a mixture of Nk penalty terms that can impose different kind of constraints
through Ψk (β). Particular cases of this model involve the LASSO, SCAD, Elastic
Net, Fused Lasso and other regularization techniques. For example, the LASSO
(Tibshirani (1996)) is represented with the penalty Ψ (β) =

∑
|βi| ; i = 1, . . . , p,

where βi represent the elements of β; the Elastic Net can be represented in this
general model using Nk = 2, Ψ1 (β) =

∑
|βi| , Ψ2 (β) =

∑
β2

i . Similarly, the
Fusion and Fused LASSO can be modeled using MPLS as

Fusion Lasso: Nk = 1, Ψ1 (β) =
∑

i |L (i, :)β| ,
Fused Lasso: Nk = 2, Ψ1 (β) =

∑
i |βi| , Ψ2 (β) =

∑
i |L (i, :)β| ,

where L (i, :) represents the i-th row of prior information matrix L, here taken
as the first order difference operator.

The model also captures Ridge regression or more generally, any quadratic
function for Ψk. We analogously define two versions of Ridge that are called the
Fusion and Fused Ridge as

Fusion Ridge: Nk = 1,Ψ1 (β) =
∑

i (L (i, :)β)2 = βTLTLβ,

Fused Ridge: Nk = 2,Ψ1 (β) =
∑

i β
2
i = βT β,Ψ2 (β) = βTLTLβ.

Fusion Ridge and Fusion Lasso will be used as examples of MPLS models
to study the physiological interactions between the brain regions’ voxels in the
application section.

3. The LQA-Fext Algorithm

Dealing directly with MPLS regression is computationally infeasible in the
presence of a large amount of parameters. Gradient descent algorithms are com-
monly used in these circumstances in order to avoid the matrix inverse operation,
and for exploiting the problem properties. Here, under the assumption that the
number of covariates that truly explain the data are much less than the number
of parameters, we follow a procedure that basically consists of identifying the
relevant features (covariates) and estimating the corresponding coefficients using
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direct methods. Specifically, we implement this process with the successive ap-
plication of the following stages (i) Feature insertion: inclusion as relevant of the
“most promising” covariates not included in the subset of salient features; (ii)
MPLS parameter estimation using a MNR algorithm on this subset; (iii) Fea-
ture extraction: statistical determination of significant features using local FDR,
non-significant covariates being removed from the salient features subset.

The objective function to minimize is

f (β) = RSS (β) + Ψ (β)
= (y − Xβ)T (y − Xβ) +

∑Nk
k=1 λkΨk (β) .

The purpose is to look for a sub-optimal but computationally feasible solution
of this quadratic problem, considering the procedure explained above.

Perkins, Lacker and Theiler (2003) introduced the Grafting technique to au-
tomate feature selection in the context of mixing Ridge, Lasso, and subset selec-
tion. In this procedure, predictors were divided into two subsets, one containing
the active covariates (those corresponding to non-null coefficients), and the Z
subset containing the covariates whose coefficients are still zero in the current
iteration. At each step of the algorithm, a gradient-based heuristic is applied to
select a Z covariate, whose coefficient could be adjusted away from zero in order
to render the greatest descent of the objective function. This covariate is then
considered active, and a minimization MNR algorithm is applied on the active
covariates subset (salient features) until a local minimum is reached. Successive
iterations of this procedure are carried out while there are covariates in Z that
could be activated.

The feature insertion stage of our procedure uses a modification of the Graft-
ing heuristic in order to select a group of Z covariates at each step. Here, the
Grafting technique is reproduced to improve understanding, and a modification
to include group of covariates is explained. We start the procedure with the null
vector as the initial solution and consider that, after the k -th step, the procedure
is positioned in a local minimum with respect to the active covariates. Therefore

∂f

∂βj
= 0; xj is active.

In the feature insertion stage, we heuristically choose a subset of the covari-
ates with corresponding coefficient equal to zero, whose inclusion in the active
set could further improve the function minimization. If xj is a candidate covari-
ate and ∂f/∂βj > 0, then βj is decreased rendering it negative, the contrary if
∂f/∂βj < 0. For the non-negative, continuous, monotone increasing in (0, +∞),
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and symmetric functions considered here, this derivative is (for the case of one
penalty function):

∂f

∂βj
=

∂RSS
∂βj

+
∂Ψ(|βj |)

∂βj
sgn (βj) .

Thus if |∂RSS/∂βj | > |∂Ψ/∂βj |, βj can be considered as candidate. Instead,
if |∂RSS/∂βj | < |∂Ψ/∂βj |, moving βj away from zero leads to a contradiction:
setting βj slightly negative produces ∂f/∂βj < 0 and βj must be increased;
setting βj slightly positive has ∂f/∂βj > 0 and βj must be decreased.

Non-convex functions of the type considered here are singular at the origin,
which means that limβ→0(∂Ψ(|β|)/∂β) > 0. By the explanation above, it is
clear why these penalty functions produce sparse solutions. On the contrary, the
derivative of convex penalty functions is well defined at the origin, with value 0.
Thus, when |∂RSS/∂βj | > 0, covariates can be selected from Z to explain the
residual data. Also, it is easy to see why some penalty function combinations,
like the Elastic Net, are variable selection algorithms.

Finally, the candidate covariates are defined by {xj : Cj = |∂RSS/∂βj | −
|∂Ψ/∂βj | > 0}. Grafting includes in the active set only the covariate corre-
sponding to ĵ = argmaxj (Cj). However, in our case, this would result in a slow
procedure because the computational advantages of introducing covariates step
by step cannot be exploited. Therefore, we select {xj : Cj > 0.5max (Cj)} to be
included in the active set.

After the selection of active covariates, parameter estimation is carried out
with a variant of LQA, using a MNR algorithm with a robust approximation of
the Hessian rendering it positive definite (Li, Dziak, Ma (2006)). In addition,
an estimate of the degree of freedom (df), residual sum of squares (RSS), and
the coefficients’ standard deviation are used in order to compute the general-
ized cross-validation (GCV) criterion, and Student test, to identify the relevant
features. In the simplest case, GCV is computed using a set or range of regular-
ization parameters (λ):

GCV =
RSS (X∗, λ)

N
(
1 − df(X∗,λ)

N

)2 ,

where X∗ means that GCV is estimated on the active set, so the degree of freedom
of the estimated model will be lower than the number of active covariates. The
regularization parameters that minimize the GCV function are those used for the
estimation of the iterated solution.

Feature extraction is carried out after the parameter estimation stage. With
a partial estimation of the coefficients and their standard deviation, using the
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sandwich formula (Li et al. (2006)), a Student test is computed. Then we can
estimate the p-values corresponding to each coefficient using the normal standard
approximation of the t-distribution and, from this, a subset of the significant
coefficients, taking into account the problem of multiple comparisons. This is
done using the FDR procedure (Benjamini and Hochberg (1995)), in which the
rate of false discoveries (q) is kept under control. An implementation of this
procedure is shown below. We use a generalization of the LQA technique in
the estimation step, so we called it the LQA-Fext (LQA and feature extraction)
algorithm.

LQA-Fext
1. Start with β = 0 as initial solution.

2. Feature insertion: select a group of covariates whose inclusion in the active
subset could mean a further decrease of the objective function using the mod-
ified Grafting heuristic.

3. Estimate the coefficients for the active covariates for a range of regularization
parameters using the generalized LQA algorithm. Evaluate the GCV function
and select the solution corresponding to its minimum value.

4. Feature extraction: Find the significant coefficients using the FDR technique,
and remove covariates corresponding to non-significant ones from the active
subset.

5. With the solution obtained at step k, βk, repeat (2)−(4) as the next step.
If there is not any feature in the group of inactive covariates or all inactive
covariates were discarded in a previous step using the FDR, stop.

If at Step 5 the algorithm stopped because all possible candidates covariates
were discarded by the FDR, then we can use a restart strategy where covariates
in Z are tagged as not rejected by the FDR, and so would be considered for rein-
troduction. This variant allows one to continue the insertion-extraction strategy
until all candidates covariates in Z are marked as rejected again, or introduced
as active. We refer to this as stabilizing. In the application section, at most five
repetitions were allowed for obtaining stabilized versions. A current implemen-
tation of this methodology is available in Matlab R©, and can be obtained upon
request to the authors.

4. Application

4.1. Simulation connectivity data

We construct a synthetic network consisting of 200 voxels grouped into 5 re-
gions. Connectivity matrices were simulated using a voxel-based approach, where
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regions were connected indirectly through the establishment of connections be-
tween their voxels. The established connections followed a nearest neighborhood
pattern, in that a node of a target region received connections from neighbors’
nodes of the outgoing region; also an auto-connection for each node was allowed.
The synthetic model corresponds to an autoregressive model of order one. Time
series were generated for ten thousand time instants in order to render stabilized
network dynamics, and the last 101 time instants were used to build the MAR
model. Stationarity of the time series was guaranteed by ensuring that absolute
singular values of the connectivity matrices were lower than one. Figure 4 shows
the true connectivity matrix and those estimated using the LQA-Fext algorithm
for the Fusion Ridge and Fusion Lasso models. The algorithm converged after 7
iterations for both methods (17 and 88 seconds, respectively).

Figure 4. Connectivity matrices representing the true and estimated topolo-
gies using the Fusion Ridge and Fusion Lasso algorithms. Five regions were
connected through their voxels using a neighborhood pattern. The plots
show that the recovered solutions are very sparse. In the case of the Fusion
Lasso estimator, the recovering of true connections with a low level of false
discoveries is noticeable.

A statistical validation of the LQA-Fext algorithm for these models was
carried out using 20 simulations from this synthetic network and a classic Receiver
Operator Curve (ROC) analysis. For each simulation, arbitrary thresholds were
applied to standard estimators of Fusion Ridge and Fusion Lasso solutions guided
from percentiles 0-100% in order to produce different specificity-sensibility values.
This allowed the plotting of ROC curves corresponding to these methods. The
mean and 95% confident intervals were estimated and plotted, and solutions
obtained using the LQA-Fext algorithm for each simulation were summarized
using the boxplot technique (Figure 5).
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Figure 5. ROC curves for the Fusion Ridge and the Fusion Lasso using
standard algorithms. The insets show a selected region of the ROC curves
with boxplots of the 20 solutions from the LQA-Fext versions. Stabilized
versions are also shown, are not clearly superior to their original estimators.
The boxplot width is proportional to the dispersion in specificity values for
each method.

Since we have N = 100 and p = 200, which render a problem with high
correlations between the covariates, it is not surprising that the Fusion Ridge’s
mean ROC has greater area below the curve than the Fusion Lasso’s. Also, in the
insets it is noticeable that LQA-Fext versions are better than plain estimators
for this kind of problem, with the LQA-Fext versions for Fusion Lasso (3 and 4)
the most promising. Estimators 2 and 4 correspond to stabilized version for both
models (five stabilized iterations). These do not show a clear superiority over
their counterparts (Estimators 1 and 3) but require an incremental computational
time. This statistical method helps to assess the superiority of the estimators
proposed, in particular, for the Fusion Lasso.

4.2. Neuroimaging data

Based on the results for synthetic networks, we decided to test the Fusion
Lasso method with the LQA-Fext algorithm in actual neuroimaging data. For
this purpose we used a concurrent recording of EEG and fMRI time series corre-
sponding to a resting state, which was previously used for the analysis of the ori-
gin of resting brain rhythms (Goldman, Stern, Engel and Cohen (2002)). Struc-
tured patterns of correlations have been found between time-varying spectral
components in different EEG bands and the BOLD signal at different voxels.
These revealed widely distributed functional systems apparently involved in the
generation of these oscillations (Mart́ınez-Montes et al. (2004)). The fMRI data
has a total of 12,642 voxels and 108 time points, and was already used for obtain-
ing the influence field for a representative voxel of the visual cortex (Valdés-Sosa
et al. (2006), Figure 1) using a generalization of the MM algorithm.
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The fMRI data was segmented into six ROIs according to previous analyses of
these data (Goldman et al. (2002) and Mart́ınez-Montes et al. (2004)). However,
after segmentation we do not restrict our analysis to ROI time series but use the
voxel time series instead. Thus, we estimate a voxel-based effective connectivity
between the voxels corresponding to Visual Cortex (647 voxels), Thalamus (177),
Left Somatosensory Cortex (29), Right Somatosensory Cortex (31), Left Insula
(28) and Right Insula (33) (Figure 6, left panel). This kind of map might allow
one to infer the voxels actually connected in the brain without assuming par-
ticular ad-hoc segmentations, and can be used in subsequent clustering analysis
for revealing highly localized regions involved in cognitive processes. For illus-
trative purposes, we summarize the voxel-based connectivity information into a
ROI-based connectivity map, assuming that a connection from ROI 2 to 1 is
well represented as an average of the connections from voxels in ROI 2 to voxels
in 1 (Figure 6, middle panel). Auto-connections (connection between voxels of
the same ROI) are explicitly shown. Figure 6, right panel, shows a graph of the
network connectivity in which auto-connections were omitted to improve visual-
ization. This can be compared with the connectivity network found by Eichler
(Eichler (2005)) using the same data.

Figure 6. Effective connectivity matrices among six segmented ROIs: Vi-
sual Cortex (VC), Thalamo (TH), Left Somatosensory Cortex (LS), Right
Somatosensory Cortex (RS), Left Insula (LI) and Right Insula (RI), in this
order. Left panel: voxel-wise connectivity matrix for the 945 voxels selected,
found after 20 iterations (710 seconds). Middle panel: ROI-wise connectivity
matrix found as the average of voxel connectivity values by regions. Grey
levels that codify increases in connectivity and auto-connection values are
explicitly shown. Right panel: graph of the estimated ROI network; filled
circles represent incoming connections and the width of edges their strength.
In left and right panels, black and grey dots represent positive and negative
significant connections, respectively.
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5. Conclusions

In this work we have formalized the Multiple Penalized Least Squares ap-
proach, with origin in LQA and MM algorithms, as a common framework to
carry out several regression methods. This allows the combination of different
regression techniques to take advantage of their particular properties (variable
selection, good behavior for correlated data). MPLS focuses directly on the use
of appropriate priors assumed by users (smoothness, sparseness) in order to ren-
der solutions that widely enhance interpretability, and make easier the use of
statistical analysis tools. We also proposed an algorithm for dealing with sta-
tistical inferences in the case p À N . This assumes that only a few features
are generating the data, and that the way to disclose covariates influences is to
detect those features, and then to estimate their corresponding contributions.
Thus, the proposed algorithm is a combination of a feature selection heuristic
(Grafting), the generalized LQA for parameter estimation, and the removal of
non-significant covariates using FDR.

The new methodology allows the analysis of the voxel-based effective con-
nectivity that challenges statistical tools with the estimation of a huge number
of parameters. Although here we presented only an exploratory analysis on ef-
fective connectivity of resting state networks, results are in agreement with those
obtained in previous studies (Eichler (2005)). Some of these networks are widely
explored in the literature, but analyses are restricted to ROIs. The problem
discussed here must be interpreted as an assessment of the basal effective con-
nectivity, i.e., active communication links in a functional brain in resting state.

A thorough validation of the methodology requires a more extensive study
using synthetic networks with more or less realism, but with different topologies
and organizational structures. This work can also be extended to deal with more
realistic models that involve external input to the systems in the way of DCM
(Friston et al. (2006)), so we can estimate effective connectivity in association
with a realization of a cognitive task. It must be pointed out that the proposed
estimation procedure deals with an autoregressive model using traditional linear
regression methods. The simulations and practical applications seem to indicate
that is a valid first approximation. Further theoretical work is in order to fully
justify the methods presented.
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