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1. Determination of the Model Order in PARAFAC

Determining the correct number of components in a PARAFAC decomposi-

tion is a difficult task, in which experience and prior knowledge on the data to be

analyzed is very useful. Although no flawless method exists for this purpose, a

few different approaches have been used so far. One is the use of residual analysis

(or a Scree-plot), similarly applied to bilinear methods such as Principal Compo-

nent Analysis. On one hand, if systematic variation is left in the residuals, it is an

indication that more components can be extracted. On the other hand one can

plot the number of components versus the percentage variance explained by the

model or the residuals. Then, only those components explaining large percentage

of the variance are considered relevant. Another method is the Split-half analysis,

which consists in randomly splitting the data in two halves and fit a PARAFAC

model to each of them. Due to the uniqueness, the decomposition will be the

same only if the correct number of components is used (Bro (1998)). Another ap-

proach is the use of cross-validation (CV) (see e.g., Louwerse, Smilde and Kiers

(1999)) and evaluation of information criteria such as Bayesian Information Cri-

teria (BIC) (Morup, Hansen, Herrmann, Parnas and Arnfred (2006)). Finally,

other more sophisticated methods have been developed such as the Add-one-Up

(Chen, Liu, Cao and Yu (2001)) and the Core Consistency Diagnostic (Corcon-

dia), which apply especially to PARAFAC models (Bro (1998)).

In this paper we use the Corcondia measure, together with the analysis of

residual variance. This measure is based on the fact that the PARAFAC model

can be seen as a particular case of a more general model known as Tucker 3,

whose structural equation is as follows:

xijk =
∑Nd

d=1

∑Ne

e=1

∑Nf

f=1
aidbjeckfgdef + εijk.

The properties and usefulness of this model are extensively described in Bro

(1998). For our purposes we only need to show that the main differences of this
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model with PARAFAC are i) that the loading matrices can have different number

of components (Nd, Ne and Nf respectively) and ii) the existence of the so-

called ‘core array’ G(Nd×Ne×Nf ) (with elements gdef ), which allows for modelling

weighted combinations of the loading matrices. Then, this model reduces to

PARAFAC when Nd = Ne = Nf and G is the superidentity three dimensional

array (i.e., it has zeroed elements apart from those elements in the superdiagonal

which are ones).

After having fitted a PARAFAC model to the data X, verification that the

trilinear structure is appropriate can be obtained by calculating the core array

of a Tucker 3 model for the same data using the estimated loading matrices by

PARAFAC. This estimation is made by least squares regression and if PARAFAC

is valid, then this estimated core array G should resemblance the superidentity

array T. A simple way to assess if the model structure is reasonable is therefore

to monitor the distribution of superdiagonal and off-superdiagonal elements of

G, which can be summarized in a single parameter (Core Consistency) defined

as:

Core Consistency = 100



1 −

∑Nd

d=1

∑Ne

e=1

∑Nf

f=1 (tdef − gdef )2

∑Nd

d=1

∑Ne

e=1

∑Nf

f=1 g2
def



 .

This is a general measure of the trilinearity of the data, taking the value

100% in the ideal case in which the data conform exactly to the trilinear model.

If this is not the case (e.g. if Corcondia is lower than 85%) then either too many

components have been extracted, the model is misspecified, or gross outliers dis-

turb the model (Bro (1998)). Among the advantages of the use of this measure

is that there is no need for prior assumptions on the distribution of residuals nei-

ther to estimate degrees of freedom (as in using information criteria such as CV,

BIC). Despite its simplicity, this measure has been shown to be a very powerful

tool in assessing the real number of components in several fields of application

of the PARAFAC model (Bro and Kiers (2003), Miwakeichi, Mart́ınez-Montes,

Valdés-Sosa, Nishiyama, Mizuhara and Yamaguchi (2004), Morup (2005) and

Morup, Hansen, Herrmann, Parnas and Arnfred (2006)).

2. Lemma 1 and Its Proof

Lemma 1. Consider the minimization of the loss function of a multiple penalized

linear regression model for a row aT , subject to any constraint: min(
∥

∥T − zaT
∥

∥

2
+

∑

λlPl(a)). The solution to this problem is equivalent to min(‖α − a‖2+
∑

λlPl(a)),

where α is the solution of the unconstrained problem: α = arg min(
∥

∥T− zαT
∥

∥

2
) =

TTz/zT z, and λl = λl/z
T
z.
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Proof. Let α = TTz/zT z and H = T − zαT . Then min(
∥

∥T − zaT
∥

∥

2
+

∑

λlPl(a)) = min(
∥

∥H + zαT − zaT
∥

∥

2
+

∑

λlPl(a)) = min(
∥

∥

∥
H + z(α − a)T

∥

∥

∥

2
+

∑

λlPl(a)) = min(‖H‖2 + 2trace(HTz(α − a)T ) + zT z ‖α − a‖2 +
∑

λlPl(a)).

Since ‖H‖2 does not depend on a (constant term), HTz = 0, and zT z is a non-

negative scalar, then we can divide the function by zTz and define λl = λl/z
T z

to finally get:

min
(

∥

∥T − zaT
∥

∥

2
+

∑

λlPl(a)
)

= min
(

‖α − a‖2 +
∑

λlPl(a)
)

.

3. Data Description and Preproccesing

The data chosen for the study consist of an EEG recording on 16 bipo-

lar derivations (Fp2-F8, F8-T4, T4-T6, T6-O2, O2-P4, P4-C4, C4-F4, F4-Fp2;

Fp1-F7, F7-T3, T3-T5, T5-O1, O1-P3, P3-C3, C3-F7, F7-Fp1) for a subject in

resting state. The corresponding time-varying spectra are computed with the

use of Thomson multitaper method (Thomson (1982)). Then, we end up with a

three dimensional data set of 208 320 elements, indexed by 16 derivations, 124

frequencies and 105 time points, that can be subject to PARAFAC analysis as

is schematically shown in figure 1 of this supplemental material. Other details

about the data can be found in Goldman, Stern, Engel and Cohen (2002).

This data was used previously, together with fMRI data for a concurrent

analysis using multi-way Partial Least Squares (Mart́ınez-Montes, Vald és-Sosa,

Miwakeichi, Goldman and Cohen (2004)) where only the spectral loading ob-

tained by unconstrained PARAFAC decomposition via ALS was reported. Ex-

amination of Corcondia, residual errors and explained variance allowed to deter-

mine the appropriate number of components as 3. Here we followed the same

preprocessing carried out in that work. Firstly, three outlier time points were

identified by the analysis of leverages and removed for subsequent analysis. Sec-

ondly, the data was centered along the frequency dimension and scaled through

time and space. Finally, the spectral and spatial loadings were normalized while

the temporal one kept the scale of the data. In the same way the physical mag-

nitude (microvolts squared) can be assigned to any of the loadings indistinctly,

therefore, in this paper we will refer to values of the loadings as energy of the

data and omit labels on y-axes of figures.
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4. Supplemental figures and Tables

Figure 1. Schematic representation of PARAFAC decomposition. The time-varying EEG

spectrum is decomposed as a sum of atoms, each being the outer (tensor) product of

signatures corresponding to dimensions. Matrices A, B and C contain atoms as columns.

Figure 2. Topographical representation of spatial signatures of the three atoms obtained

with unconstrained PARAFAC decomposition. Reproduced from Mart́ınez-Montes, Valdés-

Sosa, Miwakeichi, Goldman, and Cohen (2004), (their figure 6). The values in the col-

orbar represents normalized energy.

Table 1. Parameters of interest for comparing PARAFAC decompositions obtained with

different degrees of smoothness for the spectral loadings. Note that among constrained

solutions, lambda=1 gives the lowest GCV, RSS and relative distances, while the highest

Corcondia.

lambda 0 0.3 0.5 1 5 10 50

logGCV -3.4581 -3.4138 -3.4493 -3.4559 -3.4385 -3.3850 -3.2426

Corcondia 93.43 75.04 93.24 93.48 92.59 92.18 90.96

RSS 6512.67 6821.23 6571.55 6527.91 6642.44 7008.00 8080.08

df 735.0 549.9 734.9 734.8 734.1 733.2 726.3

Time (s) 0.23 405.36 453.62 140.80 108.11 95.46 90.71

Niter 4 7 14 6 6 6 6

RD 1 (%) 0 33.54 9.68 5.67 5.75 5.79 8.20

RD 2 (%) 0 81.45 33.21 28.65 31.36 32.69 40.67

RD 3 (%) 0 55.26 3.62 2.43 5.92 7.91 13.56

Legend: lambda = smoothing parameter; logGCV = logarithm of Generalized Cross

Validation function evaluated at lambda; Corcondia = Core Consistency Diagnostic;

RSS = residual sum of squares; df = degrees of freedom; Time = time of computa-

tion, in seconds; Niter = number of iterations needed for convergence; RD 1 = relative

distance between estimated temporal signature and temporal signature of the uncon-

strained PARAFAC decomposition, in percent. This is defined as the ratio between the

norm of the difference between constrained and unconstrained loadings and the norm of

the constrained loading. RD 2 and RD 3 = idem to RD 1 but for spectral and spatial

loadings respectively.
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Figure 3. Temporal loadings obtained using different penalizers for the three simulated

scenarios presented in figure 3 of the manuscript. In all cases, corresponding values of

lambda, logarithm of GCV, Corcondia and relative distances are shown. Green solid line

represents the Alpha atom, red dotted line represents the Theta atom and blue dashed

line the Gamma atom. Top row: using Lasso penalization for the first simulated scenario

(figure 3a of the manuscript), with different weighting parameters. Corcondia was above

99% in all cases, since the data is by construction trilinear, though noisy. However,

according to logGCV the optimum value for the weighting parameter is 0.1, which also

have the lowest relative distance to the real loading. Middle row: using Fusion Lasso

penalization with different values of lambda on the second simulated data (figure 3b of

the manuscript). The value λ = 0.9 seems to be optimal, having the highest Corcondia,

the lowest logGCV and the lowest relative distance to the real loading. Bottom row:

using Enet penalization on the third simulated scenario (figure 3c of the manuscript).

Enet solutions were found using a first order difference operator for the l1 -norm term

and a second order difference operator for the l2 -norm term. Different values of the

parameter λ were explored for three different pairs of weights (µ1 for l1 -norm term and

µ2 for the l2 -norm term) and the solution with the lowest logGCV is presented. The

optimal weighting parameter was the same for the three choices of pairs of weights µ1

and µ2. Also, values of logGCV and Corcondia (not shown) are almost the same in the

three cases and we could select the solution with µ1 = µ2 = 0.5 as the best one based

only on the relative distance to the real loading.
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