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Abstract: Functional Magnetic Resonance Imaging (fMRI) is a non-invasive tech-

nique for studying the brain activity. The data acquisition process results a tempo-

ral sequence of 3D brain images. Due to the high sensitivity of MR scanners, spikes

are commonly observed in the data. Along with the temporal and spatial features

of fMRI data, this artifact raises a challenging problem in the statistical analysis. In

this paper, we introduce a supervised singular value decomposition technique as a

data reduction step of independent component analysis (ICA), which is an effective

tool for exploring spatio-temporal features in fMRI data. Two major advantages

are discussed: first, the proposed method improves the robustness of ICA against

spikes; second, the method uses the fMRI experimental designs to guide the fully

data-driven ICA, yielding a more computationally efficient procedure and highly

interpretable results. The advantages are demonstrated using spatio-temporal sim-

ulation studies as well as a data analysis.

Key words and phrases: Basis expansion, functional Magnetic Resonance Imaging,

robustness, singular value decomposition, spatio-temporal data.

1. Introduction

Functional Magnetic Resonance Imaging (fMRI) is a noninvasive technique

that is used to study brain functions in vivo by neuroscientists (Jezzard, Matthews

and Smith (2001) and Huettel, Song and McCarthey (2004)). Since the early

1990s, it has gained growing popularity in both clinical and basic neuroscience

researches, and has influenced our understanding of the neurobiology of human

behavior.

In a typical fMRI experiment, functional images of the brain are recorded

every few seconds while the subject is performing a task sequence or receiving

a certain stimulus. The images are taken using a Magnetic Resonance (MR)

sequence which is sensitive to changes in local blood oxygenation levels; hence,

during a certain activation, the parts of the brain that are activated would demon-

strate blood oxygenation level dependent (BOLD) signal changes similar to the

time course of the activation paradigm.
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A single MR image usually consists of a certain number of slices and each

slice is made up of individual cuboid elements called voxels. Hence an fMRI

data set can be viewed as a three dimensional matrix of voxels that is repeatedly

sampled over time. Statistically, the data set is four-dimensional, and is usually

represented as a spatio-temporal matrix X of dimension M × N : each column

of X corresponds to an fMRI image with M voxels, and each row of X is a time

series of N time points for one voxel. In most fMRI experiments, the number of

time points is far less than the number of voxels (N ≪ M). For example, the

fMRI data in Section 5 have M = 153, 594 voxels and N = 200 time points.

Various statistical methods have been proposed for the analysis of fMRI

data. The methods can be categorized into two complementary groups, model-

driven and data-driven. Model-driven approaches include statistical parametric

mapping (SPM) (Friston, Jezzard and Turner (1994) and Friston, Holmes and

Worsley (1995)), which is by far the most popular fMRI analyzer, and a vari-

ety of Bayesian techniques (Genovese (2000), Gössl, Fahrmeir and Auer (2001)

and Gössl, Auer and Fahrmeir (2001)). Data-driven approaches consist of clus-

ter analysis (Goutte et al. (1999)), principal component analysis (Kherif et al.

(2002)), and independent component analysis (ICA) (McKeown et al. (1998b),

Petersen et al. (2000) and Calhoun et al. (2003)). More recently, SPM-ICA was

proposed by Hu et al. (2005) to unify SPM, a model-driven approach, with ICA,

a data-driven approach. Lange (1999) compared nine analytic methods currently

used in BOLD fMRI analysis. Although some procedures outperform others in

certain contexts, there is no globally optimal procedure for the analysis of a

particular fMRI study.

The current paper focuses on ICA. As an exploratory data analysis tool, ICA

is capable of extracting, from the recorded fMRI signals, the individual signals

that correspond to such different sources as experiment stimuli, cardiac and respi-

ratory effects, and subject/machine movements. However, most ICA algorithms

are sensitive to outliers (McKeown et al. (1998b)). One of our contributions is

to propose a technique that makes ICA more robust against outliers.

Outliers usually appear as spikes in fMRI data (Kao and MacFall (2000)).

The spikes refer to data points with relatively high signal magnitudes, and they

are inevitable in fMRI data due to radio-frequency problems in MR scanners,

static discharge caused by synthetic fibers, or even abrupt subject movements.

For illustration purposes, Figure 1 plots the recorded time series corresponding

to three voxels in the fMRI data analyzed later in Section 5. The big spikes

around time points 110, 100 and 120 are examples of many other spikes that

are commonly detected in fMRI data. The spatial locations of the voxels are

indicated by the line crossings on the images in the left column. What is more

interesting is that the highlighted voxel in the first row even lies outside of the
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brain tissue; hence, the corresponding spike clearly does not represent any brain

function. To the best of our knowledge, there has not been much research ex-

plicitly addressing statistical issues related to the spikes. Luo and Nichols (2003)

presented an exploratory diagnostic tool to identify outliers in fMRI data.
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Figure 1. Examples of spikes in our fMRI data set. The left column contains

the images for three slices of the brain. The right column plots the time series

corresponding to the voxels highlighted by the line crossings on the slices.

The big spikes around time points 110, 100 and 120 are examples of many

other spikes in the data.
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ICA of fMRI usually involves various preprocessing stages (Calhoun et al.

(2003)). As mentioned above, fMRI data are usually of high dimension with

M ≪ N , for example, 153, 594 × 200 in our data. Computationally, it is too

expensive to apply ICA algorithms directly. To make ICA more efficient, data re-

duction is usually performed before ICA through dimension reduction techniques

such as singular value decomposition (SVD) (Petersen et al. (2000)). Such tech-

niques aim at reducing the high-dimensional full space to a much smaller feature

subspace as retained by SVD, then the ICA decomposition can be focused on the

subspace. Section 2.2 gives more detail about this step.

To make ICA more robust, one possibility is to remove the spikes from the

subspace on which ICA is performed. However, as a least squares-based method,

the conventional SVD is known to be highly susceptible to outliers. In this pa-

per, we propose a supervised SVD (SSVD) that is less sensitive to the spikes.

Our proposal is motivated by one interpretation of SVD as a low rank matrix

approximation technique (Harville (1997)). The SVD components can then be

obtained from solving a sequence of minimization problems. The conventional

SVD is unsupervised and purely data-driven. To achieve supervised low rank

approximations, and hence improve robustness, we introduce some regulariza-

tion through basis expansion in the corresponding optimization problems. The

basis expansion is constructed using the information of the fMRI experimental

designs, particularly the frequencies of the stimulus sequences. Such supervi-

sion focuses the SVD on the experimentally interesting directions, which makes

the decomposition more efficient and meanwhile less sensitive to spikes, as illus-

trated in Sections 4 and 5. Our approach is a hybrid between data-driven and

model-driven methods, which aligns with the research effort of Hu et al. (2005).

The current research is motivated by one of the few fMRI studies focusing on

elucidating the neurocircuitry involved in Parkinson’s disease (PD) and its motor

dysfunction. PD patients have problems performing simple motor activities, such

as finger tapping. One research goal is to identify the brain regions, or Regions

of Interest (ROIs), that are associated with finger tapping in these subjects.

To detect all the ROIs associated with performing motor activities robustly, this

study employs a block design involving alternating right/left-hand finger tapping

(Figure 2). Our SSVD-ICA method makes use of this design information.

The rest of the paper is organized as follows. Section 2 provides an overview

of ICA, as well as the conventional data reduction step before ICA. In Section 3,

we introduce the supervised SVD procedure and its application in ICA for fMRI.

Section 4 illustrates the performance of our proposed method using simulation.

In Section 5, we compare our method with the conventional ICA using fMRI

data collected in the aforementioned study. We close the paper with concluding

remarks in Section 6, and technical details in the Appendix.
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2. Independent Component Analysis (ICA)

2.1. Overview of ICA for fMRI

ICA has been recently used in fMRI studies to extract independent source

signals from the recorded fMRI signals (McKeown et al. (1998b), Petersen et al.

(2000) and Calhoun et al. (2003)). The basic idea of ICA can be illustrated using

the classic “cocktail party” problem (Hyvärinen, Karhunen and Oja (2001) and

Stone (2004)). Suppose many people talk simultaneously at a party, and several

microphones are recording in different locations. The recorded signals are then

mixtures of different voices. Using only these recorded mixtures as inputs, ICA

aims at identifying the individual voices of different people.

Mathematically, let y and s denote respectively r-dimensional random vec-

tors with

y = Ms, (2.1)

where M is an r× r non-random mixing matrix. The signal mixture y is observ-

able, while the source s is a vector of latent variables which are assumed to be

independent, and hence they are called independent components (IC). The objec-

tive of independent component analysis (ICA) is to recover the source by finding a

matrix W so that s = Wy. The source should not have a Gaussian distribution,

otherwise the mixing matrix M is not identifiable (Hyvärinen, Karhunen and Oja

(2001)). There are many algorithms for ICA, for example, that operate by max-

imization of the non-Gaussianity of Wy, maximum likelihood, or minimization

of mutual information (Hyvärinen, Karhunen and Oja (2001) and Stone (2004)).

Consider an fMRI data set represented by a spatio-temporal matrix X of

dimension M ×N , with rank(X) = r. Using (2.1) and the singular value decom-

position (see Section 2.2), X can be decomposed as

X = AS, (2.2)

where A and S are M × r and r × N matrices respectively. It might be useful

to recall that the right side of (2.2) can be viewed as the outer product of two

matrices, defined as the sum of the ith column of A times the ith row of S, so

that the essence of ICA is to decompose X into the sum of products of spatial

maps, columns of A, and the associated source temporal signals, rows of S, when

the number of independent components is r.

There exist two distinct ICA options for fMRI signals, spatial ICA (sICA)

and temporal ICA (tICA). The sICA aims to find independent image components

(columns of A), while tICA looks for independent time courses (rows of S). In ei-

ther case, a single ICA component can be interpreted as one spatially distributed
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set of voxels (i.e., one column of A) that is activated by the corresponding time

course in one row of S (McKeown, Hansen and Sejnowski (2003)).

2.2. The data reduction step before ICA

fMRI data are usually of high dimension, especially in the spatial domain.

In addition, ICA algorithms are often computationally intensive. Hence before

applying ICA, it is common to first perform dimension reduction using SVD

(Petersen et al. (2000)). ICA algorithms are then applied in the reduced sub-

space.

Suppose rank(X) = r ≤ min(M,N). The SVD decomposes X as

X = UDVT , (2.3)

where U is the M × r matrix of orthonormal left singular vectors, V is the N × r

matrix of orthonormal right singular vectors, and D is the r × r diagonal matrix

of positive singular values. Here U and V can be viewed as the basis vectors that

span the spatial patterns and temporal sequences, respectively.

As aforementioned, the sICA of X looks for independent image components.

When performing sICA, we can focus on the subspace spanned by Y ≡ UD,

which is of dimension M × r, much smaller than the original M × N . Apply

(2.1) to the columns of YT yielding Y = AM, where the columns of A are r

independent spatial maps of size M . The original time series at (2.2) can then be

reconstructed as § = MVT . Similarly, tICA can be performed on the subspace

retained by Y∗ ≡ DVT to identify independent time series.

In applications, the rank r may still be too large and a common approach

is to set the number of ICs, or one simply uses the common default value of 20.

In fact, one then carries out ICA by using the largest 20 singular values of D,

followed by a search for the temporal component that matches closely with the

stimulus of interest. As long as the number of ICs is less than the rank r, the

process continues until the desired match is found.

In summary, the idea of the data reduction step before ICA is to reduce the

dimension of the matrices to be used as inputs for ICA algorithms. Considering

the fact that most fMRI experiments have far less time points than voxels, this

preprocessing step greatly improves computational efficiency.

3. Supervised Singular Value Decomposition

Both ICA and SVD are sensitive to the spikes frequently encountered in fMRI

data. To overcome this problem, we propose to reduce the effect of the spikes

during the data-reduction step. The idea is to replace the conventional SVD

with a modified SVD technique that is supervised by the experimental design.
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Such supervision makes the procedure more robust, as it reduces the dependence

on data. Consequently, this makes the follow-up ICA more robust because ICA

focuses on the subspace obtained by the data reduction.

3.1. Low rank approximation via SVD

To motivate our approach, we first note that SVD can be viewed as a matrix

low rank approximation method. In the SVD of X at (2.3), let U = [u1, . . . ,ur],

V = [v1, . . . ,vr], and D = diag{d1, . . . , dr}.

For an integer l ≤ r, write X(l) ≡
∑l

k=1 dkukv
T
k . Then, X(l) is the clos-

est rank-l matrix approximation to X (Harville (1997)), in the sense that X(l)

minimizes the squared Frobenius norm between X and any rank-l matrix X∗:

‖X− X∗‖2
F = tr{(X − X∗)(X − X∗)T }.

Suppose, for example, we seek the best rank-one matrix approximation of

X. Note that any M × N rank-one matrix can be written as uvT , where u is a

norm-1 M -vector and v is a N -vector. The problem can be formulated as

minu,v‖X− uvT ‖2
F . (3.1)

Then, SVD’s low-rank approximation property implies the solution u = u1, v =

d1v1. The subsequent pairs (uk, dk,vk), k > 1, provide best rank-one approxi-

mations of the corresponding residual matrices. For example, d2u2v
T
2 is the best

rank-one approximation of X− d1u1v
T
1 .

3.2. Supervised SVD

In block design fMRI studies, experimental tasks or stimuli are typically

applied in alternating blocks. In the areas activated by these stimuli, we observe

temporal data that are correlated with the experiment design. Figure 2 shows

the time series (solid line) of one voxel that is activated by the experimental

stimulus (dashed line) in the fMRI study reported on later in Section 5. We note

that the (periodic) time components can be approximately modeled as sinusoidal

curves plus some noise in such experiments. This observation motivates us to

propose the following supervised SVD (SSVD) procedure.

Consider the time component of interest, v = (v(t1), . . . , v(tN ))T , where ti
is the ith scanning time. To fix ideas, suppose we model the component as

v(ti) = a sin(2πωti + φ) = a cos φ sin(2πωti) + a sin φ cos(2πωti), (3.2)

where a is the amplitude, φ is the phase, and ω is the frequency. Let ψ =

(a cos φ, a sin φ)T and B = (b1,b2), where b1 = (sin(2πωt1), . . . , sin(2πωtN ))T ,

and b2 = (cos(2πωt1), . . . , cos(2πωtN ))T . Then, in matrix form, one can see that

v = Bψ, (3.3)
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Figure 2. The recorded time course (solid line) of a voxel that is activated by

the experimental stimulus sequence (dashed line). The lower and higher lev-
els of the dashed line stand for rest and activation periods of the experiment,

respectively.

suggesting that v lies in the linear space spanned by the bases b1 and b2. We

remark that the choice of the sinusoidal function at frequency ω in (3.2) is an

appoximation for the true periodic time component. See Section 6 for more

discussion about the rationale for this choice.

To make use of the sinusoidal nature of v, we propose to impose the con-

straint (3.3) on v in the optimization problem (3.1), and re-formulate it as

min
u,ψ

‖X − uvT ‖2
F subject to v = Bψ.

We name this formulation Supervised SVD, because it supervises SVD by re-

stricting it to find the best low rank approximation within a certain subspace.

For identifiability purpose, we can standardize u and v to unit length and

introduce a slope parameter d. The problem is then rewritten as

min
d,u,ψ

‖X − duvT ‖2
F subject to v = Bψ,uT u = 1,vT v = 1. (3.4)

For simplicity here, the SSVD is illustrated using only the fundamental

Fourier bases in B; one can easily extend B to accommodate higher order Fourier

bases, which makes it more flexible for modeling periodic signals.

3.3. Solution and practical implementation
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The solution of the Supervised SVD (3.4) can be obtained by solving two

generalized eigen-problems as stated below.

Theorem 1. The minimizer of (3.4), {d,u,ψ}, satisfies















maxu uTXB(BT B)−1BTXTu subject to uTu = 1,

maxψ ψTBTXTXBψ subject to ψTBT Bψ = 1,

d = ψTBTXTu.

The proof of the theorem is relegated to the Appendix. The generalized

eigen-problems can be solved using standard methods as shown there. Below

we summarize the computational algorithm to obtain the first supervised time

component as well as its corresponding spatial component. See the Appendix for

the technical justification. The same algorithm can be applied repeatedly on the

residual matrices until the desired number of components is obtained.

Algorithm 1. Supervised SVD (SSVD)

(1) Choose the frequency of interest ω, and form the basis matrix B.

(2) Apply Cholesky decomposition on BT B to get BT B = RT
B
RB.

(3) Apply SVD on XBR−1
B

to derive its first left singular vector u and the first

right singular vector ψ̃.

(4) Set ψ ≡ R−1
B
ψ̃ and d ≡ ψTBTXT u, which leads to v = Bψ. Hence obtain

the first SSVD triplet {d,u,v}.

The choice of the sinusoidal frequency ω in the above algorithm can be easily

made in most of our fMRI experiments, as the frequency ω of interest is usually

known a priori. For instance, components corresponding to the experimental

stimuli and cardiopulmonary systems. To the extent that the experimenter is

interested in some unknown signals, we propose to estimate ω through spectral

analysis on the v components extracted from the conventional SVD. Although

the SVD components are affected by the spikes, their dominating frequencies are

less likely to be affected, unless the number of spikes is overwhelmingly large and

they occur in a periodic manner. The robustness of the frequencies is supported

by the numerical studies in Sections 4 and 5.

3.4. Application to ICA

Once we obtain the desired number of SSVD components, we propose to

apply an ICA algorithm to them. As the SSVD components are insensitive to
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the spikes, the results from the follow-up ICA procedure are robust as well,

as illustrated in Section 4 via simulation. In addition, because our procedure

(SSVD-ICA) uses the design information of the fMRI experiment, it is more

powerful in detecting activated brain regions of interest, as shown in Section 5.

As for the number of SSVD components to extract, we propose the follow-

ing. If we know all the frequencies of interest, we can extract the corresponding

components; otherwise, we suggest extracting the first 20 (for example) SVD

components, and perform spectral analysis on them to identify possibly inter-

esting frequencies, before applying SSVD. This proposal is consistent with the

common practice in ICA for fMRI data as described at the end of Section 2.

4. Simulation Studies

Below, we compare the SSVD-ICA procedure with the conventional ICA that

uses SVD via two simulation studies. The first simulation is presented in detail

in Sections 4.1 to 4.3, while the second one is briefly described in Section 4.4,

to save space. The results confirm that SSVD-ICA is more robust than ICA.

In addition, the second simulation shows that our approximation of modeling

temporal components using sinusoidal curves works well.

4.1. Data description

According to the ICA model (2.2), to simulate an M ×N fMRI data matrix

X, we should first simulate the M ×r spatial component matrix A and the r×N

time series matrix S separately. The data matrix X is then obtained as X = AS.

In this study, we set r = 5, M = 30 × 30 × 10 and N = 240. Basically,

there are 5 underlying independent components; each column of A is a spatial

map that consists of 10 slices and each slice contains 30 × 30 voxels; while each

row of § is a time series of length 240 that corresponds to the relevant spatial

component in A. We simulated the data based on a simple rest-activation block

design (the dotted line in the time plot within each panel of Figure 3). Each rest

or activation period lasted 18 seconds.

The first four time components were simulated using simple sinusoidal func-

tions plus Uniform noises generated between [−0.05, 0.05]. The noise distribution

had to be non-Gaussian for ICA to be well defined (Section 2). The components

are plotted in Figure 3 along with their corresponding spectral plots highlighting

the frequencies. The amplitudes of the first four components were 0.5, 0.45, 0.35

and 0.45, respectively. The corresponding frequencies were 0.06Hz, 1Hz, 0.3Hz

and 0.7Hz, carefully chosen so that they had physical interpretations. For ex-

ample, one can imagine that the first one corresponds to the stimulus of some

artificial experiment; the second and third frequencies are for the heart beat and
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breath; the fourth one is for some artifact effect. The last time component was

pure noise sampled uniformly between −0.05 and 0.05.

The voxels in A were assigned a 0 or 1. In each component, the voxels with

value 1 corresponded to the regions activated by the corresponding time stimulus;

they are plotted as dark red areas in Figure 3.

To simulate spikes in the data, we randomly selected 10% of the entries in the

simulated X, and replaced them with random noise generated from Uniform[−8,

−2] and Uniform[2, 8]. The noise distributions were chosen so that the simulated

spikes were indeed outliers, judged by the 1.5-Inter-Quartile-Range rule of thumb.

   

 

 

 
   

 

 

 
   

 

 

 
   

 

 

 
   

 

 

 

   

 

 

 
   

 

 

 
   

 

 

 
   

 

 

 
   

 

 

 

    
 

 

 

 

    
 

 

 

 

 

0.058594

Frequency (Hz)

Component 1

   

 

 

 
   

 

 

 
   

 

 

 
   

 

 

 
   

 

 

 

   

 

 

 
   

 

 

 
   

 

 

 
   

 

 

 
   

 

 

 

    
 

 

 

 

    
 

 

 

 

 

 

1.0026
Frequency (Hz)

Component 2

   

 

 

 
   

 

 

 
   

 

 

 
   

 

 

 
   

 

 

 

   

 

 

 
   

 

 

 
   

 

 

 
   

 

 

 
   

 

 

 

    
 

 

 

 

    
 

 

 

 

 

0.29948

Frequency (Hz)

Component 3

   

 

 

 
   

 

 

 
   

 

 

 
   

 

 

 
   

 

 

 

   

 

 

 
   

 

 

 
   

 

 

 
   

 

 

 
   

 

 

 

    
 

 

 

 

    
 

 

 

 

 

Frequency (Hz)

0.69661

Component 4

Figure 3. The first four components used in the simulation. In each panel,

the first 10 images are the spatial component maps (one column of A),

and the dark red areas stand for activated voxels. The solid line in the

subsequent plot is the corresponding time series (one row of §). The dotted

line stands for the rest-activation block design, 0 for “rest” and 1 for “active”.

The spectrum plot for each time series is given at the end of each panel

highlighting the frequencies. In this simulation study, Component 1 can be

viewed as the one related to the experiment stimulus; Components 2 and

3 stand for heart beat and breath, respectively; Component 4 could be an

artifact effect; Component 5 is not shown here since it is pure noise.
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4.2. Analysis

Following the standard practice in ICA, we first normalized the contami-
nated data matrix X by column centering and row standardization (Hastie and
Tibshirani (2002)). Both ICA and SSVD-ICA were then applied to the normal-
ized matrix. For computing, we employed the fastICA algorithm (Hyvärinen,
Karhunen and Oja (2001)), because of its fast computation and popularity.

To effectively display the activated voxels in the spatial maps, the values in
each map were standardized to z-scores (McKeown et al. (1998a)) by subtracting
the component mean and then dividing the component standard deviation. The
voxels with |z| ≥ 1 were then identified as those activated, and assigned value 1
when plotting, while the other voxels (with |z| < 1) were assigned 0.

4.3. Results

The results from SSVD-ICA are shown in the first column of Figure 4. All
four components can be recovered reasonably well, although with some noise.
Again, dark red areas indicate the activated voxels. The time course plots in
each panel show the corresponding time components and their spectral plots.

The second column of Figure 4 shows the results from the conventional ICA
that uses SVD for dimension reduction. Only the first component could be re-
covered. Even so, the result is more blurred than the corresponding one from
SSVD-ICA. Thus the conventional ICA had trouble identifying the other com-
ponents.

4.4. A second simulation

Our SSVD procedure models the periodic time components as sinusoidal
functions, which is sometimes an approximation. The experimental condition in
the above simulation was consistent with the sinusoidal assumption. To further
investigate the performance of our approach, we designed a second simulation,
where the true time components were boxcar-type stepwise functions, instead of
sinusoidal. To save space, the details of the study are reported in our online
supplementary report (Bai et al. (2007)).

Again, the SSVD-ICA recovered all spatial components reasonably well, even
though it approximated the temporal components using sine curves. We think
the reason is that the frequencies of the temporal components are the key factor,
which is utilized by SSVD-ICA. On the other hand, the conventional ICA only
detected half of the components, and the detected regions were more blurred.

5. An fMRI Data Analysis

5.1 Experiment paradigm and data description

To study brain regions that are related to different finger tapping movements,

an fMRI data set was obtained from one human subject performing three different
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Figure 4. Comparison of the results from the proposed SSVD-ICA (the left

column) and the conventional ICA that uses SVD (the right column).
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Figure 5. The experimental design used in acquiring the fMRI data. Panel
(A) shows the complete design sequence. Panels (B) and (C) show the

paradigms for right-hand and left-hand movements separately. Each rest

block took 30 seconds (10 scans when TR = 3 seconds); each activation

block took 120 seconds (40 scans).

tasks alternately: rest, right-hand movement, and left-hand movement. Each

rest period lasted 30 seconds and each activation period lasted 120 seconds.

The experimental paradigm is shown in Figure 5. The study uses block design,

because the research interest is to robustly identify all the regions of interest

(ROIs) involving finger tapping.

Two hundred MR scans were acquired on a modified 3T Siemens MAGNE-

TOM Vision system. Each acquisition consisted of 49 contiguous slices. Each

slice contained 64 × 64 voxels. Hence there were 64 × 64 × 49 voxels from each

scan. The size of each voxel is 3mm × 3mm × 3mm. Each acquisition took

2.9388 seconds, with the scan to scan repetition time (TR) set to be 3 seconds.

5.2. Analysis

The data set was preprocessed using SPM5. The preprocessing included re-

alignment, coregistration, segmentation, spatial normalization, and spatial smooth-

ing. We then used the MATLAB function showsrs developed by the Duke-UNC

Brain Imaging and Analysis Center (BIAC) to visually check the processed data.

Many spikes can be easily seen, three of which are plotted in Figure 1.

We then applied both the conventional ICA and our proposed SSVD-ICA

to the processed data after column centering and row standardization. When

applying ICA, we employed an existing analyzer of fMRI data, Group ICA of

fMRI Toolbox (GIFT) (Calhoun et al. (2001)). With SSVD-ICA, we performed

separate analyses using both the true frequencies and the estimated ones. For

all three methods, spatial ICA was carried out using the fastICA algorithm.
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5.3. Results

The results from the three methods are displayed in Figure 6. The goal

of this study is to identify the activated brain regions corresponding to right-

hand and left-hand movements. Four typical slices in cortical, subcortical and

cerebellum regions are shown.

Within each row, the four image slices on the left represent the spatial maps,

where the activated brain regions are highlighted in red and blue colors. Brighter

color indicates higher activation intensity. All methods demonstrate the clas-

sic brain activation patterns during hand movement (Buhmann et al. (2003),

Elsinger, Harrington and Rao (2006) and Taniwaki (2006)):

• contralateral more than ipsilateral in the Primary Motor Cortex (PMC) (slice

1 and slice 2), Supplementary Motor Area (SMA) (the bright area in the

middle of slice 2), and basal ganglia (slice 3);

• ipsilateral more than contralateral in the cerebellum (slice 4).

The rightmost plot is the corresponding time component (solid line) with the

stimulus sequence (dotted line) overlayed.

When applying GIFT, 30 independent components are needed in order to

obtain the interesting ones related to both hand movements. The two components

are shown in the two rows of Panel (A) respectively. The components identified by

SSVD-ICA using estimated frequencies are presented in Panel (B). Our method

clearly results in much less noise and higher intensity in all activated regions.

In addition, the time components recovered by our method are better correlated

with the experimental stimulus than those obtained by GIFT.

We also applied SSVD-ICA by specifying the true experimental frequency

(0.0033Hz). Note that both right-hand and left-hand movements share the same

frequency in this study. As a result, the brain regions related to both movements

are recovered in a single component as shown in Panel (C), where red areas

indicate voxels activated by the right-hand movement and blue areas indicate

voxels activated by the left-hand movement. Again, the activated areas are less

noisy and more highlighted when compared with GIFT. Another advantage of

specifying the frequency is that we only need to extract one component that

is relevant to the experimental paradigm. By comparison, GIFT acquired 30

components before identifying the interesting components via visual inspection

or correlation analysis.

6. Conclusion and Discussion

In this paper, we introduced an experiment-guided dimension reduction tech-

nique into the ICA procedure for fMRI studies, one that improves ICA’s robust-

ness against spikes that are common in fMRI data. We modified the conventional
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A: GIFT

B: SSVD-ICA using estimated frequencies

C: SSVD-ICA using specified frequencies

Figure 6. Activated brain regions and their corresponding temporal compo-

nents detected by three methods. Panel (A): GIFT, right-hand (first row)

and left-hand (second row); Panel (B): SSVD-ICA using estimated frequen-

cies, right-hand (first row) and left-hand (second row); Panel (C): SSVD-ICA
using specified frequencies, both right-hand and left-hand. The orientation

of the brian slices is such that the right side of the brain is on the left side,

and the left side of the brain is on the right side. Within each row, the

first slice shows the primary motor cortex (PMC), the second slice contains

both PMC and supplementary motor area (SMA), the third slice shows basal

ganglia, and the fourth slice shows cerebellum. Red and blue areas illustrate

the activated voxels. Brighter color indicates higher intensity. The last plot

shows the corresponding time course with the right-hand-movement stimulus

sequence overlayed.
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SVD via basis expansion guided by the experimental design. The main benefits

are two-fold: first, the extracted components are less sensitive to the spikes; sec-

ond, the activated brain areas are identified with less noise and higher intensity.

We illustrated such benefits via simulation and a comparison with GIFT using

fMRI data. In addition, our method addresses a relevant component selection

problem that is of immense importance in fMRI. The common practice of ICA is

to acquire around 30 independent components, before finding the most relevant

ones by visual inspection or correlation analysis. Our method allows researchers

to decide on the number of components by specifying the frequencies of inter-

est. This hybrid of data and model hypothesis makes the analysis more efficient,

considering the usually huge size of fMRI data.

Our proposal achieves robustness by constraining SVD in the pre-processing

step, which is direct, intuitive and effective. An alternative is to constrain ICA

directly, which is technically more challenging. A common approach to ICA uses

the marginal density information through high-order kurtosis as in fast ICA. More

recently, nonparametric density estimation procedures have been applied to ICA

by Chen and Bickel (2006) and Kawaguchi and Truong (2007). It is however a

much harder problem to constrain the ICA in fMRI, because it is similar to

identifying outliers for a large number of voxel time series, and so far there

have not been good kernel methods for density estimation involving outliers.

Furthermore, it is known in spatial ICA that the distributions are heavy tailed

(Stone et al. (2002)), which means that treating outliers too early can lead to

loss of information. It is important to note that our present results can be

improved by combining our method with KDICA of Chen and Bickel (2006) and

the polynomial spline ICA of Kawaguchi and Truong (2007).

Our approach approximates the periodic temporal components using sinu-

soidal functions at the interesting frequencies. As shown by the simulation studies

and the application, such approximation works well for identifying spatial regions

of interest, as it utilizes the key factor of frequency. Nevertheless, it is of interest

to let the data determine the shape of the temporal components nonparametri-

cally after specifying the frequencies. Periodic splines seems to offer a nice tool,

the applicability of which is currently being investigated.

Neuroimage researchers are also interested in analyzing fMRI across groups

of subjects, and Group ICA has been developed for that purpose (Calhoun et al.

(2001)). Encouraged by the performance of our method in analyzing one subject,

we are interested in extending it to Group ICA.
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Appendix. Proof of Theorem 1 and Justification for Algorithm 1

Below we first provide the proof of Theorem 1, using matrix algebra.
Note that (3.4) is equivalent to minimizing

tr(XXT ) − 2dψTBT XTu + d2(ψTBT Bψ)(uTu), (A.1)

subject to uTu = 1 and vT v = 1. For fixed d and u, the minimizer is

ψ = (duTuBT B)−1BTXTu = (BTB)−1BTXT u

d
,

which we can plug back into (A.1) to obtain tr(XXT )−uTXB(BT B)−1BTXTu.
Hence the minimization problem (3.4) is reduced to

max
u

uTXB(BT B)−1BTXTu subject to uTu = 1, (A.2)

which is a generalized eigen-problem. Similarly, the ψ that solves (3.4) is the
solution to the generalized eigen-problem

max
ψ

ψTBTXTXBψ subject to ψTBTBψ = 1. (A.3)

According to (A.1), the d that solves (3.4) is given by d = ψTBTXTu.
Given the above proof of Theorem 1, the numerical implementation (Algo-

rithm 1) can be justified as follows.
To solve (A.2), consider the Cholesky decomposition BTB = RT

B
RB where

RB is a 2 × 2 upper triangular matrix. Then (A.2) is equivalent to

max
u

uTXBR−1
B

(R−1
B

)TBTXT u subject to uTu = 1.

The solution to this problem, denoted as u∗, is actually the first left eigenvector
of the matrix XBR−1

B
(Harville (1997)).

One can solve (A.3) similarly. Let ψ̃ = RBψ, then (A.3) is equivalent to

max
˜ψ

ψ̃
T
(R−1

B
)T BTXTXBR−1

B
ψ̃ subject to ψ̃

T
ψ̃ = 1.

The maximizer ψ̃
∗

is the first right eigenvector of XBR−1
B

. Consequently, the

maximizer of the original problem (A.3) is ψ∗ = R−1
B
ψ̃

∗

.
The above derivation suggests that one only needs to perform a single SVD of

XBR−1
B

to obtain both ψ∗ and u∗. Then the scale parameter d can be estimated
as d∗ = ψ∗TBTXTu∗.
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