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Abstract: In this paper, we develop local polynomial estimation procedures to fit

deterministic dynamic models with a focus on the estimation of time-varying pa-

rameters. Three local estimation methods for estimating time-varying parameters

are proposed: two-step local linear estimation, two-step local quadratic estimation,

and a two-step local hybrid method. Although the proposed estimation methods

are applicable for general dynamic models, we establish the asymptotic properties

of the proposed estimators for a linear deterministic dynamic model and show that

the proposed estimators for linear dynamic models achieve the optimal convergence

rate. Simulation studies reveal that the proposed two-step estimation methods per-

form better than the naive one-step local estimator. An application from an AIDS

clinical trial is presented to illustrate the methodologies.
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1. Introduction

In the study of infectious diseases such as HIV and hepatitis viruses, model-

ing immune response and viral dynamics is critical for understanding pathogen-

esis of viral infection and providing guidance toward development of treatment

strategies. Typically, the immune response and viral dynamic models are de-

terministic differential equations that may not have closed form solutions. See

Perelson and Nelson (1999), Nowak and May (2000) and Tan and Wu (2005) for

a good survey on these models. For example, the HIV dynamic model with antivi-

ral treatment can be expressed as (Huang, Rosenkranz, Wu (2003), Michele et al.

(2004), Wu (2005) and Huang, Liu and Wu (2006))

d

dt
X1(t) = λ − k[1 − r(t)]X1(t)X3(t) − ρX1(t) ≡ θ1(t) − ρX1(t),

d

dt
X2(t) = k[1 − r(t)]X1(t)X3(t) − δX2(t) ≡ θ2(t) − δX2(t), (1.1)

d

dt
X3(t) = NδX2(t) − cX3(t) ≡ θ3(t) − cX3(t),
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where X1(t) is the concentration of uninfected target cells, X2(t) is the concen-

tration of infected cells, and X3(t) is the concentration of free plasma virus (viral

load) at time t; ρ is the death rate of uninfected T cells, δ is the death rate

of infected cells, and c is the clearance rate of free virions; θ1(t) = λ − k[1 −

r(t)]X1(t)X3(t) denotes the T cell production rate, θ2(t) = k[1− r(t)]X1(t)X3(t)

denotes the rate of target cells becoming infected cells, and θ3(t) = NδX2(t)

denotes the virus production rate at time t. The time-varying functions θ1(t),

θ2(t) and θ3(t) are three important indices that characterize viral dynamics in

HIV infected patients. In general, it is difficult to establish a closed form solution

to the nonlinear differential equation model (1.1) without making more assump-

tions. Perelson et al. (1996) considered a simple HIV dynamic model under the

assumptions of a constant uninfected cell concentration X1(t) and a perfect an-

tiviral treatment effect. Given these assumptions, closed form solutions of the

infected cell concentration X2(t) and the viral load X3(t) are given by

X2(t) =
cX0

Nδ(c − δ)
[c exp{−δt} − δ exp{−ct}] ,

(1.2)
X3(t) = X0e

−ct +
cX0

c − δ

{
c

c − δ

[
e−δt − e−ct

]
− δte−ct

}
,

where X0 = X3(0) is the initial value of viral load (baseline value). In AIDS

clinical studies, the viral load X3(t) can be observed with measurement error.

Thus the parameters δ and c can be estimated by fitting the nonlinear parametric

model

Y3(t) = X3(t) + e3(t), (1.3)

X3(t) = X0e
−ct +

cX0

c − δ

{
c

c − δ

[
e−δt − e−ct

]
− δte−ct

}
, (1.4)

where Y3(t) is the observed viral load at time t, and e3(t) is the unobserved

measurement error with mean zero and variance σ2
3(t). Furthermore, the time-

varying parameter θ(t)=[θ1(t), θ2(t), θ3(t)]
T can be estimated by using (1.1) with

fixed c and δ. Over the past several years, a variety of nonlinear exponential-

type parametric models have been used to fit short-term clinical data from AIDS

clinical trials, see Ho et al. (1995), Perelson et al. (1997, 1996), Wu, Ding and De-

Gruttola (1998), Wu and Ding (1999), Han and Chaloner (2004) and Wu (2005),

among others.

During long-term AIDS treatment, the antiviral treatment effect may be

imperfect and the concentration of uninfected target cells may change over time.

Thus short-term models such as (1.2) are not applicable. Since the dynamic

model (1.1) is composed of differential equations without a closed form solution,

one requires numerical solutions, see papers by Putter et al. (2002), Xia (2003),
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Michele et al. (2004) and Huang, Liu and Wu (2006). Numerical methods can

lead to intensive computations when complex statistical methods are employed

for parameter estimation.

In this paper we develop nonparametric smoothing methods for the unknown

time-varying parameter θ(t) in the general deterministic dynamic model speci-

fied in Section 2. In order to achieve this aim, first we need to estimate the state

variable X(t) and its derivative X′(t). In Section 2, we introduce local estima-

tion procedures for this purpose. Three local estimation methods for the time-

varying parameter θ(t) are proposed: two-step local linear estimation, two-step

local quadratic estimation and a two-step local hybrid estimation. The proposed

methods can avoid numerical solutions to the differential equations. In Section

3, we investigate the proposed two-step estimators for a linear dynamic model

and derive explicit formulas for them. The asymptotic biases and variances of

the estimators are obtained, and we show that the proposed estimators achieve

the optimal convergence rate. We show that a naive one-step local estimator of

the time-varying parameter θ(t), unlike the proposed two-step estimators, does

not achieve the optimal convergence rate. We also discuss bandwidth selection

problems and interval estimates in Section 3. In Section 4, the proposed meth-

ods are illustrated and compared, via simulation, with the data generated from

an HIV dynamic model. The proposed methods perform well in estimating the

time-varying parameter. An application to HIV dynamics data from an AIDS

clinical trial is also presented in Section 4. Some concluding remarks are given in

Section 5. Technical proofs of the theorems are provided in an online supplement.

2. Models and Methodology

2.1. Deterministic dynamic models

A deterministic dynamic model can be written as

d

dt
X(t) = F(X(t),θ(t)), (2.1)

where X(t) = [X1(t), . . . ,Xm(t)]T is an unobserved state vector, θ(t) = [θ1(t),

. . . , θm(t)]T is an unknown time-varying parameter vector, and F(·) = [F1(·), . . .,

Fm(·)]T is a known linear or nonlinear function vector. The dynamic model may

also contain constant parameters, but we only focus on time-varying parameters

in this paper. Some components of the state vector X(t) are often observable. A

linear observation or measurement function can be written as

Y(t) = ΓX(t) + e(t), (2.2)

where Γ is usually a known design matrix, and Y(t) = [Y1(t), . . . , Ym(t)]T is

an observation vector with measurement noise being e(t) = [e1(t), . . . , em(t)]T .
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Dynamic systems (2.1) and (2.2) are widely used in modeling viral dynamics for

infectious diseases, as mentioned, in Section 1. The goal of this paper is to apply

local polynomial techniques to estimate the time-varying parameter θ(t).

2.2. Two-step local pth order polynomial estimation

First we suggest a two-step local estimation procedure for (2.1)−(2.2). As-

sume that the component of the state vector Xk(·), k = 1, . . . ,m, possesses p+1

(p ≥ 1) derivatives and that the component of the time-varying parameter vector

θj(.), j = 1, . . . ,m, has a second order derivative. Write {Yk(ti), i = 1, . . . , n}

as the observed data of the kth component of the state vector at time points:

t1, . . . , tn. The proposed procedure consists of two steps.

Step 1. For a given point t0, use a pth order polynomial (p ≥ 1) to fit model

(2.2) to obtain the estimates of X(t0) and X′(t0) = dX(t)/dt|t=t0 si-

multaneously, say X̂p(t0) = [X̂1,p(t0), . . . , X̂m,p(t0)]
T and X̂′

p(t0) =

[X̂ ′
1,p(t0), . . . , X̂

′
m,p(t0)]

T .

Step 2. Substitute the estimates X̂p(ti) and X̂′
p(ti), i = 1, . . . , n, in the dynamic

equation (2.1) to obtain the regression model

X̂′
p(ti) = F

(
X̂p(ti),θ(ti)

)
+ e2(ti), (2.3)

where e2(ti) denotes the substitution error vector, then apply a local

linear method to estimate the time-varying parameter θ(t0).

The first step is to use a standard local polynomial smoothing method. Since

the components of the state vector X(t) possess p + 1 derivatives, for each given

time point t0 we approximate the function Xk(ti), k = 1, . . . ,m, by

Xk(ti) ≈ Xk(t0) + (ti − t0)X
(1)
k (t0) + · · · +

(ti − t0)
pX

(p)
k (t0)

p!
= zT

i,pβk,p(t0),

for ti, i = 1, . . . , n, in a neighborhood of the point t0, where βk,p(t0)= [βk,0(t0),

. . . , βk,p (t0)]
T , with βk,v(t0) = X

(v)
k (t0)/v!, v = 0, . . . , p, and zi,p = [1, (ti −

t0) . . . , (ti−t0)
p]T . Following the local polynomial fitting (Fan and Gijbels (1996)),

the estimators X̂p(t0) = [β̂1,0(t0), . . . , β̂m,0(t0)]
T and X̂′

p(t0) = [β̂1,1(t0), . . ., β̂m,1

(t0)]
T can be obtained by minimizing the locally weighted least-squares criterion,

m∑

k=1

(
Yk − ΓZpβk,p(t0)

)T
Whk

(
Yk − ΓZpβk,p(t0)

)
, (2.4)

with respect to βk,p(t0), k = 0, . . . ,m. Here Yk = [Yk(t1), . . . , Yk(tn)]T , Zp =

[z1,p, . . . , zn,p]
T and Whk

= diag(Khk
(t1 − t0), . . . ,Khk

(tn − t0)), with Khk
(·) =
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K(·/hk)/hk obtained by re-scaling a kernel function K(·) with bandwidth hk > 0

to control the size of the associated neighborhood for the kth component.

In the second step, we apply a local linear method to estimate the time-

varying parameter vector θ(t) based on (2.3). We assume that the component

functions Fk(·), k = 1, . . . ,m, have a continuous second derivative. Then θk(ti),

k = 1, . . . ,m, i = 1, . . . , n, can be approximated around the point t0 by

θk(ti) ≈ αk,0(t0) + αk,1(t0)(ti − t0).

Thus, θ(t0) = [θ1(t0), . . . , θm(t0)]
T can be estimated via minimizing the locally

weighted function

m∑

k=1

n∑

i=1

{
X̂ ′

k,p(ti) − Fk

(
X̂p(ti), (Im ⊗ zT

i,1)α(t0)
)}2

Kb(ti − t0), (2.5)

where ⊗ denotes the Kronecker product and Im denotes an m-dimensional iden-

tity matrix, α(t0) = [αT
1 (t0), . . . ,α

T
m(t0)]

T with αj(t0) = [αj,0(t0), αj,1(t0)]
T ,

while Kb(·) is a kernel function with b being a properly selected bandwidth (see

Section 3.3). Let α̂(t0) minimize the locally weighted function (2.5). Then the

local estimator of θ(t0) is θ̂p(t0) = [α̂1,0(t0), . . . , α̂m,0(t0)]
T . We use the notation

θ̂p(t0) to denote a two-step pth order local polynomial estimator of θ(t0). In

particular, θ̂1(t0) and θ̂2(t0) denote the two-step local linear estimator and the

local quadratic estimator, respectively, and are popular special cases in practical

implementations.

2.3. Two-step local hybrid estimation

The two-step estimation procedure estimates X(t0) and X′(t0) simultane-

ously in Step 1 using the same local polynomial approximation. This may not

be efficient. In this subsection, we extend the procedure to a two-step local hy-

brid estimation method in which X(t0) and its derivative X′(t0) are estimated

separately using different orders of local polynomial approximation. If necessary,

different smoothing parameters may also be used. For example, we may estimate

X(t0) using a local linear estimator and X′(t0) using a local quadratic estimator,

since X′(t0) needs a higher order polynomial approximation to achieve a similar

approximation accuracy compared to that of X(t0). The two-step local hybrid

estimation procedure can be described as follows.

Step 1. Use a local linear estimator X̂1(ti) = [X̂1,1(t0), . . . , X̂m,1(t0)]
T to esti-

mate the function X(t0), and use a local quadratic estimator X̂′
2(t0) =

[X̂ ′
1,2(t0), . . . , X̂

′
m,2(t0)]

T to estimate the derivative function X′(t0).
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Step 2. Substitute X̂1(ti) and X̂′
2(ti) into (2.1) to obtain the regression model

X̂′
2(ti) = F

(
X̂1(ti),θ(ti)

)
+ e3(ti), (2.6)

where e3(ti) denotes the approximation error vector; use a local linear

approach to estimate the time-varying parameter θ(t0) based on (2.6).

We denote the two-step local hybrid estimator of the time-varying parameter

by θ̂(t0). We expect the two-step local hybrid estimator to be more efficient than

the two-step local linear estimator or the two-step local quadratic estimator due

to its increased flexibility. In order to evaluate the three estimation procedures,

we study their asymptotic properties for a linear dynamic model in the next

section.

3. Linear Deterministic Dynamic Model

3.1. Estimation

We derive the explicit formulas of the proposed estimators for a linear dy-

namic model. The asymptotic biases and variances of these estimators are then

developed. We expect asymptotic results for the linear dynamic model to shed

some light on the performance and behavior of the proposed general estimators.

The linear dynamic model can be written as

d

dt
X(t) = θ(t) − aX(t), (3.1)

Y(t) = X(t) + e(t), (3.2)

where X(t) = [X1(t), . . . ,Xm(t)]T is an unobserved state vector and Y(t) =

[Y1(t), . . . , Ym(t)]T is a measurement vector of X(t) with e(t) = [e1(t), . . . , em(t)]T

being a the measurement error vector. We assume that ek(t), k = 1, . . . ,m, has

mean zero and covariance Cov (ek(t), ek(s)) = σ2
k(t)1{t=s}, with Cov (e(t), e(t)) =

diag
(
σ2

1(t), . . . , σ
2
m(t)

)
. The time-varying parameter θ(t) = [θ1(t), . . . , θm(t)]T is

an unknown vector, while a = (a1, . . . , am)T , with ak = (ak,1, . . . , ak,m)T , is

a known constant. This model is useful in modeling infectious diseases; for

example, the HIV viral dynamic model (1.1) can be cast in this form with a =

diag (ρ, δ, c).

It is worth noting that for the linear dynamic model (3.1)−(3.2), a naive

estimator of θ(t0) is

θ̃p(t0) = X̂′
p(t0) + aX̂p(t0). (3.3)

We call this direct substitution estimator a one-step local pth order polynomial

estimator. In particular, we take θ̃1(t) and θ̃2(t) as the one-step local linear

and local quadratic estimators, respectively. Similarly, X(t0) and X′(t0) can be
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estimated separately by different orders of the local polynomial approximation,

say, local linear or local quadratic smoothing, denoted by X̂1(t0) and X̂′
2(t0),

respectively. Then we obtain an alternative one-step local hybrid estimator as

θ̃(t0) = X̂′
2(t0) + aX̂1(t0). (3.4)

In the following, we show that the square-root of the conditional mean squared

errors for the naive one-step estimators can only achieve a convergence rate of

OP (n−2/7); this is slower than those of the three two-step local estimators that

are discussed below.

Based on (3.1)–(3.2), the solution to (2.4) can be expressed as

X̂p(t0) = [X̂1,p(t0), . . . , X̂m,p(t0)]
T , (3.5)

X̂′
p(t0) = [X̂ ′

1,p(t0), . . . , X̂
′
m,p(t0)]

T , (3.6)

with

X̂k,p(t0) = eT
1,p+1

(
ZT

p Whk;0,p
Zp

)−1
ZT

p Whk;0,p
Yk,

X̂ ′
k,p(t0) = eT

2,p+1

(
ZT

p Whk;1,p
Zp

)−1
ZT

p Whk;1,p
Yk,

where ev+1,p+1, v = 1, 2, is a (p + 1) dimensional vector with 1 on the (v + 1)th

position and 0 elsewhere, and hk;0,p and hk;1,p are the bandwidths for estimating

Xk(t0) and X ′
k(t0), respectively. The matrices Yk, Zp and Wh were defined in

Section 2.1.

For (3.1)–(3.2), the two-step local estimation is reduced to a linear locally

weighed least squares problem. Based on (2.5), the two-step local pth order

polynomial estimator θ̂p(t0) = [α̂1,0(t0), . . . , α̂m,0(t0)]
T of θ(t) can be obtained

by minimizing the linear locally weighted function

m∑

k=1

n∑

i=1

{
X̂ ′

k,p(ti) + akX̂p(ti) − zT
i,1αk(t0)

}2
Kbk

(ti − t0), (3.7)

where zi,1 = [1, ti − t0]
T , αk(t0) = [αk,0(t0), αk,1(t0)]

T , and Kbk
is a kernel func-

tion with bk as bandwidth for the kth component θk(t).

In order to obtain explicit expressions for the two-step local linear estimator,

the two-step local quadratic estimator, and the hybrid estimator proposed in the

previous section, we further denote by Zp(i) the matrix Zp at t0 = ti, and by

Wh(i) the matrix Wh at t0 = ti. For v = 0, 1; p = 1, 2 and k = 1, . . . ,m, define

Uk;v,p =





eT
v+1,p+1

(
ZT

p(1)Whk;v,p(1)Zp(1)

)−1
ZT

p(1)Whk;v,p(1)

...

eT
v+1,p+1

(
ZT

p(n)Whk;v,p(n)Zp(n)

)−1
ZT

p(n)Whk;v,p(n)




.
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Thus the two-step local linear and quadratic estimators can be expressed as
θ̂1(t0) = [θ̂1,1(t0), . . . , θ̂m,1(t0)]

T and θ̂2(t0) = [θ̂1,2(t0), . . . , θ̂m,2(t0)]
T with

θ̂k,1(t0) = eT
1,2

(
ZT

1 Wbk
Z1

)−1
ZT

1 Wbk

(
Uk;1,1Yk +

m∑

j=1

ak,jUj;0,1Yj

)
, (3.8)

θ̂k,2(t0) = eT
1,2

(
ZT

1 Wbk
Z1

)−1
ZT

1 Wbk

(
Uk;1,2Yk +

m∑

j=1

ak,jUj;0,2Yj

)
. (3.9)

Similarly, the two-step local hybrid estimator of θ(t0) for (3.1)−(3.2) is given by
θ̂(t0) = [θ̂1(t0), . . . , θ̂m(t0)]

T , with

θ̂k(t0) = eT
1,2

(
ZT

1 Wbk
Z1

)−1
ZT

1 Wbk

(
Uk;1,2Yk +

m∑

j=1

ak,jUj;0,1Yj

)
. (3.10)

Based on (3.8), (3.9) and (3.10), one sees that different bandwidths can
be used for different components in the estimation procedure. We bandwidth
selection in Section 3.3.

3.2. Asymptotic results

In this subsection, we present the asymptotic biases and variances of the pro-
posed estimators for (3.1)–(3.2). We summarize the notation of these estimators
and the corresponding bandwidths in Table 1.

For convenience, take µj =
∫

ujK(u)du, νj =
∫

ujK(u)2du, j = 0, 1, 2, · · · .
Let D = (t1, . . . , tn)T denote the observed time point vector. We make the
following regularity assumptions.

(1) The density function f has a continuous second derivative in some neigh-
borhood of t0, and f(t0) 6= 0.

(2) The component functions X
(4)
k (t), θ

(2)
k (t) and σ2

k(t), k = 1, . . . ,m, are con-
tinuous in some neighborhood of t0.

(3) The kernel function K(·) is a symmetric density function with compact
support.

(4) Let hk;0,p and hk;1,p, k = 1, . . . ,m, be the bandwidths of the pth order local
polynomial fit for Xk(t0) and its first derivate X ′

k(t0), respectively. When
p − v is odd, hk;v,p → 0, and nhk;v,p → ∞; when p − v is even, hk;v,p → 0
and nh3

k;v,p → ∞.

(5) Let bk, k = 1, . . . ,m, be the bandwidth of the local linear fit for the kth
component θk(t). There is an s > 2 and some ε < 2 − s−1 such that
n2ε−1hk;v,p → ∞, for k = 1, . . . ,m, v = 0, 1, p = 1, 2, with n2ε−1bk → ∞
and nb2

k/(log n)2 → ∞.
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Table 1. Notation of the local estimators and the bandwidths

Notation Definition

X(t0) X(t0) = [X1(t0), . . . , Xm(t0)]
T is a state vector

X
′(t0) X

′(t0) = [X ′

1(t0), . . . , X
′

m(t0)]
T is a derivative vector of X(t0)

bX1(t0) bX1(t0) = [ bX1,1(t0), . . . , bXm,1(t0)]
T is a local linear estimator of X(t0)

bX2(t0) bX2(t0) = [ bX1,2(t0), . . . , bXm,2(t0)]
T is a local quadratic estimator of X(t0)

bX
′

1(t0) bX
′

1(t0) = [ bX ′

1,1(t0), . . . , bX ′

m,1(t0)]
T is a local linear estimator of X

′(t0)
bX

′

2(t0) bX
′

2(t0) = [ bX ′

1,2(t0), . . . , bX ′

m,2(t0)]
T is a local quadratic estimator of X

′(t0)

θ(t0) θ(t0) = [θ1(t0), . . . , θm(t0)]
T is a time-varying parameter vector

θ̃1(t0) θ̃1(t0) = [θ̃1,1(t0), . . . , θ̃m,1(t0)]
T is one-step local linear estimator of θ(t0)

θ̃2(t0) θ̃2(t0) = [θ̃1,2(t0), . . . , θ̃m,2(t0)]
T is one-step local quadratic estimator of θ(t0)

θ̃(t0) θ̃(t0) = [θ̃1(t0), . . . , θ̃m(t0)]
T is one-step local hybrid estimator of θ(t0)

bθ1(t0) bθ1(t0) = [bθ1,1(t0), . . . , bθm,1(t0)]
T is two-step local linear estimator of θ(t0)

bθ2(t0) bθ2(t0) = [bθ1,2(t0), . . . , bθm,2(t0)]
T is two-step local quadratic estimator of θ(t0)

bθ(t0) bθ(t0) = [bθ1(t0), . . . , bθm(t0)]
T is two-step local hybrid estimator of θ(t0)

hk;0,1 Bandwidth of the local linear fit for the kth state variable Xk(t0), k = 1, . . . , m

hk;0,2 Bandwidth of the local quadratic fit for the kth state variable Xk(t0), k=1, . . . , m

hk;1,1 Bandwidth of the local linear fit for the kth derivative X ′

k(t0), k = 1, . . . , m

hk;1,2 Bandwidth of the local quadratic fit for the kth derivative X ′

k(t0), k = 1, . . . , m

bk Bandwidth of the local linear fit for the kth component θk(t0), k = 1, . . . , m

Theorem 1. Suppose Conditions (1)–(4) hold. Let h0,1 = maxj=1,...,m hj;0,1 and

h0,2 = maxj=1,...,m hj;0,2.

(a) The asymptotic conditional bias and variance of the one-step local linear es-

timator θ̃k,1(t0) for the kth component in θ(t0) = [θ1(t0), . . . , θm(t0)]
T are

bias(θ̃k,1(t0)|D) =
1

3!
h2

k;1,1

µ4

µ2

(
3
f ′(t0)

f(t0)
X

(2)
k (t0) + X

(3)
k (t0)

)

+
1

2
µ2

m∑

j=1

ak,jh
2
j;0,1X

(2)
j (t0) + oP (h2

0,1 + h2
k;1,1),

Var (θ̃k,1(t0)|D) =
σ2

k(t0)

f(t0)

( m∑

j=1

a2
k,jν0

nhj;0,1
+

ν2

µ2
2nh3

k;1,1

)
(1 + oP (1)) .

(b) The asymptotic conditional bias and variance of the one-step local quadratic

estimator θ̃k,2(t0) for the kth component in θ(t0) = [θ1(t0), . . . , θm(t0)]
T are

bias(θ̃k,2(t0)|D) =
1

4!

µ2
4 − µ2µ6

µ4 − µ2
2

m∑

j=1

ak,jh
4
j;0,2

(
4
f ′(t0)

f(t0)
X

(3)
j (t0) + X

(4)
j (t0)

)

+
1

3!
h2

k;1,2

µ4

µ2
X

(3)
k (t0) + oP (h4

0,2 + h2
k;1,2),
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Var (θ̃k,2(t0)|D) =
σ2

k(t0)

f(t0)

( m∑

j=1

a2
k,j(ν0µ

2
4 − 2ν2µ2µ4 + µ2

2ν4)

(µ4 − µ2
2)

2nhj;0,2
+

ν2

µ2
2nh3

k;1,2

)

× (1 + oP (1)) .

(c) The asymptotic conditional bias and variance of the one-step local hybrid

estimator θ̃k(t0) for the kth component in θ(t0) = [θ1(t0), . . . , θm(t0)] are

bias(θ̃k(t0)|D) =
1

2

m∑

j=1

ak,jh
2
j;0,1µ2X

(2)
j (t0) +

1

3!
h2

k;1,2

µ4

µ2
X

(3)
k (t0)

+oP (h2
0,1 + h2

k;1,2),

Var (θ̃k(t0)|D) =
σ2

k(t0)

f(t0)

( m∑

j=1

a2
k,jν0

nhj;0,1
+

ν2

µ2
2nh3

k;1,2

)
(1 + oP (1)) .

The proof of Theorem 1 follows from Theorem 3.1 in Fan and Gijbels (1996).
It is then clear that the asymptotic biases and variances are different for the
three one-step estimators, and that the asymptotic bias and variance of the one-
step local hybrid estimator θ̃k(t0) are the simplest. Based on the arguments
in Fan and Gijbels (1996), we can see that the one-step hybrid estimator takes
advantage of the smaller variance in estimating X(t) using a local linear smoother
compared to the one-step local quadratic estimator, and gains the benefit of a
smaller bias in estimating X′(t) using a local quadratic smoother compared to
the one-step local linear estimator.

Remark 1. The optimal bandwidths for the one-step estimators are

hopt
k;v,p =





OP (n− 1

2p+3 ) if p − v is odd,

OP (n− 1
2p+5 ) if p − v is even.

(3.11)

When the optimal bandwidths (k = 1, . . . ,m; v = 0, 1; p = 1, 2) are used in
Theorem 1, the asymptotic conditional biases of the three one-step estimators
for θk(t0), k = 1, . . . ,m, are, respectively,

bias(θ̃k,1(t0)|D) =
1

3!
h2

k;1,1

µ4

µ2

(
3
f ′(t0)

f(t0)
X

(2)
k (t0) + X

(3)
k (t0)

)
+ oP (h2

k;1,1),

bias(θ̃k,2(t0)|D) =
1

3!
h2

k;1,2

µ4

µ2
X

(3)
k (t0) + oP (h2

k;1,2),

bias(θ̃k(t0)|D) =
1

3!
h2

k;1,2

µ4

µ2
X

(3)
k (t0) + oP (h2

k;1,2),

while the corresponding asymptotic conditional variances are each

ν2σ
2
k(t0)

µ2
2f(t0)nh3

k;1,2

(1 + oP (1)),
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where the optimal bandwidths are hk;1,1 = hk;1,2 = OP (n−1/7). Thus, the square-

root of the conditional mean squared errors (MSEs) of the three one-step local
estimators can only achieve the convergence rate OP (n−2/7), which is slower than

the standard optimal convergence rate of OP (n−2/5).

Notice that, when the optimal bandwidth is used, the asymptotic biases and

variances of the one-step local quadratic estimator and hybrid estimator are the

same. This is because the asymptotic bias and variance are dominated by that
of the estimate of X ′

k(t), k = 1, . . . ,m, which is in the same order for both

estimators. The asymptotic biases of both the one-step local quadratic estimator

and the hybrid estimator are simpler under the optimal bandwidth case compared

to that of the one-step local linear estimator.
The asymptotic conditional biases and variances for the three two-step local

estimators are given next.

Theorem 2. Suppose Conditions (1)–(5) hold. Let h0,1 = maxj=1,...,m hj;0,1 and

h0,2 = maxj=1,...,m hj;0,2.

(a) The asymptotic conditional bias and variance of the two-step local linear es-

timator θ̂k,1(t0) for the kth component in θ(t0) = [θ1(t0), . . . , θm(t0)]
T are

bias(θ̂k,1(t0)|D) =
1

2
b2
kµ2θ

(2)
k (t0) +

1

3!
h2

k;1,1

µ4

µ2

(
3
f ′(t0)

f(t0)
X

(2)
k (t0) + X

(3)
k (t0)

)

+
1

2

m∑

j=1

ak,jh
2
j;0,1µ2X

(2)
j (t0) + oP (b2

k + h2
0,1 + h2

k;1,1)

Var (θ̂k,1(t0)|D) =
ν0σ

2
k(t0)

f(t0)nbk

[ m∑

j=1

(
a2

k,j(n − 1)

n
+

a2
k,jν0

f(t0)nhj;0,1

)
+

ν2

µ2
2f(t0)nh3

k;1,1

]

× (1 + op(1)) .

(b) The asymptotic conditional bias and variance of the two-step local quadratic

estimator θ̂k,2(t0) for the kth component in θ(t0) = [θ1(t0), . . . , θm]T are

bias(θ̂k,2(t0)|D) =
1

2
b2
kµ2θ

(2)
k (t0) +

1

3!
h2

k;1,2

µ4

µ2
X

(3)
k (t0) + oP (b2

k + h4
0,2 + h2

k;1,2)

+
1

4!

µ2
4 − µ2µ6

µ4 − µ2
2

m∑

j=1

ak,jh
4
j;0,2

(
4
f ′(t0)

f(t0)
X

(3)
j (t0) + X

(4)
j (t0)

)
,

Var (θ̂k,2(t0)|D) =
ν0σ

2
k(t0)

f(t0)nbk

[ m∑

j=1

(
a2

k,j(n − 1)

n
+

a2
k,j(ν0µ

2
4 − 2ν2µ2µ4 + µ2

2ν4)

(µ4 − µ2
2)

2f(t0)nhj;0,2

)

+
ν2

µ2
2f(t0)nh3

k;1,2

]
(1 + op(1)) .
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(c) The asymptotic conditional bias and variance of the two-step local hybrid

estimator θ̂k(t0) for the kth component in θ(t0) = [θ1(t0), . . . , θm(t0)]
T are

bias(θ̂k(t0)|D) =
1

2
b2
kµ2θ

(2)
k (t) +

1

2

m∑

j=1

ak,jh
2
j;0,1µ2X

(2)
j (t0) +

1

3!
h2

k;1,2

µ4

µ2
X

(3)
k (t0)

+oP (b2
k + h2

0,1 + h2
k;1,2),

Var (θ̂k(t0)|D) =
ν0σ

2
k(t0)

f(t0)nbk

[ m∑

j=1

(
a2

k,j(n − 1)

n
+

a2
k,jν0

f(t0)nhj;0,1

)
+

ν2

µ2
2f(t0)nh3

k;1,2

]

× (1 + op(1)) .

Proof. see Appendix (online supplement).

The results in Theorems 2 show that the asymptotic bias of the two-step

local hybrid estimator θ̂k(t0) has the simplest structure. It is interesting to

notice that the asymptotic conditional variances of the three two-step estima-

tors for the kth component θk(t0), k = 1, . . . ,m, are asymptotically same, i.e.

[(ν0σ
2
k(t0))/(f(t0)nbk)]

∑m
j=1 a2

k,j (1 + op(1)), and the asymptotic conditional vari-

ances are independent of the initial bandwidths hk;v,p. Thus we can choose

the initial bandwidths as small as possible as long as they satisfies the con-

straints in Conditions (4) and (5). In particular, when the initial bandwidths

hk;v,p = OP (bk) ≡ hk for k = 1, . . . ,m, v = 0, 1, p = 1, 2, the square-root of the

conditional MSEs of the two-step estimators achieve the optimal convergence

rate of OP (n−2/5).

Remark 2. When the initial bandwidths hk;v,p = oP (n−1/5) ≡ hk are used in

Theorem 2, then the asymptotic conditional biases of the three two-step estima-

tors of θk(t0), k = 1, . . . ,m, are each (1/2)b2
kµ2θ

(2)
k (t0) + oP (b2

k). Furthermore,

the optimal bandwidth for the second step is bk = OP (n−1/5) for k = 1, . . . ,m.

In summary, the asymptotic properties of the proposed two-step local esti-

mators are more appealing than those of the simple one-step estimators, with the

latter only achieving the convergence rate of the order OP (n−2/7). We compare

the performance of these methods via finite sample simulations in Section 4.

3.3. Bandwidth selection

The selection of the smoothing parameters is important in all nonparametric

model fitting. Here we need to determine the bandwidths hk;v,p, k = 1, . . . ,m,

for the one-step estimators in (3.3)−(3.4), and the bandwidths hk and bk, k =

1, . . . ,m, for the two-step estimators in (3.8)−(3.10).

For the one-step local estimators, we use the pre-asymptotic substitution

method in Fan and Gijbels (1996) to obtain the estimated optimal bandwidths
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ĥopt
k;v,p = ĥ((Yk(ti), ti), i = 1, . . . , n), k = 1, . . . ,m, to estimate Xk(t) and X ′

k(t), re-

spectively. Fan and Huang (1997) have shown that the estimated optimal band-

width by the pre-asymptotic substitution method is a consistent estimator of

the asymptotically optimal bandwidth, and is of order Op(n
−1/5) when the local

linear fitting is used.

For the two-step local estimators, we have shown that, if the initial band-

width hk;0 in Step 1 is selected between the rates OP (n−1/3) and OP (n−1/5), we

can achieve the optimal convergence rate. The choice of the initial bandwidth

is not very sensitive as long as it is small enough to satisfy the optimal rate

conditions. Based on our experience, we suggest selecting the initial bandwidth

hk = d× ĥopt
k;0,1 where 0.5 < d < 0.9 and ĥopt

k,0,1 is the optimal bandwidth for local

linear estimation of Xk(t), k = 1, . . . ,m. We summarize the bandwidth selection

procedure for the two-step estimators as follows.

1. Obtain the optimal bandwidth for the local linear estimation of Xk(t), ĥopt
k;0,1

for k = 1, . . . ,m.

2. Select the initial bandwidths hk = d × ĥopt
k;0,1, k = 1, . . . ,m, where 0.5 <

d < 0.9 for the first step smoothing, and obtain the estimates X̂p(ti) =

[X̂1,p(ti), . . . , X̂m,p(ti)]
T and X̂′

p(ti) = [X̂ ′
1,p(ti), . . . , X̂

′
m,p(ti)]

T , p = 1, 2, for

i = 1, . . . , n.

3. For the two-step local linear and local quadratic estimators, compute a rough

estimate of θ(t) by θ∗(ti) = X̂′
p(ti) + aX̂p(ti), i = 1, . . . , n, (p = 1, 2). Then

use the pre-asymptotic substitution method to find the second bandwidths

b̂opt
k = ĥ((θ∗k(ti), ti), i = 1, . . . , n) for k = 1, . . . ,m. The estimated optimal

bandwidths b̂opt
k , k = 1, . . . , k, can be used in (3.8)−(3.9) to obtain θ̂1(t0) and

θ̂2(t0), respectively.

4. For the two-step local hybrid estimator, compute the rough estimate of θ(t) by

θ∗(ti) = X̂′
2(ti) + aX̂1(ti), i = 1, . . . , n. Use the pre-asymptotic substitution

method to determine the estimated optimal bandwidth for the second step,

b̂opt
k = ĥ((θ∗k(ti), ti), i = 1, . . . , n). These bandwidths can be applied to (3.10)

to obtain θ̂(t0).

3.4. An approximate confidence interval

Without loss of generality, we consider an approximate confidence interval

estimate based on θ̂k,2(t0), k = 1, . . . ,m. Since f(t0), σ2(t0) and bias(θ̂k,2(t0)|D)

are unknown, Theorem 2 cannot be directly used to construct the confidence

interval for θk(t0), so we bring in estimates of the conditional bias and variance.

Following the generalized pre-asymptotic method of Fan and Gijbels (1996), the

conditional bias of θ̂k,2(t0) can be approximated by

B̂k,2(t0) = eT
1,2

(
ZT

1 Wbk
Z1

)−1
ZT

1 Wbk
[r̂k,1(t0), . . . , r̂k,n(t0)]

T , (3.12)
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where r̂k,i(t0) = α̂∗
k,2(t0)(ti − t0)

2 + α̂∗
k,3(t0)(ti − t0)

3. The estimators α̂∗
k,2(t0) and

α̂∗
k,3(t0) can be obtained by minimizing the locally weighted function

n∑

i=1

{
X̂ ′

k,p(ti) + akX̂p(ti) −

3∑

l=0

αk,l(t0)(ti − t0)
l

}2

Kbk
(ti − t0).

The conditional variance of θ̂k,2(t0) is approximated by

V̂k,2(t0) = eT
1,2

(
ZT

1 Wbk
Z1

)−1
ZT

1Wbk

[
(Uk,1,2+ak,kUk,0,2)(Uk,1,2+ak,kUk,0,2)

T σ2
k(t0)

+

m∑

j=1;j 6=k

a2
k,jUj,0,2U

T
j,0,2σ

2
j (t0)

]
Wbk

Z1

(
ZT

1 Wbk
Z1

)−1
e1,2, (3.13)

where σ2
j (t0), j = 1, . . . ,m, can be estimated by

σ̂2
j (t0) =

∑n
i=1(Yj(ti) − Ŷj(ti))

2Kh(ti − t0)∑n
i=1 Kh(ti − t0)

.

With the estimated bias and variance in (3.12) and (3.13), an approximate

(1 − α)100% confidence interval of the two-step local quadratic estimator for

θk(t0), k = 1, . . . ,m, is

θ̂k,2(t0) − B̂k,2(t0) ± z1−α
2
{V̂k,2(t0)}

1
2 ,

where z1−α/2 denotes (1 − α/2) quantile of the standard Gaussian distribu-

tion. The approximate confidence intervals of the two-step local linear estimator

θ̂k,1(t0) and the two-step local hybrid estimator θ̂k(t0) can be constructed in a

similar fashion.

4. Numerical Examples

4.1. Simulation studies

Monte Carlo simulation studies were designed to evaluate the finite properties

of the proposed estimators. We generated the simulation data from the HIV

dynamic model at (1.1),

X′(ti) = θ(ti) − aX(ti), i = 1, . . . , n, (4.1)

where X(ti) = [X1(ti),X2(ti),X3(ti)]
T , a = diag(ρ, δ, c), and θ(ti) = [θ1(ti),

θ2(ti), θ3(ti)]
T with θ1(ti) = λ−k[1−r(ti)]X1(ti)X3(ti), θ2(ti) = k[1−r(ti)]X1(ti)

X3(ti) and θ3(ti) = NδX2(ti). The measurement models for Xk(ti), k = 1, 2, 3,

are

Yk(ti) = Xk(ti) + ek(ti). (4.2)
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First we generated data, {(X1(ti),X2(ti),X3(ti))}, at time points ti = day × t∗i
with t∗i = i/(n + 1), i = 1, . . . , n, by solving (4.1) with the following param-

eter values and initial values: λ = 36.0, ρ = 0.108, k = 9 × 10−5, δ = 0.5,

N = 1, 000.0, c = 3.0, X1(0) = 600, X2(0) = 33, X3(0) = 100, 000, and

r(t) = 0.9 cos(πt/10000). The observed data {(Y1(ti), Y2(ti), Y3(ti)), i = 1, . . . , n}

were generated based on the model (4.2) with the error term ek(ti), k = 1, 2, 3, fol-

lowing an iid normal distribution with mean 0 and variance σ2
k(ti) = (1+ti)

1/2σ2
k,

where [σ1, σ2, σ3] = [20, 5, 100] or [40, 10, 200]. Our objective was to estimate

the time-varying parameter θ(t) = [θ1(t), θ2(t), θ3(t)]
T from the observed data

{(Y1(ti), Y2(ti), Y3(ti)), i = 1, . . . , n}, where n = 100 and 200.

We applied the one-step and the two-step estimation methods proposed in

the previous sections to the simulated data. To evaluate these estimators, we em-

ployed the Epanechnikov kernel K(t) = 0.75(1− t2)+ for all the estimators. The

performance of these estimators was assessed using the Square-Root of Average

Squared Errors (RASE) defined as

RASE(θ̂k(t
∗
j)) =

(
n−1

grid

ngrid∑

j=1

{θ̂k(t
∗
j) − θk(t

∗
j )}

2

) 1
2

, (4.3)

where {t∗j , j = 1, . . . , ngrid} were the grid points at which the time-varying pa-

rameters θk(·), k = 1, 2, 3, were estimated. The bandwidth selection strategy

discussed in Section 3.3 was used to determine the optimal bandwidths ĥopt
k,v,p

and b̂opt
k , k = 1, 2, 3, v = 0, 1, p = 1, 2.

For the one-step estimators, only the hybrid estimator was used since it is

the best among the three one-step estimators. We compared the three two-step

estimators to the one-step hybrid estimator based on 500 simulations. Boxplots

of the RASEs for the four estimators for θ1(t), θ2(t) and θ3(t) are given in Figure

1 (a)−(c), respectively. There we can see that the three two-step estimators

outperform the one-step hybrid estimator, and the two-step hybrid estimator

is slightly better than the two-step local linear and local quadratic estimators.

The initial bandwidths in the two-step local estimators were hk = 0.7 × ĥopt
k;0,1,

k = 1, 2, 3, with the estimated optimal bandwidths ĥopt
k;0,1 obtained using the

pre-asymptotic substitution method.

The estimates of [Xk(t),X ′
k(t), θk(t)], k = 1, 2, 3, using the two-step hybrid

method are presented in Figures 2. We can see that these estimates are very close

to the true functions. Other estimators also gave reasonable estimation results

(data not shown). We conducted simulations for larger measurement errors and

different sample sizes, with similar conclusions reached.
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Figure 1. Simulation comparisons of RASE for different estimation methods

with the sample size n = 100 and the variances (σ1, σ2, σ3) = (20, 5, 100):

(a)−(c) Boxplots of the RASEs for the one-step local hybrid (OSH) esti-

mates, the two-step local linear (TSL) estimates, the two-step local quadratic

(TSQ) estimates and the two-step local hybrid (TSH) estimates for θ1(t),

θ2(t) and θ3(t), respectively.

4.2. Application to AIDS clinical trial data

We applied the proposed methods to a viral load data set from an AIDS clin-

ical trial to further illustrate the usefulness of the proposed estimation methods.

The AIDS clinical trial was developed by the Adult AIDS Clinical Trials Group

(AACTG), and the viral load (HIV RNA copies in plasma) was monitored at

weeks 1, 3, 4, 5, 6, 8, 9, 12, 14, 16, 21, 25, 29 and 33 in HIV-1 infected patients

after receiving highly active antiretroviral therapy (HAART). Viral load data

from two patients are plotted in Figure 3. More frequent viral load data within

the first three days are also available from these patients and could be used to

estimate the constant viral dynamic parameters in the model (1.3)−(1.4). For

methodological details, see papers by Perelson et al. (1996), Han and Chaloner

(2004) and Wu (2005).

We use the proposed nonparametric local estimation methods to fit the HIV

dynamic model (4.1) to the viral load data from individual AIDS patients in this

clinical study. In particular, we smoothed the viral load X3(t), estimated the

viral load change profile X ′(t), and the production rate of free HIV virions θ3(t)

for individual patients. The two-step local hybrid estimator was used to estimate

the production rate θ3(t). The corresponding estimated bandwidths (h3, b3) of

θ3(t) for patients 1 and 2 were (58.19, 70.53) and (95.42, 40.55), respectively. The

model fitting results for the two patients are plotted in Figure 3. From this figure,

we can see that the fitted data compare well to the observed viral load data. The
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Figure 2. Estimation results from the two-step hybrid estimation method
with the sample size n = 100 and the variances (σ1, σ2, σ3) = (20, 5, 100)
in the simulation study: solid curves – true functions and dashed curves –
estimated functions. (a1-a3) pointwise averages of local linear estimates for
the state functions X1(t), X2(t) and X3(t) from 500 simulations,respectively;
(b1-b3) pointwise averages of local quadratic estimates for the derivatives
X ′

1(t), X ′

2(t) and X ′

3(t) from 500 simulations,respectively; (c1-c3) pointwise
averages of the two-step hybrid estimates and their 95% confidential intervals
for θ1(t), θ2(t) and θ3(t) from 500 simulations, respectively.

estimates of the derivative of the viral load (viral load change) and the time-

varying parameters (viral production rate) are reasonably estimated (Figure 3).

These estimation results may provide important information and help clinicians

make treatment decisions for individual AIDS patients.
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(a) Patient 1: X(t) (b) Patient 1: X ′(t) (c) Patient 1: θ(t)

(d) Patient 2: X(t) (e) Patient 2: X ′(t) (f) Patient 2: θ(t)

Figure 3. Estimation results for two patients from an AIDS clinical study.
The bandwidths for patient 1 are (h3, b3) = (58.19, 70.53) and for patient
2 are (h3, b3) = (95.42, 40.55). (a) and (d): The estimated viral load over
the treatment days. The solid line indicates the local linear estimator of the
viral load X3(t) and the dashed line is the observed viral load profile for
the two patients, respectively. (b) and (e): The estimated viral load change
profile over the treatment days. The solid line indicates the local quadratic
estimator of the derivative X ′

3(t) for the two patients, respectively. (c) and
(f): The estimated virus production rate of free HIV virions over the treat-
ment days. The solid line indicates the two-step local hybrid estimator of the
time-varying virus production rate θ3(t) for the two patients, respectively.

5. Concluding Remarks

Although we have mainly focused on a linear deterministic dynamic model
with a single time-varying parameter in this paper, these techniques can be ex-
tended to multivariate models with multiple unknown time-varying parameters.
This is not a trivial generalization; in the case of multiple time-varying param-
eters, the second step of our proposed methods may need to resort to time-
varying coefficient models or generalized time-varying coefficient models that
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have been actively studied by many authors in the past years (e.g., Hoover et al.

(1998), Fan and Zhang (1999), Cai, Fan and Li (2002), Fan and Zhang (2003)

and Wu and Zhang (2006)). In the development of theoretical results, we have

focused on linear dynamic models although our methodologies can apply to more

general dynamic models. In particular it is more difficult to derive asymptotic

theories for nonlinear dynamic models, and this is a good future research topic.

Also note that we only considered the estimation of the time-varying parameters

in the dynamic models. We have made an assumption that all other parame-

ters in the model are known or can be estimated from other sources. Thus, we

do not have the identifiability problem in our numerical examples. However, in

practice, it is very important to study the identifiability of the dynamic models

before parameter estimation. This is beyond the scope of this paper; we refer

readers to Xia (2003), Xia and Moog (2003) and Jeffrey and Xia (2005).
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