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2. Appendix to Section 3

2.1. Proof of Theorem 1

For fixed S <∞, by assumptions (A.1) and (A.4),

min
1≤s 6=k≤S

∥

∥

∥
L∗
s,n(·) − L∗

k,n(·)
∥

∥

∥

∞
p→ min

1≤s 6=k≤S

∥

∥

∥
Ls(·) − Lk(·)

∥

∥

∥

∞
> 0.

On the other hand, let 〈√n〉 be the mj closest to
√
n and similarly define 〈q√n〉

then by (A.3):

∥

∥

∥
L∗
〈√n〉,n(·) − L∗

〈q√n〉,n(·)
∥

∥

∥

∞
p→ 0. (21)

Therefore,

m̂
p→∞. (22)

If L̃∗
m,n corresponds to Ũn(·), just as L∗

m,n corresponds to Un(·), define ˜̂ in relation

to {L̃∗
m,n} as ̂ is defined for {L∗

m,n}. Then, by construction of m̂, for each J ,

and for n sufficiently large:

P (˜̂>J)≥P
(

min
1≤j≤J

∥

∥

∥
L̃∗
mj ,n(·)−L̃

∗
mj+1,n(·)

∥

∥

∥

∞
>

∥

∥

∥
L̃∗
〈√n〉,n(·)−L̃

∗
〈q√n〉,n(·)

∥

∥

∥

∞

)

. (23)

If condition (a) (Appendix A), for convergence in law of Un, holds in (A.5),

then

min
1≤j≤J

∥

∥

∥
L̃∗
mj ,n(·) − L̃∗

mj+1,n(·)
∥

∥

∥

∞
L⇒ min

1≤j≤J

∥

∥

∥
U(qj)(·) − U(qj+1)(·)

∥

∥

∥

∞
. (24)

Finally, by (21), (23) and (24),

lim inf
n

P (˜̂ > J) ≥ P
(

min
1≤j≤J

∥

∥

∥
U(qj)(·) − U(qj+1)(·)

∥

∥

∥

∞
> 0

)

.
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Therefore, for each J , P (˜̂ > J) → 1. But, if (a) holds for (A.5), by construction,
˜̂ and ̂ have the same distribution. Hence,

m̂

n

p→ 0. (25)

The result follows from (22) and (25).

Similarly, if (a’) holds for (A.5) (Appendix A), then ‖Ũn(·)−Un(·)‖∞ = op(1).

It follows that P (˜̂ 6= ̂) → 0, and (25) follows for this case as well.

This completes the proof.

2.2. Proof of Theorem 2

(a) From assumptions (A.1)–(A.4), it follows that under F , m̂
p→∞ (Theorem

1). Under the additional assumptions:

∣

∣

∣

∣L∗
n,n(·) − Ln(·)

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∣
A0

(

·; F̂n
)
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1
2

(
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(
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)

−A1(·;F )
)

+ op

(
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1
2

)∣

∣

∣

∣

∣

∣

= Ωp(n
− 1

2 ).

On the other hand,
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∣
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∣
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∣

∣
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∣

∣

∣

∣

∣
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) (
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1
2

)
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∣

∣

∣

∣

∣

∣
,

which is minimized by m̂ = n(1 + op(1)). Thus (8) follows.

(b) From the assumptions, A0(·;F ) = A0(·), and

∣

∣

∣

∣L∗
n,n(·) − Ln(·)

∣

∣

∣

∣ = n−
1
2

∣

∣

∣

∣

∣
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(
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∣

∣

∣

∣

∣

∣
= Op
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n−1
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.

As above,
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∣

∣

∣
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∣

∣
,

which is minimized, to first order, by m̂ = n(1 + op(1)), and to second order, by

m̂ = n+ o(1). Then

∣

∣
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m̂,n(·) − Ln(·)
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∣

∣
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=
∣

∣

∣

∣
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and (9) follows.

This completes the proof.
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2.3. Proof of Theorem 3

Writing

Ln(·) − L∗
m,n(·)

= A0(·;F ) −A0(·; F̂n) +A1(·;F )(n−
1
2 −m− 1

2 ) + op(m
− 1

2 ) + Ωp(m
βn−γ)

= A1(·;F )m− 1
2 + Ωp(m

βn−γ) + op(m
− 1

2 ) +Op(n
−γ),

yielding an (optimal) minimizing value of mopt = Ωp(n
γ(1/2+β)−1

), and (11) fol-

lows. Similarly,

L∗
mj+1,n(·) − L∗

mj ,n(·) = A1(·;F )m
− 1

2
j

(

q−
1
2 − 1

)

+ Ωp

(

mβ
j n

−γ
)

+ op

(

m− 1
2

)

,

yielding m̂ = Ωp(n
γ(1/2+β)−1

), and (12) follows. The last claim follows from the

above.

This completes the proof.

3. Appendix to Section 4

3.1. Lemma 1

Lemma 1. Under (vM)(I)–(III), if m→ ∞, m/n→ 0, then

am(X([n− n
m

],n) − bm) = op(1).

Proof. From Theorem 5.1.7 (p. 164) of Reiss (1989), under (vM)(I)–(III) (and

identifying k(n) with n − [n − n/m], and Reiss’s bn is our bm) it follows that,

(nm)1/2f(bm)(X([n−n/m],n) − bm) converges weakly to the standard normal dis-

tribution.

In case (vM)(III), am = mf(bm) and the lemma follows.

In case (vM)(I), am = 1/bm, and from (5.1.24) of Reiss (1989), mbmf(bm) =

O(1). Hence,
am√

nmf(bm)
=

1

bm
√
mf(bn)

√
n

= o(1),

and the lemma follows.

In case (vM)(II), and using (5.1.24) of Reiss (1989), the result follows using

a similar argument.

3.2. Condition (A.5)

The proof of this condition uses the Poisson approximation to the Binomial

distribution. Some notation and definitions are needed.
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Define, p̂n(x, λ) = 1 − F̂n(x/am + bm), and Vn(λ, x) = N(mp̂n(x, λ)), where

N denotes a standard Poisson process, independent of X1,X2, . . .. Hence,

P ∗(Vn(λ, x) = 0) = exp(−mp̂n(x, λ)). Define, further,

V ∗
n (λ, x) =







∑m
i=1 1(X∗

i >
x
am

+ bm), m = [nλ] + 1, 0 ≤ λ < 1 − 1
n

∑n
i=1 1(X∗

i >
x
an

+ bn), 1 − 1
n ≤ λ ≤ 1.

Lemma 2. If (13) holds then for all λ1, . . . , λk, k <∞

ρ(L∗(V ∗
n (λ1), . . . , V

∗
n (λk)),L∗(Vn(λ1), . . . , Vn(λk)))

p→ 0,

where ρ is the Prohorov metric on probabilities on D(R̄), and L∗ is the joint

conditional law.

Proof. Denote by ‖ · ‖BV the total variation norm between two probability

measures. In the proof of Lemma 2, we use the following proposition which is

an extension of a result of Hodges and LeCam (1960) (for a proof see Barbour

(1988), Wang (1986), SintesBlanc (1991)).

Proposition 1. Let Xi = (Xi1, . . . ,Xik), i = 1, . . . , n, be independent and dis-

tributed according to the multinomial distribution with parameters (1, q1, . . . , qk),

such that qj ≥ 0 and
∑k

j=1 qj < 1. Let Yi = (Yi1, . . . , Yik), i = 1, . . . , n, where Yij
are independent Poisson random variables with means qj. Then ‖L(X1, . . . ,Xn)

−L(Y1, . . . ,Yn)‖BV ≤ n(
∑k

i=1 qi)
2, where L(Z1, . . . ,Zn) is the joint law of (Z1,

. . . ,Zn).

Continue proof of Lemma 2. For all positive integers K,L define AK,L =

{(k, l) | 1 ≤ k ≤ K, 1 ≤ l ≤ L}. Since for each λ, V ∗
n (λ, ·), Vn(λ, ·) are monotone

decreasing in x, it is suffices to establish for all λ1 < · · · < λI , xJ < · · · < x1,

I, J :

R ≡ ρ(L∗({V ∗
n (λi, xj) : (i, j) ∈ AI,J}), L∗({Vn(λi, xj) : (i, j) ∈ AI,J}))

p→ 0.

Let mi be the m associated with λi, and set

Cij =

{

( x1
ami

+ bmi
,∞), j = 1

(
xj

ami

+ bmi
,
xj−1

ami

+ bmi
], j = 2, . . . , J.

For a given i, the intervals Cij are disjoint, but they are not necessarily so for

different i’s. We use the end-points of the Cij, when 1 ≤ i ≤ I and 1 ≤ j ≤ J ,

to create a partition of the real line into disjoint intervals Dr, where 1 ≤ r ≤ β,

and 1 ≤ β ≤ IJ . Denote the end-points of the D’s by Dr = (zr−1, zr], where

−∞ < z1 · · · < zβ < zβ+1 = ∞. Each zr is associated with a pair (xj , λi), for

some i and j.
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Finally, set p̂n(zr) to be p̂n(xj, λi), with the corresponding i and j. With

this preparation, rewrite,

V ∗
n (λi, xj) =

mi
∑

k=1

1

(

X∗
k >

xj
ami

+ bmi

)

=

mi
∑

k=1

j
∑

l=1

1(X∗
k ∈ Cil)

=

n
∑

k=1

β
∑

r=1

δijk1(X
∗
k ∈ Dr),

where

δijk =







1, if 1 ≤ k ≤ mi and Dr ⊂
j
⋃

l=1

Cil

0, otherwise.

For r = 1, . . . , β, P ∗ (X∗
k ∈ Dr) = p̂n(zr−1) − p̂n(zr).

We can similarly write, Vn(λi, xj) =
∑n

k=1

∑β
r=1 δijkPkr, where the δijk are

as above, and the Pkr are independent Poisson with E(Pkr) = P ∗(X∗
k ∈ Dr).

Therefore,

||L∗ ({V ∗
n (λi, xj) : (i, j) ∈ AI,J}) − L∗ ({Vn(λi, xj) : (i, j) ∈ AI,J})||BV

≤ ||L∗({(1(X∗
k ∈ Dr) : (k, r) ∈ An,β}) − L∗({(Pkr : (k, r) ∈ An,β})||BV

≤ n
(

β
∑

r=1

P ∗(X∗
1 ∈ Dr)

)2
≤ nIJ max

i,j
{p̂2
n(xj , λi)}.

To obtain the last statement, we have used the bound from Proposition 1.

Since np̂n has the Binomial distribution, Var(np̂n(xj , λi)) ≤ nE(p̂n(xj, λi))

= n(1 − F (xj/ami
+ bmi

)). Note that assumption (13) is equivalent to

n
(

1 − F (
x

an
+ bn)

)

→ − logG(x). (26)

Combining the above, and since n/mi=O(1), we conclude that nmaxi,j p̂n(xj , λi)

= Op(1). Thus,

R≤‖L∗({V ∗
n (λi, xj) : (i, j) ∈ AI,J})−L∗({Vn(λi, xj) : (i, j) ∈ AI,J})‖BV =op(1),

and the lemma follows.

Set, Wn(λ) = am(X([n−n/m],n) − bm), then from (2):

Un(λ, x) = P ∗ (V ∗
n (λ, x+Wn(λ)) = 0) .

Define, Sn(x, λ) = np̂n(x, λ), and S̃n(x, λ) = Sn(x + Wn(λ), λ). Using the last

lemma, and the definitions of the processes, it follows that,

ρ
(

(Un(·, λ1), . . . , Un(·, λk)) , (e−λ1S̃n(·,λ1), . . . , e−λkS̃n(·,λk))
)

= op(1). (27)
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Let N ′ be a standard Poisson process, independent of N , and of X1,X2, . . .,

and let τ1 < τ2 < · · · be the consecutive jumps of N ′(·). That is, N ′(τr) = r and
N ′(τr−) = r − 1. Denote ψ(x) = − logG(x).

Lemma 3. Set Sn(·) = (Sn(·, λ1), · · · , Sn(·, λk)), and similarly for S̃n(·) and

Wn. Then,

(i) The process (Sn(·),Wn) converges weakly to a limit

(S(·),W ) ≡ (S(·, λ1), . . . , S(·, λk),W (λ1), . . . ,W (λk)).

Hence, S̃n(·) converges weakly to S̃(·) ≡ (S̃(·, λ1), . . . , S̃ (·, λk)), where S̃(x, λ)
≡ S(x+W (λ), λ) for 1 ≤ j ≤ k.

(ii) Moreover, we can identify the distribution of S(·, λj): for (vM)(III), set σj =

1, and µj = log(λj). For (vM)(I)-(II), set σj = λ−2
j and µj = 1 − λ−2

j .

For u = (u1, . . . , uk), let N ′ (·|u) denote the conditional distribution of N ′(·),
given τrj = ψ(σjuj + µj) for 1 ≤ j ≤ k. Then, {S̃(·, λj) : 1 ≤ j ≤ k} is

distributed as {N ′(ψ(· + σjuj + µj)) : 1 ≤ j ≤ k}, given W (λj) = uj for

1 ≤ j ≤ k. σj and µj are defined as follows.

Assumption (A.5) follows from combining (27) and the first part of Lemma

3. The second part of the lemma is needed for Lemma 5).

Agenda for the proof of Lemma 3. To prove Lemma 3, we shall argue that:

(a) Wn has a weak limit W .
(b) The conditional distribution of Sn(·), given Wn = u, convergences weakly to

a measure on Dk[−∞,∞], say, Qu. Then, (Sn(·),Wn), necessarily, converges

weakly to (S(·),W ), where S(·) has conditional distribution QW .

(c) With these identifications, it follows that S̃n(·), given Wn(λj) = uj , for 1 ≤
j ≤ k, converges weakly to (S(· + u1, λ1), . . . , S(· + uk, λk)). This completes

the first part of the lemma.

(d) The second part of the lemma is being proved while proving the first part.

We begin with an auxiliary lemma.

Lemma 4. Under the von Mises conditions, if m/n → λ > 0 then:

1. For (vM)(I) and (vM)(II), am/an → λ2 and an(bm − bn) → λ−2 − 1.

2. For (vM)(III), am/an → 1 and an(bm − bn) → − log(λ).

Proof. To simplify the notation, we denote m/n by λ rather then λ(n) → λ.
The result is unaffected.

We start with (vM)(III). Here, am = mf(bm) and an = nf(bn). Noting that

1 − F (bm) = 1/λn, and using (15):

∂ log(f(bm))

∂λ
=
∂ log f

∂λ

(

F−1

(

1 − 1

λn

))

=
f ′ (bm)

λmf2 (bm)
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= − 1

λ

[(

1 − F (bm)

f (bm)

)′
+ 1

]

→ − 1

λ
.

Hence,

log

(

an
am

)

= log

(

f(bn)

λf(bm)

)

= −
∫ 1

λ

dz

z
+ o(1) − log(λ)

= − log(1) + log(λ) − log(λ) + o(1) → 0,

It follows that, an/am → 1. Similarly,

∂

∂λ
an (bm − bn) =

[

nf(bn)

(

F−1

(

1 − 1

λn

)

− F−1

(

1 − 1

n

))]′

=
1

λ2

f (bn)

f (bm)
=

1

λ

an
am

→ 1

λ
.

Consider now (vM)(I). Then, an = 1/bn and am = 1/bm. From (15):

∂ log(f(bm))

∂λ
→ − 1

λ

(

1

λ
+ 1

)

. (28)

Using (5.1.24) of Reiss (1989), which is an alternative set of sufficient conditions,

it follows that

bmf(bm)

1 − F (bm)
· 1 − F (bn)

bnf(bn)
=
bm
bn

· f(bm)

f(bn)
· m
n

→ 1.

Using (28), it follows that, an/am = bm/bn → λ−2. Hence, am/an → λ2 and

an(bm − bn) = bm/bn − 1 → λ−2 − 1.

The argument for type (vM)(II) is very similar.

Proof of Lemma 3. From (5.1.28) in Reiss (1989), it follows that form = λ(n)n,

and λ(n) → λ, W̃n(λ
(n)) = an(X([n−n/m],n) − bn), converges weakly to a limiting

distribution, which depends on λ and G, and is given in (5.1.29) of Reiss (1989).

To simplify notation, from now on, we drop the superscript in λ(n).

Note that, Wn(λ) = (am/an)W̃n(λ) + am(bn − bm). In view of Lemma 4,

Wn(λ) converges weakly, say to W (λ). To show that W̃n, and hence Wn, con-

verges weakly to some W , is a slight extension of (5.1.28) in Reiss (1989): to show

this we only need to translate joint statements about extrema to joint statements

about empirical distribution functions. This completes the proof of part (a) from

the agenda.

To proceed with part (b) of the agenda we define, Nn(u) ≡ Sn(ψ
−1(u), 1),

a nondecreasing counting process, with jump points, τ1,n < · · · < τn,n, where,
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τj,n = ψ(an(X(n−j+1,n) − bn)). Define,

rj =







[ 1
λj

] + 1, if 1
λj

is not an integer

1
λj
, otherwise

for j = 1, . . . , k.

Since, m1 > · · · > mk, and hence τrk,n ≥ · · · ≥ τr1,n, it follows that, {rj} is a

non-decreasing sequence of positive integers (1 ≤ rj ≤ n). Using the jump points

rewrite:

τrj ,n = ψ
(

an/amj
Wn(λj) − an(bn − bmj

)
)

. (29)

This implies that, conditioning {Sn(·, λj) : 1 ≤ j ≤ k}, on {Wn(λj) : 1 ≤ j ≤ k},
is equivalent to conditioning on {τrj ,n : 1 ≤ j ≤ k}.

Note that, Nn(·) converges weakly to a standard Poisson process N ′. Since

Sn(x, λ) = Nn(ψ(x
an
am

+ (bm − bn)an)), (30)

it follows that

S(x, λj) = N ′(ψ(σjx− µj)), (31)

where σj = an/am and µj = an(bn − bm). Using Lemma 4, and according to the

situation (i.e., (vM)(I),(II) or (III)), we obtain the format as given in the lemma.

The jump points of S(x, λj) are

τrj = ψ(σjW (λj) + µj). (32)

From (29)−(32), it follows that, to complete the argument we need only to

check that the weak limit of the conditional distribution of Nn(·), given Wn(λj) =

uj for j = 1, . . . , k, is that of N ′(·|u), or, equivalently, that the conditional

distribution of Nn(·), given τrj,n
= ψ(ujan/amj

− an(bn − bmj
)), converges to

that of N ′(·|u).

We start with the latter. Given τrj = ψ(σjuj + µj) for 1 ≤ j ≤ k, the

remaining n − k jump points of N ′(x), 0 ≤ x ≤ τrk are distributed as the

concatenation of the following k blocks of order statistics of independent samples:

the first block correspond to the first r1−1 jump points, which are distributed like

the order statistics of a sample of size r1 − 1 from the U(0, τr1) distribution; the

second block correspond to the r2−r1−1 jump points between τr1 and τr2, and are

distributed like the order statistics of a sample of size r2−r1−1 from U(τr1, τr2),

and so on until the kth block, which correspond to the rk− rk−1− 1 jump points

between τrk−1
and τrk , and are distributed like the order statistics of a sample of

size rk − rk−1 − 1 from U(τrk−1
, τrk). Finally, for x > τrk , N ′(x) −N ′(x− τrk) is

again a standard Poisson process.
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We now consider the conditional distribution of Nn(·), given τrj ,n. From an

obvious extension of Theorem 2.7 of David (1981), it follows that, given order

statistics, Yi1, . . . , Yik of a sample Y1, . . . , Yn iid from a density g ≡ G′, the re-

maining n−k order statistics are distributed like the k+1 blocks of order statistics

of independent samples: Y
(1)
1 , . . . , Y

(1)
i1−1 from density g1; Y

(2)
1 , . . . , Y

(2)
i2−i1−1 from

density g2; and so on until Y
(k+1)
1 , . . . , Y

(k+1)
n−ik from density gk+1, where:

g1(y) = g(y)1(y < Y(i1))/G(Y(i1));

gj(y) = g(y)1(Y(ij−1) < y < Y(ij))/(G(Yij ) −G(Yij−1)), j = 2, . . . , k;

gk+1(y) = g(y)1(y > Y(ik))/
(

1 −G
(

Y(ik)

))

.

For 1 ≤ j ≤ k, let Y
(j)
in be iid with conditional distribution functions (conditioned

on τrj ,n):

G(1)
n (x) =

F̄ (X(n−r1+1,n)) − F̄ ( x
an

+ bn)

F̄ (X(n−r1+1,n))
, x > ψ−1(τr1,n),

G(j)
n (x) =

F̄ (X(n−rj−1+1,n)) − F̄ ( x
an

+ bn)

F̄ (X(n−rj−1+1,n)) − F̄ (X(n−rj+1,n)

, ψ−1(τrj ,n)<x<ψ
−1(τrj−1,n),

j = 2, . . . , k,

G(k+1)
n (x) =

F ( xan
+ bn)

F (X(n−rk+1,n)
, x < ψ−1(τrk,n).

From (26) it follows that,

G(1)
n (x) ∼ 1 − ψ(x)

τr1,n

G(j)
n (x) ∼

τrj−1,n − ψ(x)

τrj−1,n − τrj ,n
for 1 ≤ j ≤ k

G(k+1)
n ∼ F

(

x

an
+ bn

)

.

Set,

S(1)
n (x) =

r1
∑

i=1

1
(

Y
(1)
in > x

)

,

S(j)
n (x) =

rj−rj−1−1
∑

i=1

1
(

Y
(j)
in > x

)

, 2 ≤ j ≤ k,

S(k+1)
n (x) =

n−rk−1
∑

i=1

1
(

Y
(k+1)
in > x

)

.
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Combining the above remarks with this set-up, we see that given τrj ,n for 1 ≤
j ≤ k, Sn(x) ≡ Sn(x, 1) is distributed as the concatenation of k + 1 independent

processes, S
(j)
n (·),

Sn(x) =



















S
(1)
n (x), x > ψ−1(τr1,n)

S
(j)
n (x), ψ−1(τrj ,n) < x < ψ(τrj−1,n), 2 ≤ j ≤ k

S
(k+1)
n (x), x < ψ−1(τrk,n).

It follows that, if τrj = ψ(σjuj−µj), then given τrj ,n = ψ(ujan/amj
−an(bn−bmj

))

for 1 ≤ j ≤ k, Gj,n converges weakly to Gj , where

Gj(x) =
1 − ψ(x)

τrj

1 − ψ(τrj
)

ψ(τrj−1)

.

Therefore, N
(j)
n (x), for 0 < x < ψ(σkuk + µk), has the limiting distribution of

N ′(·, u), since Gj
(

ψ−1(·)
)

is the Uniform distribution on τrj−1 < x < τrj .

Finally, since nF̄ (anψ
−1(x) + bn) → ψψ−1(x) = x, we can show that for

x > τrk,n, N
(k+1)
n (·)−Nn(τrk,n) =

∑n
j=1 1(Xj > ψ−1(x)/an + bn)− rk, converges

weakly to a standard Poisson process, by simply checking finite dimensional joint

distributions. The lemma follows when using the above and the usual Poisson

convergence theorem.

3.3. Condition (A.6)

Lemma 5.

(i) Define

r ≡ r(λ) =

{

[ 1
λ ] + 1, if 1

λ is not an integer

1
λ , otherwise.

then the marginal distribution of S̃(x, λ) + r(λ) is Poisson with parameter

σ(λ)x.

(ii) Suppose U(λ, ·) is the limit law of Un(λ), and U(λ, ·) has the distribution spec-

ified in Lemma 3. That is, U(λ, x) has the distribution of exp(−λS̃(x, λ)).

Reparametrize U(λ, ·) by r given above, say U(λ, ·) = Ũ(r, ·). Then, r →
Ũ(r, ·) is 1 − 1, r = 1, 2, . . ..

Proof. For a fixed x, λ = 1/m, S̃(x, λ), given W (λ) = u, is distributed as

N ′(ψ(σ(λ)(x+ u) + µ(λ))) given τr = ψ(σ(λ)u+µ(λ). But, N ′(ψ(σ(λ)(x+ u) +

µ(λ))) −N ′(ψ(σ(λ)u + µ(λ))) is independent of N ′(ψ(σ(λ)u + µ(λ))) = r given

τr = ψ(σ(λ)u + µ(λ)), and has a Poisson ψ(σ(λ)x) distribution and claim (i)

follows.
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Therefore, E(exp(−λS̃(x, λ))) = exp(−λr) exp(ψ(σ(λ)x) · (e−λ − 1)).

For (vM)(III), ψ(u) = e−u and σ(λ) = 1. Therefore, if r → Ũ(r) is not 1-1,

then the function λ→ exp{−r(λ)λ} exp{e−x(e−λ−1)} is not 1-1, as a map from

(0, 1) to functions of x. But this is evidently false.

The argument for (vM)(I) and (vM)(II) is the same for the function λ →
exp(−λr(λ)) exp(exp((x/λ2)β)(exp(−λ) − 1)), for β = ±γ.
Comment. This weakening of (A.6) suffices, since m̂ is obtained by a search

over mj = [qjn], where [n/mj] ranges over distinct integers.
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