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Abstract: A general decision theoretic formulation is given to multiple testing, al-

lowing descriptions of measures of false discoveries and false non-discoveries in terms

of certain loss functions even when randomized decisions are made on the hypothe-

ses. Randomized as well as non-randomized procedures controlling the Bayes false

discovery rate (BFDR) and Bayes false non-discovery rate (BFNR) are developed.

These are applicable in any situation, unlike the corresponding frequentist pro-

cedures that control the BFDR or BFNR, but do so under certain dependence

structures of the test statistics. Even in the presence of such dependence, as simu-

lations show, the proposed procedures perform much better than the corresponding

frequentist procedures. They provide better control of the BFDR or BFNR than

those for which control is achieved through local FDR or local FNR.

Key words and phrases: One-step randomized procedures, posterior false discovery

rate, posterior false non-discovery rate.

1. Introduction

A tremendous growth of research has taken place recently in the area of mul-

tiple testing because of its increased relevance in analyzing high-dimensional data.

Among measures of overall error rates, the false discovery rate (FDR) and false

non-discovery rate (FNR) have received the most attention, and procedures con-

trolling them have been developed from both frequentist and Bayesian perspec-

tives (Benjamini and Hochberg (1995), Benjamini and Yekutieli (2001), Efron

(2003), Efron, Tibshirani, Storey and Tusher (2001), Genovese and Wasserman

(2002, 2004), Sarkar (2002, 2004, 2006), Storey (2002, 2003) and Storey, Taylor

and Siegmund (2004)).

The Bayesian theory of false discoveries and false non-discoveries has been

developed to a large extent under a simple model, the so-called i.i.d. mixture

model, in which the test statistics are assumed i.i.d. given a set of null hypotheses

that are all true or all false, with the null hypotheses being true or false according

to i.i.d. Bernoulli random variables. This theory has been further developed here

using a more general framework, starting with a decision theoretic formulation
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of multiple testing and using a model where the underlying test statistics and

the associated parameters are assumed dependent. We consider, in particular,

the problems of controlling the Bayes FDR (BFDR) and Bayes FNR (BFNR).

We provide procedures that control the BFDR or BFNR at a designated level

α. The non-randomized version of our BFDR (or BFNR) procedure rejects (or

accepts) every family of null hypotheses with the average posterior probability of

the null (or alternative) hypotheses less (or greater) than α, while the correspond-

ing randomized version, a one-step randomized procedure, allows one additional

random rejection (for BDFR control) or acceptance (for BFNR control), provid-

ing a slightly better control of the BFDR or BFNR. Our non-randomized BFDR

procedure is same as that in Muller, Parmigiani, Robert and Rousseau (2004).

A control of the BFDR at α can be achieved by rejecting every null hy-

pothesis whose posterior probability is less than α (see, for example, Efron et al.

(2001)). However, it is more conservative than our proposed BFDR procedure

in that it allows less rejections of the null hypotheses. Our procedure has a more

general applicability than the most commonly used BH frquentist FDR procedure

(Benjamini and Hochberg (1995)). The BH procedure also controls the BFDR

but does so under certain type of positive dependence among the test statistics

given the parameters (Benjamini and Yekutieli (2001) and Sarkar (2002, 2004)).

As noted through simulation, our procedure is more powerful than the BH pro-

cedure and the one which controls the Bayesian FDR (Efron (2003)), especially

when there is dependence in the tests. Efron’s Bayesian FDR is different from

the present BFDR. Moreover, our procedure motivates one to formulate a new

FDR-based Bayesian variable selection procedure.

To compare different BFDR controlling procedures, we use as performance

measures both the BFNR and a Bayesian version of a frequentist notion of Av-

erage Power defined in Dudoit, Shaffer and Boldrick (2003), we call the BAP. In

some applications, controlling false negatives may be of primary importance; our

BFNR controlling procedure would be an appropriate multiple testing method

in such a situation from a Bayesian perspective. Of course, there are frequen-

tist FNR procedures (Sarkar (2002, 2004)) which also control the BFNR; they

require specific distributional assumptions. The present BFNR procedure is an

alternative to theses procedures having a more general applicability. The BFDR,

in these situations, can be used as a performance measuring criterion.

The layout of this paper is as follows. The decision theoretic formulation of

multiple testing, with representations of false discovery and false non-discovery

rates in terms of loss functions, is presented in Section 2. Bayesian measures

related to false discoveries, false non-discoveries, and power are given in Section

3. A one-step randomized procedure is introduced in Section 4, along with the
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BFDR and BFNR of this and some non-randomized stepwise procedures. Proce-

dures controlling BFDR and BFNR are developed in Section 5. Assuming normal

distributions of the test statistics conditional on the parameters, results of sim-

ulation studies comparing our proposed BFDR controlling procedure with the

BH procedure and the procedure controlling the Bayesian FDR (Efron (2003))

are presented in Section 6. A brief explanation of the new FDR-based Bayesian

variable selection procedure is given in Section 7. There are some final remarks

in Section 8.

2. A Decision Theoretic Formulation of Multiple Testing

Suppose that we have a set of random variables X = (X1, . . . ,Xn) ∼ Pθ,

θ = (θ1, . . . , θn) ∈ Θ ⊂ Rn, being used to test Hi : θi ∈ Θi0 against Ki :

θi ∈ Θi1, simultaneously for i = 1, . . . , n. Let d = (d1, . . . , dn), with di = 0

or 1 according as Hi is accepted or rejected, represent the decision vector, with

D = {(d1, . . . , dn) : di = 0 or 1 ∀ i} being the decision space. Given X = x, we

consider choosing the decision vector d according to the following probabilities:

δ(d | x) =

n
∏

i=1

{δi(x)}di{1 − δi(x)}1−di , d ∈ D,

for some 0 ≤ δi(X) ≤ 1, i = 1, . . . , n. The vector δ(X) = (δ1(X), . . . , δn(X))

is referred to as a multiple decision rule or multiple testing procedure. If 0 <

δi(X) < 1, for at least one i, then δ(X) is randomized; otherwise, it is non-

randomized.

The main objective in a multiple testing problem is to determine δ(X), the

choice of which is typically assessed based on a risk measured by averaging a loss

L(θ, δ) it incurs in selecting d over uncertainties. In a frequentist approach, only

the uncertainty in X given θ is considered, while in a Bayesian approach, prior

information on θ is further utilized.

Let h = (h1, . . . , hn), with hi = 0 or 1 according as θi ∈ Θi0 or θi ∈ Θi1,

represent the unknown configuration of true or false null hypotheses. Given

Q(h,d), a measure of error providing an overall discrepancy between h and

d, the loss is L(θ, δ(X)) =
∑

d∈D Q(h,d)δ(d|X). The corresponding frequentist

risk is Rδ(θ) = EX|θL(θ, δ(X)) and, given a prior distribution on θ, the posterior

and Bayes risks are πδ(X) = Eθ|XL(θ, δ(X)) and rδ = EθRδ(θ) = EXπδ(X),

respectively.

Among several possible choices of Q(h,d) providing different frequentist con-

cepts of error rate in multiple testing, we concentrate on the False Discovery,
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Proportion (FDP),

Q1(h,d) =

∑n
i=1 di(1 − hi)

{

∑n
i=1 di

}

∨ 1
,

and the False Non-Discovery Proportion (FNP),

Q2(h,d) =

∑n
i=1(1 − di)hi

{

∑n
i=1(1 − di)

}

∨ 1
.

and consider determining δ controlling the corresponding Bayes risks, the Bayes

False Discovery Rate (BFDR) and the Bayes False Non-Discovery Rate (BFNR),

respectively. Often in practice, where controlling false positives is of primary

importance, finding a δ that controls the BFDR would be the main objective,

and the BFNR could be used as a performance measuring criterion to compare

different BFDR controlling procedures. In some applications, however, one wants

to control false negatives, rather than false positives. The roles of the BFDR and

BFNR can be switched in these situations.

Remark 2.1. When δ is non-randomized it can be replaced by d.

3. The BFDR and BFNR

The frequentist risk corresponding to Q1, the false discovery rate (FDR), is

FDR = EX|θ

[

∑

d∈D

∑n
i=1 di(1 − hi)

{

∑n
i=1 di

}

∨ 1
δ(d|X)

]

=
∑

I:|I|>0

[

1

|I|
∑

i∈I

(1 − hi)EX|θ

{

∏

i∈I

δi(X)
∏

i∈Ic

[1 − δi(X)]

}

]

=
∑

I:|I|>0

[

1

|I|
∑

i∈I

(1 − hi)EX|θ{φI(X)}
]

, (1)

where I ⊆ {1, . . . , n}, and φI(X) =
∏

i∈I δi(X)
∏

i∈Ic [1−δi(X)] is the probability

of rejecting the set of null hypotheses {Hi, i ∈ I} and accepting the rest.

Under a prior distribution of θ, the posterior FDR (PFDR) is

PFDR = Eθ|X

[

∑

d∈D

∑n
i=1 di(1 − hi)

{

∑n
i=1 di

}

∨ 1
δ(d|X)

]

=
∑

d∈D

∑n
i=1 diri(X)

{

∑n
i=1 di

}

∨ 1
δ(d|X) =

∑

I:|I|>0

[

1

|I|
∑

i∈I

ri(X)φI(X)

]

, (2)



PROCEDURES CONTROLLING FDR AND FNR 929

where ri(X) = E{(1− hi) | X} = P{θi ∈ Θi0|X}, the posterior probability of Hi

being true.

The Bayes FDR (BFDR) is the expectation of (1) with respect to θ, or the

expectation of (2) with respect to X. The BFDR has been referred to as the

Average FDR in Chen and Sarkar (2006). Often in the literature, the BFDR

is treated as a frequentist FDR under a mixture model (Storey (2002, 2003),

Genovese and Wasserman (2002) and Efron (2003)).

Analogously, the frequentist risk corresponding to Q2, the false non-discovery

rate (FNR), is

FNR = EX|θ

{

∑

d∈D

∑n
i=1(1 − di)hi

{

∑n
i=1(1 − di)

}

∨ 1
δ(d|X)

}

=
∑

I:|Ic|>0

[

1

|Ic|
∑

i∈Ic

hiEX|θ{φI(X)}
]

. (3)

The posterior FNR (PFNR) is

PFNR = Eθ|X

[

∑

d∈D

∑n
i=1(1 − di)hi

{

∑n
i=1(1 − di)

}

∨ 1
δ(d|X)

]

=
∑

I:|Ic|>0

[

1

|Ic|
∑

i∈Ic

[1 − ri(X)]φI(X)

]

, (4)

where 1 − ri(X) = E{hi|X} = P{θi ∈ Θi1|X} is the posterior probability of Hi

being false.

The Bayes FNR (BFNR) is the expectation of (3) with respect to θ, or the

expectation of (4) with respect to X.

These FNR-related measures are equivalently described in terms of quantities

that can be interpreted as measures of power in the same spirit as in single testing.

For instance, when controlling frequentist FDR is of importance, 1 − FNR, which

Genovese and Wasserman (2002) call the Correct Non-Discovery Rate (CNR),

can be considered as a frequentist measure of power. Similar measures can be

defined from a Bayesian perspective; for instance, Posterior CNR (PCNR) = 1 −
BFNR and Bayes CNR (BCNR) = 1 − BFNR.

Another frequentist concept of power that is frequently used in multiple

testing is the Sensitivity, also known as the Average Power (Dudoit et al. (2003)),

defined as the expected proportion of false null hypotheses that are rejected, i.e.,

Average Power = EX|θ

{

∑

d∈D

∑n
i=1 dihi

∑n
i=1 hi

δ(d|X)

}

=

∑n
i=1 hiEX|θ{δi(X)}

∑n
i=1 hi

, (5)
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assuming
∑n

i=1 hi > 0. For a Bayesian version of this, we need to properly define

the ratio in (5) to incorporate the situation of no false null hypotheses, which can

happen with positive probability; we take this ratio to be 1 when
∑n

i=1 hi = 0,

which makes it consistent with the BCNR concept of power. Thus, the Posterior

Average Power is given by

Eθ|X

{

∑n
i=1 hiδi(X)
∑n

i=1 hi
I
(

n
∑

i=1

hi > 0
)

}

+ Pθ|X

{ n
∑

i=1

hi = 0

}

. (6)

The Bayes Average Power (BAP) is the expectation of (5) with respect to θ or

of (6) with respect to X.

4. The BFDR and BFNR of One-Step Randomized Stepwise Proce-

dures

Let r1:n(X) ≤ · · · ≤ rn:n(X) be the ordered values of r1(X), . . . , rn(X), and

(Hi:n, δi:n(X)), i = 1, . . . , n, be the corresponding pairs of the null hypotheses and

their rejection probabilities given X. We consider the following type of one-step

randomized multiple testing procedure, as a function of a discrete random vari-

able K(X) with probability distribution defined on the set {0, 1, . . . , n}. Given

K(X) = k, let

δi:n(X) =







1 if i ≤ k

δk+1:n(X) if i = k + 1

0 if i > k + 1,

(7)

with δi:n = 1 ∀ i if K(X) = n. Let {i1, . . . , in} be the set of indices such that

rij(X) ≡ rj:n(X), j = 1, . . . , n. Note that for this procedure, given K(X) = k,

∏

i∈I

δi(X)
∏

i∈Ic

[1 − δi(X)] =







1 − δik+1
(X) if I = {i1, . . . , ik}

δik+1
(X) if I = {i1, . . . , ik+1}

0 otherwise.

Theorem 4.1. The BFDR of the one-step randomized procedure (7) is

BFDR = EX

n
∑

k=0

{

[

(1−δk+1:n(X))Ak(X)+δk+1:n(X)Ak+1(X)
]

I(K(X)=k)

}

, (8)

where δn+1:n = 0, Ak(X) = (1/k)
∑k

i=1 ri:n(X), k = 1, . . . , n, and A0 = 0.

Let X1:n ≤ · · · ≤ Xn:n be the ordered values of X1, . . . ,Xn. Consider now a

multiple testing procedure (7) with

KSD(X) = max{1 ≤ i ≤ n : Xi:n ≤ ci:n} (9)
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if the maximum exists, and = 0 otherwise, given some critical values c1:n ≤ · · · ≤
cn:n. This is a one-step randomized stepdown procedure in terms of the Xi’s.
The following theorem provides a more explicit expression for the BFDR of this

procedure under the i.i.d. set-up.

Theorem 4.2. Consider testing Hi : θi = θ(0) against Ki : θi = θ(1), i =

1, . . . , n, for some fixed θ(0) < θ(1). Let (Xi, θi), i = 1, . . . , n, be i.i.d. as (X, θ),

where X|θ ∼ fθ(x) and θ ∼ π0I(θ = θ(0)) + (1 − π0)I(θ = θ(1)). Assume that

the ratio fθ′(x)/fθ(x) is decreasing in x for any θ < θ′. Then, the BFDR of the

randomized stepdown procedure δ with K(X) given in (9) and δk+1:n independent

of X is

BFDR = π0

n
∑

k=1

(

1 − δk+1:n

k + 1

)F0(ck:n)

F (ck:n)
P{KSD(X) = k}

+π0

n−1
∑

k=0

δk+1:n

k + 1
EX

{f0(Xk+1:n)

f(Xk+1:n)
I(KSD(X) = k)

}

, (10)

where Fi(x) = P{X ≤ x|θ = θ(i)}, i = 0, 1, F (x) = P{X ≤ x} = π0F0(x) + (1 −
π0)F1(x), with f0 and f being the densities of F0 and F , respectively.

Proof. First note that, since ri(X) = π0f0(Xi)/f(Xi) is an increasing function

of Xi, ri:n(X) = π0f0(Xi:n)/f(Xi:n). Therefore,

EX{Ak(X)I(KSD(X) = k)}

= π0EX

{

1

k

k
∑

i=1

f0(Xi:n)

f(Xi:n)
I(Xk:n ≤ ck:n,Xk+1:n > ck+1:n, . . . ,Xn:n > cn:n)

}

.

Since the Xi’s are i.i.d. as f , conditional on the event {Xk:n ≤ ck:n,Xk+1:n >

ck+1:n, . . . ,Xn:n > cn:n}, X1:n ≤ · · · ≤ Xk:n are the order components of k

i.i.d. random variables each having the density f(x)I(x ≤ ck:n)/F (ck:n). Hence,

EX

{

1

k

k
∑

i=1

f0(Xi:n)

f(Xi:n)

∣

∣

∣
Xk:n ≤ ck:n,Xk+1:n > ck+1:n, . . . ,Xn:n > cn:n

}

=

∫ ck:n

−∞

f0(x)

f(x)

f(x)

F (ck:n)
dx =

F0(ck:n)

F (ck:n)
.

Thus,

EX{Ak(X)I(KSD(X) = k)} = π0
F0(ck:n)

F (ck:n)
P{KSD(X) = k}.

The expression (10) then follows from Theorem 4.1 by noting that

Ak+1(X) =
k

k + 1
Ak(X) +

1

k + 1

π0f0(Xk+1:n)

f(Xk+1:n)
.
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Remark 4.1. In the above theorem, we could have considered Ki : θi > θ(0),

i = 1, . . . , n, assumed that θ ∼ π0I(θ = θ(0)) + (1 − π0)η(θ)I(θ > θ(0)) for some

probability density η(θ) on θ > θ(0), and defined F1 as

F1(x) =

∫ ∞

θ(0)

P{X ≤ x|θ}η(θ)dθ.

When δk+1:n = 0 in Theorem 4.2, that is, for the non-randomized stepdown

procedure with critical values c1:n ≤ · · · ≤ cn:n, the BFDR simplifies to

BFDR = π0

n
∑

k=1

F0(ck:n)

F (ck:n)
P{KSD(X) = k}

= π0

n
∑

k=1

n

k
F0(ck:n)P{K∗

SD(X) = k − 1}, (11)

where K∗
SD(X) = max{1 ≤ i ≤ n − 1 : Xi:n−1 ≤ ci+1:n}, if the maximum exists,

and = 0 otherwise, with X1:n−1 ≤ · · · ≤ Xn−1:n−1 being the ordered versions of

any n − 1 components of X.

For a non-randomized single-step procedure with the critical value c, the

BFDR in Theorem 4.2 simplifies to

BFDR =
π0F0(c)

F (c)
P{KSD(X) > 0}. (12)

The first factor in (12), the conditional probability P{h1 = 0|d1 = 1}, is the

Bayesian FDR defined by Efron (2003). It is also the positive FDR (pFDR) due

to Storey (2002, 2003) under the i.i.d. setup considered in Theorem 4.2.

As seen from the second formula in (11), the BFDR of the non-randomized

stepdown procedure with the ck:n’s satisfying F0(ck:n) = kα/n is

BFDR = π0α

n−1
∑

k=0

P{K∗
SD(X) = k} = π0α. (13)

This is the Benjamini and Hochberg (1995) (BH) procedure. It is not surpris-

ing that the BFDR of the BH-procedure under the the above i.i.d. set-up is

π0α, as it is known that, conditional on θ, the FDR of the BH-procedure under

this setup is equal to p0α, where p0 is the proportion of true null hypotheses

(Benjamini and Yekutieli (2001) and Sarkar (2002)).

The above two results on single-step and the BH procedures have been ex-

tended to certain positively dependent distributions in Benjamini and Yekutieli

(2001) and in Sarkar (2002, 2004, 2006)).
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Analogous to the results on the BFDR, we have the following results related

to the BFNR.

Theorem 4.3. For a one-step randomized procedure (7), we have

BFNR = EX

n−1
∑

k=0

{

[

(1 − δk:n(X))Bk−1(X) + δk:n(X)Bk(X)
]

I(K(X) = k)

}

,

where δ1:n = 1, Bk(X) = (n − k)−1
∑n

i=k+1(1 − ri:n(X)), k = 0, . . . , n − 1, and

Bn = 0.

Theorem 4.4. For the multiple testing problem in Theorem 4.2, and under the

model considered therein, the BFNR of the one-step randomized stepup procedure

δ with δk:n independent of X, and KSU (X) = min{1 ≤ i ≤ n : Xi:n ≥ di:n}− 1 if

the minimum exists and = n otherwise, is

BFNR = π1

n−1
∑

k=0

(

1 − 1 − δk:n

n − k + 1

) F̄1(dk+1:n)

F̄ (dk+1:n)
P{KSU (X) = k}

+π1

n
∑

k=0

1 − δk:n

n − k + 1
EX

{f1(Xk+1:n)

f(Xk+1:n)
I(KSU (X) = k)

}

,

where π1 = 1− π0, F̄i = 1− Fi, i = 0, 1, F̄ = 1− F , and f1 is the density of F1.

When δk:n = 1 in Theorem 4.4, that is, for the non-randomized stepup

procedure with critical values d1:n ≤ · · · ≤ dn:n, the BFNR is

BFNR = π1

n−1
∑

k=0

F̄1(dk+1:n)

F̄ (dk+1:n)
P{KSU (X) = k}

= π1

n−1
∑

k=0

n

n − k
F̄1(dk+1:n)P{K∗

SU (X) = k},

where K∗
SU (X) = min{1 ≤ i ≤ n − 1 : Xi:n−1 ≥ di+1:n} if the minimum exists

and = 0 otherwise, with X1:n−1 ≤ · · · ≤ Xn−1:n−1 being the ordered versions of

any n − 1 components of X.

For the non-randomized single-step procedure with the critical value d, we

have

BFNR = π1
F̄1(d)

F̄ (d)
P{KSU (X) < n};

for the non-randomized stepup procedure with the dk:n’s satisfying F̄ (dk+1:n) =

(n − k)β/n, k = 0, . . . , n − 1, we have

BFNR = π1β

n−1
∑

k=0

P{K∗
SU (X) = k} = π1β.
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The fact that this latter procedure controls the BFNR at β also follows from the

fact that it controls the frequentist FNR at β (Sarkar (2004)).

5. BFDR and BFNR Controlling Procedures

We now present in this section some procedures that control the BFDR or

BFNR.

Theorem 5.1. Let K(X) = max{0 ≤ j ≤ n : Aj(X) ≤ α}. Then, the one-step

randomized procedure

δi:n(X) =











1 if i ≤ k
α−Ak(X)

Ak+1(X)−Ak(X) if i = k + 1

0 otherwise,

(14)

given K = k, with δi:n = 1 ∀ i when k = n, controls the BFDR at α.

Proof. From Theorem 4.1,

BFDR = EX

n−1
∑

k=0

{

[

(1 − δk+1:n(X))Ak(X) + δk+1:n(X)Ak+1(X)
]

I(K(X) = k)

}

+EX

{

An(X)I(K(X) = n)
}

= αP{0 ≤ K(X) < n} + EX{An(X)I(K(X) = n)},

which is less than or equal to α.

Remark 5.1. The above procedure does not require any particular dependence

structure in the conditional distribution of X given θ. Procedures that control

the frequentist FDR and hence the BFDR, on the other hand, need certain

dependence assumptions. For instance, the BFDR of the BH procedure is equal

to π0α when the (Xi, θi)’s are i.i.d., and is less than π0α when X, given θ,

has some type of positive dependence structure. Without such independence

or positive dependence assumptions, the BH procedure may fail to control the

BFDR at α (Benjamini and Hochberg (1995), Benjamini and Yekutieli (2001)

and Sarkar (2002)). Thus, the above procedure is applicable in more general

situations, offering an alternative approach to controlling the BFDR when the

BH procedure fails to work. The non-randomized version of the procedure in

Theorem 5.1 also controls BFDR, though more conservatively.

Under the i.i.d. set-up in Theorem 4.2, the conditional probability ri(X)

simplifies to

ri(X) =
π0f0(Xi)

f(Xi)
=

π0f0(Xi)

π0f0(Xi) + (1 − π0)f1(Xi)
.
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This has been referred to as the local FDR by Efron et al. (2001). Suppose that

the ratio fθ′(x)/fθ(x) is decreasing in x for any θ < θ′. Writing ri(X) simply

as r(Xi), we then see that Ak(X) = (1/k)
∑k

i=1 r(Xi:n) for k = 1, . . . , n. Since

max{j : Aj(X) ≤ α} ≥ max{j : r(Xj:n) ≤ α}, the BFDR procedure in Theo-

rem 5.1 rejects more null hypotheses. Thus, under the i.i.d. set-up, this BFDR

procedure is more powerful than the procedure where the PFDR is controlled by

rejecting the null hypotheses whose posterior probabilities are less than or equal

to α. This latter idea was suggested in Efron et al. (2001) in their Bayesian

approach to multiple testing.

Alternative procedures controlling the BFDR at α can be obtained under

the i.i.d. set-up, as discussed in Section 4. First, note from (12) that the BFDR

of a non-randomized single-step procedure with critical value c is

BFDR =
π0F0(c)

F (c)
{1 − [1 − F (c)]n}. (15)

When the ratio fθ′(x)/fθ(x) is decreasing in x for any θ < θ′, it can be proved

that P{X ≤ x|θ′}/P{X ≤ x|θ} is also decreasing in x. Thus, the BFDR in (16)

is increasing in c, which suggests that the procedure δ in Theorem 5.1 with

K(X) = max
{

j :
π0F0(Xj:n)

F (Xj:n)
{1 − [1 − F (Xj:n)]n} ≤ α

}

if the maximum exists, = 0 otherwise, and δk+1:n = 0, controls the BFDR at α.

A slightly conservative version of this with

K(X) = max
{

j :
π0F0(Xj:n)

F (Xj:n)
≤ α

}

(16)

if the maximum exists, = 0 otherwise, and δk+1:n = 0, is the procedure that

controls the Bayesian FDR of Efron (2003).

Since r(Xi) is an increasing function of Xi, the BH-procedure is equivalently

described in terms of the r(Xi)’s by using the δ with

K(X) = max{1 ≤ j ≤ n : r(Xj:n) ≤ cj:n},

if the maximum exists, = 0 otherwise, and δk+1:n = 0, where the constants

c1:n ≤ · · · ≤ cn:n are subject to P{r(X1) ≤ cj:n|θ1 = θ0} = jα/n.

Remark 5.2. Under the i.i.d. setup in Theorem 4.2, our proposed BFDR pro-

cedure is asymptotically (as n → ∞) equivalent to the BH procedure, rejecting

all Hi with Xi ≤ XK:n, where K is defined by

K = max
{

1 ≤ j ≤ n :
n

j
π0F0(Xj:n) ≤ α

}

. (17)
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This can be proved as follows:

Aj(X) =
π0

j

j
∑

i=1

f0(Xi:n)

f(Xi:n)
=

π0n

j

1

n

n
∑

i=1

f0(Xi)

f(Xi)
I(Xi ≤ Xj:n)

P≈ π0n

j
F0(Xj:n),

since

1

n

n
∑

i=1

π0f0(Xi)

f(Xi)
I(Xi ≤ x)

P→ π0E
{(f0(X1)

f(X1)

)

I(X1 ≤ x)
}

= π0F0(x).

Analogous to the result in Theorem 5.1, we also can derive a BFNR-

controlling procedure under general dependence conditions.

Theorem 5.2. Let K(X) = min{0 ≤ j ≤ n : Bj(X) ≤ β} − 1. Then, the

one-step randomized procedure

δi:n(X) =











1 if i < k
Bk−1(X)−β

Bk−1(X)−Bk(X) if i = k

0 otherwise,

δ defined as follows given K = k, with δi:n = 0 ∀ i when k = −1, controls the

BFNR at β.

Remark 5.3. This BFNR controlling procedure has similar properties as the

BFDR controlling procedure proposed in Theorem 5.1, that is, it does not depend

on any dependence structure.

Alternative procedures controlling the BFNR at β can be obtained under

the i.i.d. set-up. For instance, the δ in Theorem 5.2 with

K(X) = min
{

j :
π1F̄1(Xj:n)

F̄ (Xj:n)
{1 − [F (Xj:n)]n} ≤ β

}

− 1

if the minimum exists, = n otherwise, and δk:n = 1 controls the BFNR at β. A

slightly conservative version of this; that is, the δ with

K(X) = min
{

j :
π1F̄1(Xj:n)

F̄ (Xj:n)
≤ β

}

− 1

if the minimum exists, = n otherwise, and and δk:n = 1, controls the Bayesian

FNR.

Since r(Xi) is an increasing function of Xi, the FNR procedure by Sarkar

(2004) can be equivalently described in terms of the r(Xi)’s by using the δ with

K(X) = min{1 ≤ j ≤ n : r(Xj:n) ≥ dj:n} − 1,
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if the maximum exists, = 0 otherwise, and δk:n = 0, where the constants d1:n ≤
· · · ≤ dn:n are subject to P{r(X1) ≥ dj:n|θ1 = θ0} = (n − j + 1)β/n.

6. Simulations

We numerically studied how our proposed BFDR procedure performs com-

pared to other BFDR procedures, such as the Benjmanini-Hochberg procedure

and the procedure controlling the Bayesian FDR defined in Efron (2003). Recall

from Section 4 (see (13)) that the BH procedure is a non-randomized stepwise

procedure, the BFDR of which is exactly π0α under independence and less than

or equal to π0α under certain types of positive dependence of the test statistics.

So the compatible version of the BH procedure we should be comparing with is

the one that corresponds to (17). While our procedure will not beat this version

of the BH procedure under independence, we expect our procedure to perform

much better when there is substantial dependence, positive or not, than the other

test statistics. Also, recall that the procedure controlling Efron’s Bayesian FDR

is the one discussed following (16) and controls the BFDR conservatively under

the i.i.d. setup. Whether or not it controls the BFDR under a general dependence

situation is not known.

Assuming normal distributions of the test statistics, conditional on the pa-

rameters, we ran simulations under three different assumptions about the depen-

dence structure of the test statistics.

• Assumption 1: The Xi’s are independent and Xi | θi
i.i.d.∼ N(θi, 1).

• Assumption 2: The Xi’s are multivariate normal with a common positive cor-

relation ρ = 0.5:

X | θ ∼ Nn[θ; (1 − ρ)In + ρJn].

• Assumption 3: The Xi’s are paired multivariate normal with negative correla-

tions ρ = −0.5:

X | θ ∼ Nn

[

θ; In
2
⊗

(

1 ρ

ρ 1

)]

.

6.1. One-sided alternatives

Consider testing Hi : θi = 0 against Ki : θi = γ > 0, i = 1, . . . , n, with the

following prior for the parameters: θi
i.i.d.∼ π0I(θ = 0)+(1−π0)I(θ = γ), for some

fixed π0 and γ > 0. With independent Xi’s, we have

ri(X) = r(Xi) = Pr(Hi = 0 | Xi) =
π0φ(Xi; 0, 1)

π0φ(Xi; 0, 1) + (1 − π0)φ(Xi; γ, 1)
,

where φ(x;µ, σ2) is the normal density at x. Notice that ri is decreasing in Xi

for γ > 0, and hence Aj(X) = (1/j)
∑j

i=1 r(Xn−i+1:n), j = 1, . . . , n. When the
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Xi’s are multivariate normal with a common positive correlation ρ, they can be

represented as Xi = θi +
√

(1 − ρ)Zi +
√

ρZ0 with i.i.d. standard normals Zi,

i = 0, 1, . . . , n. Hence, in this case we have

ri(X) =

∫ ∞
−∞ f(X,Hi = 0|z)φ(z; 0, 1)dz

∫ ∞
−∞ f(X|z)φ(z; 0, 1)dz

,

where

f(X|z) =

n
∏

j=1

{π0φ(Xj ;
√

ρz, 1 − ρ) + (1 − π0)φ(Xj ; γ +
√

ρz, 1 − ρ)},

f(X,Hi = 0|z) = π0φ(Xi;
√

ρz, 1 − ρ) ×
∏

j 6=i

{π0φ(Xj ;
√

ρz, 1 − ρ)

+(1 − π0)φ(Xj ; γ +
√

ρz, 1 − ρ)}.

We simulated the Xi’s under each of the above three assumptions with n =

100, γ = 2, and π0 = 0.25, 0.5, 0.7, 0.8 and 0.9. Posterior probabilities ri(X) were

then calculated based on the above formulas. We applied the BH procedure in

(17), Efron’s Bayesian procedure in (16), and the proposed randomized BFDR

procedure in Theorem 5.1, and calculated the BFDR, BCNR and BAP for each

of them. Each simulated value is based on 25,000 replications. The simulated

BFDR and BCNR for these three procedures are compared in Figures 1, 2 and

3, respectively, under Assumption 1, in Figures 4, 5 and 6, respectively, under

Assumption 2, and in Figures 7, 8 and 9, respectively, under Assumption 3.

Under Assumption 1, all three procedures control the BFDR and there is

not much difference in terms of power. Under Assumption 2, the BH and Efron’s

Bayesian procedures both control the BFDR conservatively, while the new BFDR

procedure controls it exactly at α; moreover, in this case, the proposed BFDR

procedure is more powerful than the other two procedures. When Assumption 3

holds, Efron’s Bayesian procedure and the new BFDR procedure both control the

BFDR, but the BH procedure fails to control it when π0 is close to 1. Also, the

new BFDR procedure in this case is more powerful than the other two procedures.

6.2. Two-sided alternatives

Consider testing Hi : θi = 0 against Ki : θi 6= 0, i = 1, . . . , n, with the

following prior for the parameters: θi
i.i.d.∼ π0I(θ = 0)+(1−π0)N(0, τ2), for some

π0 and τ2.

Under Assumption 1, we have

ri(X) = r(Xi) = Pr(Hi = 0|Xi) =
π0φ(Xi; 0, 1)

π0φ(Xi; 0, 1) + (1 − π0)φ(Xi; 0, 1 + τ2)
,
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which is decreasing in |Xi|. Hence, Aj(X) = (1/j)
∑j

i=1 r(|X|n−i+1:n), j =

1, . . . , n. Under Assumption 2, the conditional probability ri is as given in (18),

but with

f(X|z) =

n
∏

j=1

{π0φ(Xj ;
√

ρz, 1 − ρ) + (1 − π0)φ(Xj ;
√

ρz, 1 − ρ + τ2)},

f(X,Hi = 0|z) = π0φ(Xi;
√

ρz, 1 − ρ) ×
∏

j 6=i

{π0φ(Xj ;
√

ρz, 1 − ρ)

+(1 − π0)φ(Xj ;
√

ρz, 1 − ρ + τ2)}.

Again, we simulated the BFDR, BCNR (1-BFNR) and BAP of the BH,

Efron’s Bayesian FDR, and the proposed BFDR procedures with n = 100, τ =

0.5, 1, 4 and 10 and π0 = 0.25, 0.5, 0.7, 0.8, 0.9 and 0.95 under each of the three
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assumptions regarding the conditional distributions of the Xi’s. This time, each

simulated value was based on 10,000 replications. The simulated BFDR, BCNR

and BAP for these three procedures are now compared in Figures 10, 11 and 12,

respectively, under Assumption 1, in Figures 13, 14 and 15, respectively, under

Assumption 2, and in Figures 16, 17 and 18, respectively, under Assumption 3.

All three procedures apparently control the BFDR, although the proposed

procedure performs better than the other two under dependence. Interestingly,

between the BH and Efron’s procedures, the latter is now more conservative,

particularly when τ is large. In terms of the BFNR and BAP, there is not much

difference among the three procedures.

7. FDR-based Variable Selection

Motivated by Theorem 5.1, we briefly describe an FDR-based Bayesian vari-

able selection procedure. More specifically, we develop a BFDR-controlling proce-

dure under a model more specific to variable selection, and incorporate a Bayesian

variable selection procedure (George and McCulloch (1993)) into this framework.

We need, however, the full data rather than the test statistics (X1, . . . ,Xn).

Denote this as (Yi,Vi), i = 1, . . . , p, where Yi is a binary random variable

and Vi is an n-dimensional random vector. We can then consider a hierar-

chical binary regression model for analysis. At the first stage of the model,

P (Yi = 1)
ind∼ Φ(VT

i β), for some β = (β1, . . . , βn). For the second stage of

the model, we introduce binary-valued latent variables γ1, . . . , γn, conditional

on which we have, βi|γi ∼ (1 − γi)N(0, τ2
i ) + γiN(0, c2

i τ
2
i ), where c2

1, . . . , c
2
p and

τ2
1 , . . . , τ2

p are variance components. If γj = 1, this indicates that the jth covariate

should be included in the model, while γj = 0 implies that it should be excluded
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Figure 16. The BFDR in mixture model Figure 17. The BCNR in mixture model
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Figure 18. The BCNR in mixture model with two-sided alternatives and ρ = −0.5.

from the model. The conditional distributions can be easily computed using

Gibbs sampling and data augmentation procedures (Albert and Chib (1993)) for

calculating the posterior distribution.

Thus, in this framework, rejecting the null hypothesis Hi : γi = 0 in favor

of the corresponding alternative Ki : γi = 1, using a multiple testing proce-

dure, is equivalent to selecting the jth covariate for inclusion in the model. The

Bayesian point of view for selecting variables requires us to focus on the posterior

distributions of γ1, . . . , γp. The BFDR-controlling procedure would be based on

P (γi = 0 | Y), i = 1, . . . , n, where Y = (Y1, . . . , Yp). In particular, Theorem 5.1

motivates the following FDR-based procedure.

(a) Set the level to be α.

(b) Find the posterior distribution for the hierarchical regression using Markov

Chain Monte Carlo (MCMC) methods.

(c) Based on the MCMC output, calculate the posterior probabilities ri(Y) =

P{γi = 0 | Y}, i = 1, . . . , n, and sort them in increasing order as r(1)(Y) ≤
· · · ≤ r(n)(Y).

(d) Calculate Aj(Y) = (1/j)
∑j

i=1 r(i)(Y), j = 1, . . . , n.

(e) Find K(Y) = max{1 ≤ j ≤ n : Aj(Y) ≤ α}.
(f) Given K(Y) = k, determine the probabilities

δ(i)(Y) =











1 if i ≤ k
α−Ak(Y)

Ak+1(Y)−Ak(Y) if i = k + 1

0 otherwise,

with δ(i) = 1 ∀ i if k = n.

(g) Include the variables in the model with the corresponding probabilities in

(19).
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Notice that this procedure requires one to average posterior probabilities across

the models explored in the MCMC iterations. This controls the BFDR at level

α. Also, one can produce a BFNR-controlling procedure from Theorem 5.2 based

on the MCMC output for P (γi = 1 | Y), i = 1, . . . , n.

8. Concluding Remarks

We have developed a general Bayesian procedure for controlling false dis-

covery and nondiscovery rates that allow for arbitrary dependence of the test

statistics. The decision theoretic framework allows for exploration of these error

rates from both Bayesian and frequentist perspectives.

If one subscribes to the notion of BFDR or BFNR, we recommend using

the proposed procedures, as opposed to the BH and Efron’s FDR procedures or

their FNR analogs, for any dependence model that considers one-sided or two-

sides alternatives. It is proper to point out that our recommendation relies on

simulations with 100 tests; in multiple testing applications, one often encounters

tens of thousands of tests, and it would be realistic to use a much larger value

of n than 100 in the simulations. This is extremely time-consuming, but in

increasing n from 100 to 200 we have not noticed any significant difference in the

performance of our procedures relative to the BH and Efron’s procedures. We

think our procedures will perform well for n in the hundreds, but are unable to

make a more global statement without numerical evidence.
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