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Abstract: Benjamini and Hochberg (1995) proposed the false discovery rate (FDR)

as an alternative to the familywise error rate (FWER) in multiple testing problems.

Since then, researchers have been increasingly interested in developing methodolo-

gies for controlling the FDR under different model assumptions. In a later paper,

Benjamini and Yekutieli (2001) developed a conservative step-up procedure con-

trolling the FDR without relying on the assumption that the test statistics are

independent.

In this paper, we develop a new step-down procedure aiming to control the

FDR. It incorporates dependence information as in the FWER controlling step-

down procedure given by Westfall and Young (1993). This new procedure has

three versions: lFDR, eFDR and hFDR. Using simulations of independent and

dependent data, we observe that the lFDR is too optimistic for controlling the

FDR; the hFDR is very conservative; and the eFDR a) seems to control the FDR

for the hypotheses of interest, and b) suggests the number of false null hypotheses.

The most conservative procedure, hFDR, is proved to control the FDR for finite

samples under the subset pivotality condition and under the assumption that the

joint distribution of statistics from true nulls is independent of the joint distribution

of statistics from false nulls.

Key words and phrases: Adjusted p-value, false discovery rate, familywise error

rate, microarray, multiple testing, resampling.

1. Introduction

The problems associated with multiple hypothesis testing have become

greater with the advent of massively parallel experimental assays, especially mi-

croarrays. A naive approach of rejecting the hypotheses whose p-values are no

greater than 0.05 will lead to 500 false positives on average for a microarray exper-

iment that measures 10,000 genes. Therefore some form of error rate to control

false positives is required. Traditionally, this error rate was represented by the

familywise error rate (FWER), which is defined as the probability of erroneously

rejecting at least one null hypothesis. Benjamini and Hochberg (1995) proposed

the false discovery rate (FDR) as an alternative to the FWER. The FDR is
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defined to be the expected proportion of erroneously rejected null hypotheses

among all rejected ones. The FDR can identify more putatively significant hy-

potheses than the FWER, and meaning of the FDR can be intuitively explained.

Hence researchers are increasingly using the new error rate FDR, especially in

exploratory analyses. If interest is in finding as many false null hypotheses as

possible among thousands of tests, this new error measure seems more appro-

priate than the FWER. The FWER is probably more stringent than what most

researchers want in the exploratory phase, as it permits no more than a single

null hypothesis being erroneously rejected.

A particular problem in microarray data analysis is identifying differentially

expressed genes among thousands of them. Dudoit, Yang, Callow and Speed

(2002) and Westfall, Zaykin and Young (2001) used the maxT step-down ap-

proach to control the FWER. Ge, Dudoit and Speed (2003) introduced a fast

algorithm implementing the minP step-down adjustment controlling the FWER.

In another direction, Tusher, Tibshirani and Chu (2001), Efron et al. (2001), and

Storey (2002) adopted the FDR approach in microarray experiments. This pa-

per is mostly about a new algorithm to compute the FDR. Although we focus

on microarray applications, as with the maxT and minP step-down adjustment

in the previous paper Ge, Dudoit and Speed (2003) the new algorithm can be

applied to other similar multiple testing situations as well.

Section 2 reviews the basic notions of multiple testing, and the concept of

the FDR. Section 3 introduces some related work on procedures controlling the

FDR. Section 4 presents three versions of our new step-down procedure aiming

to control the FDR, gives some theoretical properties for the most conservative

version (hFDR), and presents the resampling algorithm. Section 5 describes sim-

ulation results on the three versions of the new procedure introduced in Section

4. The microarray applications are in Section 6 and, finally Section 7 summarizes

our findings and open questions.

2. Multiple Testing and False Discovery Rates

Assume that there are m pre-specified null hypotheses {H1, . . . ,Hm} to be

tested. Given observed data X = x, a statistic ti is used for testing hypothesis

Hi, and pi is the corresponding p-value (a.k.a raw p-value, marginal p-value or

unadjusted p-value). In the microarray setup, the observed data x is an m × n

matrix of gene expression levels for m genes and n RNA samples from treated and

control groups, while ti might be a two-sample Welch (1938) t-statistic computed

from the expression levels of gene i. The null hypothesis Hi is that gene i is non-

differentially expressed between the treated group and the control group. The

biological question is how to find as many differentially expressed genes (false
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Table 1. Summary table for multiple testing problems.

Number of decisions
Set reject accept total

true null M0 false positives: V correct decisions: m0 − V m0

false null M1 correct decisions: S false negatives: m1 − S m1

total M R m−R m

null hypotheses) as possible without having too many false positives. A false

positive occurs when an unaffected gene is claimed to be differentially expressed

(falsely rejecting a null hypothesis). In this paper, we adopt the notation that

the observed values are denoted by lower case letters, ti, pi for example, and

the corresponding random variables are denoted by upper case letters, Ti, Pi for

example. For the sake of convenience, we always assume a two-sided test, i.e.,

pi = P (|Ti| ≥ |ti| | Hi). Let the set of true null hypotheses be M0, the set of

false null hypotheses be M1, and the full set be M = M0 ∪M1. Let m0 = |M0|

and m1 = |M1|, where | · | denotes the cardinality of a set. Given a rejection

procedure, let V denote the number of erroneously rejected null hypotheses and

R the total number of rejected ones. Then R − V is the number of correctly

rejected hypotheses, denoted by S. The values of V , R and S are determined by

the particular rejection procedure and the significance level α, say 0.05. Table 1

shows possible outcomes of a rejection procedure.
For any set K = {i1, . . . , ik} ⊆ M , let HK denote the partial joint null

hypothesis associated with the set K. HM is called the complete null as every
null hypothesis is true. Traditionally, the familywise error rate (FWER) has been
widely used. The FWER is defined as the probability of erroneously rejecting at
least one null hypothesis, i.e., P (V > 0). Since the above probability is computed
under the restriction HM0

, using the notations from Sarkar (2002), we have

FWER = P (V > 0 | HM0
).

Westfall and Young (1993) gives a comprehensive introduction to this subject
while focusing on a resampling-based adjusted p-values approach. Let Q be the
false discovery proportion (Korn et al. (2004)): the proportion of erroneously
rejected null hypotheses among all rejected ones,

Q =
V

R
, (1)

where the ratio is defined to be zero when the denominator is zero. The false

discovery rate (FDR) is defined to be the expectation of Q,

FDR = E(Q | HM0
) = E

(V

R

∣

∣

∣
HM0

)

.

There are three kinds of FDR control.
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• Weak control: control of the FDR under the complete null HM , i.e., for any

α ∈ (0, 1),

E(Q | HM) ≤ α.

Under HM , we have Q = I(V > 0), where I(·) is the indicator function, so

weak control of the FDR is equivalent to weak control of the FWER.

• Exact control: control of the FDR for the true null set M0, i.e., for any

α ∈ (0, 1),

E(Q | HM0
) ≤ α.

The definition is applicable only when the true null set M0 is known.

• Strong control: control of the FDR for all possible M0 ⊆ M , i.e., for any

α ∈ (0, 1),

max
M0⊆M

E(Q | HM0
) ≤ α.

In practice, we do not know the true null set M0, and weak control is not

satisfactory. It is important to have a strong control. In fact, the majority of

existing FDR procedures offer strong control. The first known procedure with

proof of strong control of the FDR was provided by Benjamini and Hochberg

(1995).

The BH Procedure: Let the indices of the ordered p-values be d1, . . . , dm such

that pd1
≤ · · · ≤ pdm

. The {di} are determined by the observed data X = x.

Fix α ∈ (0, 1). Define i∗ = max{i : pdi
≤ ci}, where ci = αi/m. Then reject

Hd1
, . . . ,Hdi∗

if i∗ exists; otherwise reject no hypotheses.

The BH procedure is a step-up procedure because it begins with the largest

p-value pdm
to see if Hdm

can be accepted with the critical value cm, and then

pdm−1
, until pdi∗

which can not be accepted any more as pdi∗
≤ ci∗ . Benjamini and

Hochberg (1995) proved that their procedure provides strong control of the FDR

when the p-values from the true null hypotheses M0 are independent. The ideas of

the BH procedure appeared much earlier in seminal papers by Eklund (1961-1963)

as mentioned in Seeger (1968), and later were rediscovered independently in Simes

(1986). Eklund (1961-1963) even motivated the procedure by the definition of

“proportion of false significances”, which is equivalent to the Q of equation (1).

Seeger (1968) and Simes (1986) also gave the proof that this procedure controls

the FWER in the weak sense. Similar ideas for controlling the FDR also appeared

in Sorić (1989). However, Benjamini and Hochberg’s proof of strong control of

the FDR has accelerated the usage of the BH procedure and the FDR concept.

3. Some Related Previous Works

Since the first groundbreaking paper on the FDR by Benjamini and Hochberg

(1995), different procedures have been proposed to offer strong control of the
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FDR under different conditions. A later work by Benjamini and Yekutieli (2001)

relaxed the independence assumption to certain dependence structures, namely,

when the underlying statistics are positive regression dependent on a subset of the

true null hypotheses M0 (PRDS). There are other works which modify the critical

values ci to produce a more powerful procedure, i.e., to reject more hypotheses

while still offering strong control of the FDR at the same significance level α.

For example, Kwong, Holland and Cheung (2002) used the same critical values

ci = αi/m, for i = 1, . . . ,m− 1, but with a different definition of cm. Their cm is

always no less than the cm defined in the BH procedure, and so their procedure

is at least as powerful as the BH. Benjamini and Liu (1999) (hereafter called BL)

derived a different set of critical values ci for a step-down procedure when the

underlying test statistics are independent.

The BL Procedure: Fix α ∈ (0, 1). Let i∗ be the largest i such that pd1
≤

c1, . . . , pdi
≤ ci, where ci = 1 − [1 − min

(

1, αm/(m − i + 1)
)

]1/(m−i+1). Then

reject Hd1
, . . . ,Hdi∗

if i∗ exists; otherwise reject no hypotheses.

Sarkar (2002) strengthened the Benjamini and Yekutieli (2001) results for

the BH procedure in a much more general step-wise framework. He also relaxed

the assumption of the BL procedure, from independence to a weak dependence

condition: Sarkar assumed that the underlying test statistics exhibit the multi-

variate total positivity of order 2 (MTP2) under any alternatives, and that the

test statistics are exchangeable when the null hypotheses are true. There are

other works which modify the BH procedure by multiplying the p-values with

an estimate of π0 = m0/m (Benjamini and Hochberg (2000), Storey (2002) and

Storey and Tibshirani (2001)).

Most of the papers mentioned above deliver strong control of the FDR under

the assumption that the test statistics are independent, or under the assumption

that the expectation of some statistics of the dependent data can be bounded by

that of independent data, as in the PRDS or in the MTP2 cases. Hence, these

works are able to generalize the results from independence to a weak depen-

dence situation. However, there still seems to be a need to develop a procedure

that can be applied to less independent data. For example, Troendle (2000) de-

rived different step-up and step-down procedures for multivariate normal data.

Yekutieli and Benjamini (1999) used a resampling procedure to compute FDR

adjusted p-values under dependence. In their paper, they proposed FDR ad-

justed p-values, which are similar in concept to the FWER adjusted p-values in

Westfall and Young (1993).

Given a particular rejection procedure, the FDR adjusted p-value for a hy-

pothesis is the smallest level at which Hi is rejected while controlling the FDR.
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i.e.,

p̃i = inf{α | Hi is rejected at FDR = α}.

The FDR adjusted p-values are determined by a particular rejection procedure.

For example, with the BH procedure, the adjusted p-values are

p̃di
= min

k=i,...,m

{

min
(

pdk
·
m

k
, 1

)}

.

On the other hand, if a procedure can assign adjusted p-values, then for any

given α ∈ (0, 1) we reject all hypotheses whose adjusted p-values are no greater

than α. Yekutieli and Benjamini (1999) proposed a resampling-based FDR local

estimator (see equations 9 and 10 of their paper):

Q̂(p) = E
{ R∗(p)

R∗(p) + ŝ(p)

}

. (2)

Here the expectation of equation (2) is computed by resampling under the

complete null HM , and R∗(p) is a random variable defined as #{i ∈M : pi ≤ p},

while ŝ(p) is an estimate of the data dependent number s(p) = #{i ∈M1 : pi ≤

p}. The s(p) is generally unobservable, as we do not have any information on

M1. Yekutieli and Benjamini (1999) used (2) to propose a rejection procedure

aiming at strong control of the FDR.

Benjamini and Yekutieli (2001) (hereafter called BY) provided a conserva-

tive procedure by dividing each ci of the BH procedure by a constant
∑m

l=1 1/l.

The BY Procedure: Fix α ∈ (0, 1). Define i∗ = max{i : pdi
≤ ci}, where

ci = αi/(m
∑m

l=1 1/l), then reject Hd1
, . . . ,Hdi∗

if i∗ exists; otherwise reject no

hypotheses.

Benjamini and Yekutieli (2001) proved that this procedure controls the FDR

in the strong sense without relying on the independence assumption. However,

this procedure has limited use due to the extreme conservativeness by dividing

by
∑m

l=1 1/l, approximately ln(m).

Additional works studying the theoretical properties of the FDR include

Finner and Roters (2001, 2002), Genovese and Wasserman (2002), and Sarkar

(2002). Another important direction of the research on the FDR is to con-

trol the false discovery proportion (FDP), the random variable Q, rather than

its expectation, the FDR (Genovese and Wasserman (2004), Korn et al. (2004),

Meinshausen (2006), Romano and Shaikh (2006) and van der Laan, Dudoit and

Pollard (2004)). Our work differs from this line of research in that we focus on

the control of the expectation (the FDR). In the next section, we propose a new

step-down procedure, which provides strong control of the FDR for dependent

data.
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4. A New Step-Down Procedure to Control the FDR

4.1. Motivation

In order to develop a step-down procedure providing control of the FDR for

generally dependent data, we first review an elegant step-down procedure pro-

posed by Westfall and Young (1993) based on the sequential rejection principle

(pages 72−73 in their book).

For any α ∈ (0, 1), consider the following.

1. If P (min(Pd1
, . . . , Pdm

) ≤ pd1
| HM ) ≤ α, then reject Hd1

and

continue; otherwise accept all hypotheses and stop.

...

i. If P (min(Pdi
, . . . , Pdm

) ≤ pdi
| HM ) ≤ α, then reject Hdi

and con-

tinue; otherwise accept Hdi
, . . . ,Hdm

and stop.

...

m. If P (Pdm
≤ pdm

| HM ) ≤ α, then reject Hdm
; otherwise accept

Hdm
.

This sequential rejection principle mimics researchers’ verification procedures

in practice. When people are faced with thousands of hypotheses, they will check

the hypothesis with the smallest p-value to see if it is really a false null hypothesis.

After a number of steps, say at step i, it might be reasonable to estimate the

FWER using the null hypotheses Hdi
, . . . ,Hdm

, since they have not been tested

yet. The sequential rejection principle can also be written in the form of adjusted

p-values. We define the minP step-down adjustment:

p̌di
= P (min(Pdi

, Pdi+1
, . . . , Pdm

) ≤ pdi
| Hdi

, . . . ,Hdm
). (3)

and enforce the step-down monotonicity by assigning

p̃di
= max

k=1,...,i
p̌dk

.

This procedure is intuitively appealing. More importantly, Westfall and Young

(1993) proved that the minP adjustments give strong control of the FWER under

the subset pivotality property.

Subset pivotality: for all subsets K ⊆ M , the joint distributions of the sub-

vector (Pi, i ∈ K) are identical under the restrictions HK and HM , i.e.,

L(Pi, i ∈ K) | HK
d
= L(Pi, i ∈ K) | HM .
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Let

Ri = #{k ∈ {di, di+1, . . . , dm} : Pk ≤ pdi
}.

The i-th step of the minP step-down procedure computes P (Ri > 0 | Hdi
, . . .,

Hdm
). This is essentially the FWER obtained by rejecting all untested hypotheses

(Hdi
, . . . ,Hdm

) whose p-values are no greater than pdi
. In other words, the minP

step-down procedure has two stages. The first stage is to define a rejection rule

at step i by using the same critical value pdi
to reject hypotheses Hdi

, . . . ,Hdm
;

the FWER adjusted p-value p̃di
can then be computed by assuming that the

hypotheses Hdi
, . . . ,Hdm

are true. For any level α, the second stage is to reject

all hypotheses whose adjusted p-values p̃di
are no greater than α.

The sequential rejection principle can be applied to compute the FDR as

with the minP step-down adjustment by a two-stage consideration. During the

first stage, at step i, we define Ri = #{k ∈ {di, di+1, . . . , dm} : Pk ≤ pdi
}. The

critical issue is to compute the FDR related to this rejection procedure at step

i. As with the minP step-down procedure at (3), at step i we can “naively”

estimate the FDR under the assumption that the previous i− 1 null hypotheses

are false. We emphasize the “naively”, as there might be a small proportion of

the first i hypotheses that are true nulls.

According to the definition of FDR = E (V/R), where 0/0 is defined to be

zero, we can define the FDR adjusted p-values at step i to be

p̌di
= E

{ Ri

(Ri + i− 1)

∣

∣

∣
Hdi

, . . . Hdm

}

, (4)

and enforce the monotonicity p̃di
= maxk=1,...,i p̌dk

. In (4), 0/0 is defined to be

zero. This equation has some similarities to (2), which was used in the resam-

pling procedure of Yekutieli and Benjamini (1999). Our procedure is different

from theirs in two respects: (2) uses the same estimate ŝ of s to compute every

FDR adjusted p-value, while (4) has a different ŝ = i − 1 at each step i; (2)

always computes the FDR under the complete null HM , while we compute the

FDR under different nulls HK , where K = {di, . . . , dm} for a particular step i.

The aim of our new procedure is to provide strong control of the FDR under

dependence just as the minP procedure provided strong control of the FWER

(Westfall and Young (1993)).

It turns out that this procedure is too optimistic. In Section 5, our simulation

results clearly show that it does not provide strong control of the FDR for the

hypotheses with large FDR adjusted p-values. The reason is that, at step i of the

first stage, the only rejected hypotheses are those whose p-values are no greater

than pdi
. However, at the second stage, we are very likely to reject a hypothesis
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whose p-value is much greater than pdi
at a later step j (> i). Therefore, the

original definition is too optimistic. Denote the original definition of Ri by Rl
i,

Rl
i = #

{

k ∈ {di, . . . , dm} : Pk ≤ pdi

}

. (5)

We can define Ri more reasonably without using the same critical value pdi

for all Pdi
, . . . , Pdm

. One way is to adapt the critical values according to the

ranked p-values. For k = 1, . . . ,m − i + 1, let P i
(k) be the k-th smallest of the

random variable p-values Pdi
, . . . , Pdm

, and let pi
(k) = pdi+k−1

be the k-th smallest

of the observed p-values pdi
, . . . , pdm

. The critical values pi
(1), . . . , p

i
(m−i+1) can be

used to compute the number of rejected hypotheses by a step-down procedure:

Re
i = maxk=1,...,m−i+1

{

k : P i
(1) ≤ pi

(1), . . . , P
i
(k) ≤ pi

(k)

}

. (6)

The rejection procedure at step i to compute Re
i is similar to the BH, BY, and BL

procedures in Section 3. These procedures use constant critical values c1, . . . , cm,

which depend solely on the significance level α. By contrast, our critical values

pi
(1), . . . , p

i
(m−i+1) depend on the data and the step index i as well: our critical

values are more data-driven. In the simulation results of Section 5, the FDR

seems to be controlled for the hypotheses of interest: the m1 hypotheses with the

smallest p-values, where m1 can be suggested from the FDR curve.

We can use a more conservative strategy to compute Ri. At step i of the

first stage, if we find P i
(1) ≤ pi

(1), then we stop. We naively think that we will

reject hypothesis Hdi
and all of the later hypotheses (Hdi+1

, . . . ,Hdm
), i.e., we

put Ri = m− i + 1. In summary, a conservative definition of Ri can be given by

Rh
i = (m− i + 1) · I

(

min
k=i,...,m

Pdk
≤ pdi

)

. (7)

4.2. A step-down procedure

We now present a formal definition of the new step-down procedure in Section

4.1.

1. For each test statistic ti, compute the p-value pi = P (|Ti| ≥ |ti| | Hi).

2. Order the p-values such that pd1
≤ · · · ≤ pdm

.

3. For i = 1, . . . ,m, compute the FDR adjusted p-values as

p̌di
= E

{ Ri

(Ri + i− 1)
| HM

}

, (8)

where Ri can be computed in any one of the three versions Rl
i, Re

i , Rh
i from

equations (5), (6) and (7), respectively.
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4. Enforce monotonicity of the adjusted p-values, i.e., p̃di
= maxk=1,...,i p̌dk

.

The step-down procedure for the three versions of Ri are called, respectively,
lFDR (the lower adjusted), eFDR (the empirical adjusted), and hFDR (the higher
adjusted).

Note that under the subset pivotality condition, (4) is equivalent to (8). This
is very useful as we can compute all the FDR adjusted p-values under HM instead
of under different HK , where K = {di, . . . , dm} depends on step i. If we know
the joint null distribution of (P1, . . . , Pm) from model assumptions, then we can
compute the expectation analytically. In the situations where we are not willing
to make assumptions about the null joint distribution, the subset pivotality con-
dition allows the expectation in (4) to be computed by simulating the complete
null distribution under HM by bootstrap or permutation resampling.

4.3. Finite sample results

Proposition 1. For any of the three versions of Ri, the step-down procedure in

Section 4.2 controls both the FWER and the FDR in the weak sense.

By noting that the adjusted p-value p̃1 in the first step is computed in the
same way as that in equation (3) of the minP procedure, we have the proof.

Theorem 2. Consider the step-down procedure in Section 4.2 using the definition

of Rh
i in (7). For any α ∈ (0, 1), if we reject all hypotheses whose FDR adjusted

p-values are no greater than α, and if we assume that subset pivotality holds and

that the joint distribution of PM0
= {Pi, i ∈ M0} is independent of the joint

distribution of PM1
= {Pi, i ∈M1}, then FDR ≤ α.

Corollary 3. Assume that PM0
and PM1

are independent, and that P1, . . . , Pm

satisfy the generalized Šidák inequality,

P (P1 ≥ p1, . . . , Pm ≥ pm) ≥
m
∏

i=1

P (Pi ≥ pi). (9)

Then the BL procedure provides strong control of the FDR under the subset piv-

otality condition.

Lemma 4. Let X1, . . . ,XB be B samples of random variable X and let X be the

sample average. If P (0 ≤ X ≤ 1) = 1, then V ar(X) ≤ 1/(4B).

The proofs of Theorem 2, Corollary 3 and Lemma 4 are given in the Ap-
pendix.

Remarks:

1. Proposition 1 and Theorem 2 also hold when the FDR adjusted p-values
are computed based on the test statistics rather than on the p-values. A resam-
pling procedure based on the test statistics is described in Algorithm 1. The
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Algorithm 1. Resampling algorithm for computing FDR adjusted p-values
by using the test statistics only

Compute the test statistic ti, i = 1, . . . , m on the observed data matrix x and,
without loss of generality, label them |t1| ≥ · · · ≥ |tm|.
For the b-th step, b = 1, . . . , B, proceed as follows.
1. Compute the resampled data matrix x

b, for example by randomly permut-
ing the columns of matrix x.

2. Compute the test statistic ti,b for hypothesis Hi, i = 1, . . . , m on the data
matrix x

b.
3. For each i = 1, . . . , m, mimic the step-down procedure:

(a) for j = 1, . . . , m− i + 1, let ti,b(j) be the j-th largest member of {ti,b, . . .,

tm,b} in absolute value;
(b) define Ri,b to be the unique integer k such that

|ti,b(1)| ≥ |ti|, . . . , |t
i,b

(k)| ≥ |ti+k−1| and |ti,b(k+1)| < |ti+k|.

4. Compute f1,b = I(R1,b > 0) and, for i = 2, . . . , m, compute fi,b = Ri,b/(Ri,b

+i− 1).
Steps 1-4 are carried out B times and the adjusted p-values are estimated by

p̌i =
∑B

b=1 fi,b/B, with monotonicity enforced by setting
p̃1 ← p̌1, p̃i ← max(p̃i−1, p̌i) for i = 2, . . . , m.

independence assumption between PM0
and PM1

is replaced by the independence

between TM0
and TM1

. Note that this independence assumption is the same as in

Yekutieli and Benjamini (1999), and does not make the further assumption that

all null test statistics are independent.

2. For the problem of identifying differentially expressed genes considered

in this paper, if the m×n matrix x is normally distributed, specifically, the first

n1 and remaining n2 columns of x are independently distributed as N(µ1,Σ1)

and N(µ2,Σ2) respectively, where µ1 and µ2 are vectors of size m, Σ1 and Σ2

are m×m matrices, then the subset pivotality property is satisfied.

Here is the proof. Let Ti be the statistic for gene i, e.g. the two-sample

t-statistic. For any subset K = {i1, . . . , ik}, let its complement set be {j1, . . .,

jm−k}. The joint distribution of (Ti1 , . . . , Tik) only depends on i1, . . . , ik compo-

nents of the vectors µ1 and µ2 and the corresponding submatrices of Σ1 and Σ2.

This joint distribution does not depend on how (Hj1,Hj2, . . . ,Hjm−k
) is specified.

This proves subset pivotality for the test statistics. The subset pivotality also

holds for the p-values, which are constructed from these test statistics. However,

the subset pivotality property fails if we are testing the correlation coefficient

between two genes; interested readers are referred to Example 2.2 on Page 43 of

Westfall and Young (1993).
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3. Sarkar (2002) generalized the results of the BL procedure in another

direction. He assumed that the underlying test statistics are MTP2, and that the

test statistics are exchangeable under the null hypotheses. The MTP2 property is

similar to the PRDS condition or the generalized Šidák inequality, which implies

that weakly dependent test statistics behave like independent ones. However, the

exchangeability assumption of Sarkar (2002) is not required in our generalization,

and our proof is much simpler than that of Sarkar (2002).

4. We assume that the expectation in (8) can be computed without error.

When the expectation is computed by B resamplings, using the fact that the

random variable Ri/(Ri + i−1) falls on the interval [0, 1], Lemma 4 implies that

the estimate for p̌di
in (8) has a standard error no greater than

√

1/(4B). This

quantity
√

1/(4B) is therefore the maximum standard error of the estimate for

the FDR adjusted p-values p̃di
in Step 4 of Section 4.2. Since B=10,000 in most

computations of this paper, the standard error is at most 0.005.

4.4. Resampling algorithms

In this section, we use resamplings to compute (8) so that we can obtain the

FDR adjusted p-values. In general, there are two strategies for resampling the ob-

served data x (an m×n matrix) to get the resampled data matrix x
b: permuting

the columns of matrix x, and bootstrapping the column vectors. The application

of these resampling strategies is in Westfall and Young (1993); more bootstrap

methods can be seen in Davison and Hinkley (1997) and Efron and Tibshirani

(1993). In the simulation study and applications results of this paper, we focus

on comparing two groups, and x
b is obtained by permuting the columns of the

matrix x to assign the group labels.

The complete algorithm for the empirical procedure (Re
i ) is described in Al-

gorithm S1 in the supporting material. For other versions of Ri, the algorithm

is similar and so will be omitted. If the p-values have to be computed by fur-

ther resampling, then we have the same problem as in the double permutation

algorithm of the minP procedure of Ge et al. (2003). In this situation, we can

also have an analogous algorithm to Box 4 of Ge et al. (2003). Here, however,

we cannot use the strategy in that paper to reduce the space, i.e., we need to

compute the whole matrices T and P described in that paper. The details of this

algorithm are omitted here.

Another approach is to compute FDR adjusted p-values based on the test

statistics only. As we saw with the maxT procedure for controlling the FWER

in Ge et al. (2003), the advantages and disadvantages of the maxT procedure

compared with the minP procedure are also relevant to FDR adjusted p-values.
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The FDR adjusted p-values computed from the test statistics are described in

Algorithm 1, and this algorithm will be used in the remaining of this paper.

5. Simulation Results

5.1. Data generation strategy

For all figures in this section, there are 1,000 genes with 8 controls and

8 treatments. We first simulate 1, 000 × 16 errors ǫi,j, i = 1, . . . , 1, 000, j =

1, . . . , 16, where the ǫi,j are block independent; specifically in our simulations

the ǫi,j are independently and identically distributed as N(0, 1), except that

cor(ǫ10i+k,j, ǫ10i+l,j) = ρ for i = 0, . . . , 99, k 6= l ∈ {1, . . . , 10}, j = 1, . . . , 16.

Lastly, we add δ to the treated group, so

Xi,j = ǫi,j + δ if i = 1, . . . ,m1, j = 9, . . . , 16; Xi,j = ǫi,j otherwise.

Note that the multiple testing problem for this simulation is to find the differ-

entially expressed genes based on one observed data matrix X = x. The data

matrix can be parametrized by (m1, δ, ρ). For each gene i, we compute a two-

sample Welch t-statistic ti. Algorithm 1 is applied with the resampled data x
b

generated by randomly permuting the columns of matrix x (B = 10,000). When

we apply Algorithm 1, we do not assume that the data have normal distributions,

and we do not know anything about the values of (m1, δ, ρ) in the process that

generates x.

5.2. Properties of different FDR procedures

In Figures 1 and 2, and Figures S1 and S2 in the supporting material, the

BH procedure, the BY procedure and the FDR procedures with Re
i , R

l
i, and Rh

i

in Algorithm 1 (labelled as BH, BY, eFDR, lFDR and hFDR in these figures)

have been applied to different simulated data. The raw p-values required for the

BH and BY procedures are computed by B = 10,000 permutations. We also

plotted p-val, Q and YB99 for comparisons, where p-val is the raw p-value, Q is

the random variable for the false discovery proportion (V/R) and YB99 is the

resampling-based FDR upper limit, at (10) of Yekutieli and Benjamini (1999).

The y-axis plots the FDR adjusted p-values for each procedure when the top 1,

2, . . . genes are rejected.

In these figures, for the lFDR procedure, the FDR adjusted p-values fall far

below the false discovery proportion Q, so the lFDR procedure is too optimistic

for FDR control. On the other hand, the BY and hFDR procedures are too

conservative, they pay a huge price for allowing a dependence structure. The

hFDR procedure has the advantage of giving smaller FDR adjusted p-values for

the most extreme genes, while the BY procedure may reject more null hypotheses
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Figure 1. Different FDR procedures. The independent case: ρ = 0 and

δ = 2; the dotted vertical line is x = m1; the dotted horizontal line is

y = m0/m, the overall proportion of false null hypotheses. Different panels

are for different values of m1 (100, 500, 900).
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when target level α is much higher, say 0.5, or 1. Such levels are of limited use

as researchers are more interested in smaller target levels, say 0.05 or 0.01. For

example, in the middle panel of Figure 1 (m1 = 500, δ = 2, ρ = 0), at level 0.01,

the hFDR procedure rejects 20 hypotheses, while the smallest FDR adjusted

p-value for the BY procedure is 0.017. In contrast, at the 0.5 level, the hFDR

procedure rejects only 262 hypotheses, whereas the BY procedure rejects 494

hypotheses.

The sample mean difference between the treatments and controls in Figure

1 (δ = 2) is greater than that in Figure S1 in the supporting material (δ = 1).

In general, the larger the sample mean difference between the treatments and

controls, the more powerful the procedure is to separate differentially expressed

genes from non-differentially expressed ones. It is more interesting to look at our

eFDR procedure, whose curve reaches its highest value around m1 and then goes

to a plateau. This displays a nice property of the eFDR procedure: it suggests

an approximate value of m1, the number of differentially expressed genes. If we

reject fewer than m1 genes, the adjusted p-value for the eFDR is higher than Q,

i.e., the eFDR procedure provides strong control of the FDR. This feature is also

displayed in the negatively dependent data in Figure 2 (and positively dependent

data in Figure S2 in the supporting material).

The BH, BY and YB99 procedures may be too conservative for large m1/m

since they do not use any estimate of m0 (see the middle and lower panels of

Figures 1, 2, S1 and S2). This extreme conservativeness will not be a major

concern in practice where m1/m tends to be small.

Benjamini and Yekutieli (2001) proved that the BH procedure controls the

FDR in the strong sense when the PRDS condition is satisfied. It might be in-

teresting to construct negatively dependent data as a counterexample for the BH

procedure, but we do not found have one so far. The BH procedure seems to

work very well for the negatively dependent data of Figure 2. By noticing that

the absolute values of the Student t-statistics are always positively dependent,

we use one-sided tests to achieve more negative dependence, and the BH proce-

dure still works well (data not shown). The BH procedure also works for other

data generation strategies, such as using a finite mixture model for the errors ǫi,j.

The reason we could not find a counterexample for the BH is probably that the

simulated data are still not strongly negatively dependent. For the data within

each block of size 10, the statistics cannot be strongly negatively dependent,

as the negative correlation coefficient cannot be less than −1/9, otherwise the

constructed matrix violates the property that the correlation coefficient matrix

must be non-negative definite. Therefore 1,000 genes are more or less indepen-

dent. One may want to increase the number of blocks and decrease the size

of each block to have a stronger negative correlation. However, with increasing
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Table 2. TThe FDR (sample average of Q) at the target level α when using

1000 samples of X with m = 200, m1 = 50, δ = 1, ρ = 0.

α 0.01 0.05 0.1 0.2 0.5
eFDR 0.0017 0.028 0.079 0.15 0.30
BH 0 0.0081 0.069 0.17 0.38

Table 3. The average number of genes rejected at the target level α when

using 1000 samples of X with m = 200, m1 = 50, δ = 1, ρ = 0.

α 0.01 0.05 0.1 0.2 0.5
eFDR 0.29 1.8 5.2 14 42
BH 0 0.40 5.3 17 54

numbers of blocks, the overall dependence decreases. We have simulated the data

with block size two and correlation coefficient ρ = −0.7 and the result is very

similar to Figure 2.

Note that Figures 1, 2, S1 and S2 consider only one sample of the data

X = x. The FDR can be estimated by computing the average of the Q for

1,000 samples of X when we reject the genes whose FDR adjusted p-values are

no greater than α. Due to computational complexity, we only consider m = 200

and m1 = 50 with block size two. As we consider a smaller block size, we can

decrease the value of ρ from -0.1 to -0.7. The results are shown in Tables 2 and 3

for independent data and in Tables 4 and 5 for dependent data. Again the eFDR

procedure performs better than the BH procedure for smaller values of α. The

BH procedure, on the other hand, is better for large values of α.

6. Microarray Applications

Apo AI knock-out experiment: The Apo AI experiment (Callow et al.

(2000)) was carried out as part of a study of lipid metabolism and atherosclerosis

susceptibility in mice. The apolipoprotein AI (Apo AI) is a gene known to play

a pivotal role in HDL metabolism, and mice with the Apo AI gene knocked out

have very low HDL cholesterol levels. The goal of the experiment was to identify

genes with altered expression in the livers of these knock-out mice compared

to inbred control mice. The treatment group consisted of eight mice with the

Apo AI gene knocked out and the control group consisted of eight wild-type

C57Bl/6 mice. For the 16 microarray slides, the target cDNA was from the liver

Table 4. The FDR (sample average of Q) at the target level α when using

1,000 samples of X with m = 200, m1 = 50, δ = 1, ρ = −0.7.

α 0.01 0.05 0.1 0.2 0.5
eFDR 0 0.035 0.066 0.13 0.32
BH 0 0.0068 0.060 0.14 0.38
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Table 5. The average number of genes rejected at the target level α when
using 1,000 samples of X with m = 200, m1 = 50, δ = 1, ρ = −0.7.

α 0.01 0.05 0.1 0.2 0.5
eFDR 0.30 2.0 5.1 15 49
BH 0 0.37 5.1 17 55

mRNA of the 16 mice. The reference cDNA came from the pooled control mice

liver mRNA. Among the 6,356 cDNA probes, about 200 genes were related to

lipid metabolism. In the end, we obtained a 6,356 × 16 matrix with 8 columns

from the controls and 8 columns from the treatments. Differentially expressed

genes between the treatments and controls are identified by two-sample Welch

t-statistics.

Leukemia study: One goal of Golub et al. (1999) was to identify genes that

are differentially expressed in patients with two types of leukemias: acute lym-

phoblastic leukemia (ALL, class 1) and acute myeloid leukemia (AML, class 2).

Gene expression levels were measured using Affymetrix high-density oligonu-

cleotide arrays containing m = 6,817 human genes. The learning set com-

prises n = 38 samples, 27 ALL cases and 11 AML cases (data available at

http://www.genome.wi.mit.edu/MPR). Following Golub et al. (personal com-

munication, Pablo Tamayo), three preprocessing steps were applied to the nor-

malized matrix of intensity values available on the website: (i) thresholding with

a floor of 100 and a ceiling of 16,000; (ii) filtering with exclusion of genes with

max /min ≤ 5 or (max−min) ≤ 500, where max and min refer respectively to

the maximum and minimum intensities for a particular gene across mRNA sam-

ples; (iii) base 10 logarithmic transformation. Boxplots of the expression levels

for each of the 38 samples revealed the need to standardize the expression levels

within arrays before combining data across samples. The data were then sum-

marized by a 3,051×38 matrix X = (xij), where xij denotes the expression level

for gene i in mRNA sample j. Differentially expressed genes in ALL and AML

patients were identified by computing two-sample Welch t-statistics.

For the two datasets, we applied the BH, BY, eFDR, hFDR and YB99

procedures described in this paper to control the FDR. All of these resamplings

were done by permuting the columns of the data matrix. Figure 3 gives the

results for the Apo AI knock-out data. The x-axis is always the rank of p-

values and y-axis is the FDR adjusted p-values. Note that the rank of different

adjusted p-values is always the same as the rank of the raw p-values apart from

the t-based procedures (eFDR, hFDR). In that case, the adjusted p-values have

the same ranks as the two-sample Welch t-statistics. Similarly, Figure 4 gives

the results of applying these procedures to the Leukemia dataset.
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Figure 3. Apo AI: Plot of FDR adjusted p-values when the top 1, 2, . . . genes

are rejected. We only plot the total number of genes rejected up to 100
among 6,356 genes. The adjusted p-values were estimated using all B =

16!/(8!× 8!) = 12,870 permutations.

7. Discussion

In this paper, we introduce a new step-down procedure aiming to control

the FDR. This procedure uses the sequential rejection principle of the Westfall

and Young minP step-down procedure to compute the FDR adjusted p-values.

It automatically incorporates dependence information into the computation. We

have essentially introduced three FDR procedures. The first, lFDR, is too opti-

mistic for controlling the FDR from the simulated data. The second, hFDR, is

shown to control the false discovery rate under the subset pivotality condition

and under the assumption that joint distribution of statistics from true nulls is

independent of the joint distribution of statistics from false nulls (see Theorem 2).

From Remark 2 of Section 4.3, under some parametric formulation of the data,

if each test statistic is generated within one gene, the subset pivotality property

can be satisfied. As with the Westfall and Young minP step-down procedure,

this procedure fails if the subset pivotality condition is not satisfied, for exam-

ple testing the correlation coefficient between two genes. The hFDR procedure

also extends the BL procedure from an independence condition to a generalized

Šidák inequality condition, see (9). The third and most useful procedure, eFDR,
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Figure 4. Leukemia: Plot of FDR adjusted p-values when the top 1, 2, . . . ,

genes among 3,051 ones are rejected. The adjusted p-values were estimated
using B = 10,000 random permutations.

is recommended in practice. The theoretical properties of the eFDR, whether

finite sample or asymptotic, are left to future research. The validity of the eFDR

procedure is currently suggested by our simulation results and can be extended

to a large number of hypotheses (Figure S3 in the supporting material shows the

simulation for m = 10, 000). One nice feature of the eFDR procedure is that it

suggests the number of the false null hypotheses and the FDR adjusted p-value

simultaneously. The FDR plot, see Figure 3 or 4, is also useful for diagnostic

purposes.

8. Supporting Material

Figures S1, S2 and S3, and Algorithm S1.
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Appendix. The proof of Theorem 2 and Corollary 3 and Lemma 4

Proof of Theorem 2: Denote the α level critical value of mini∈K Pi | HM by

cα,K , i.e.,

P
{

min
i∈K

Pi ≤ cα,K | HM

}

= α. (10)

For given α at step i, when using the higher bound Rh
i to compute the

FDR adjusted p-values, the hypothesis Hdi
is rejected if and only if Pdi

≤

cαi,M\{d1,...,di−1}. Here αi = αm/(m− i + 1). Let Λ = (λ1, . . . , λm1
) be a permu-

tation of M1. For i = 0, . . . ,m1, let

Bi,Λ = {Pλ1
≤ cα1,M , . . . , Pλi

≤ cαi,M\{λ1,...,λi−1}, Pλi+1
> cαi+1,M\{λ1,...,λi}

and Pλ1
≤ · · · ≤ Pλm1

}.

The events {Bi,Λ : i,Λ} are a mutually exclusive decomposition of the whole sam-

ple space, and so
∑

i,Λ P (Bi,Λ) = 1. In set Bi,Λ, the random p-values Pλ1
, . . . , Pλi

are not necessarily the i smallest ones among the random p-values from the set

M . However, for given α and Λ, the critical value cαk,M\{λ1,...,λk−1}
is an increasing

function of k, which implies that we can reject at least the i false null hypotheses

Hλ1
, . . . ,Hλi

, so
V

R
≤

V

(V + i)
≤

(m− i)

m
. (11)

When x ∈ Bi,Λ, if we have also erroneously rejected at least one null hypothesis

by using the higher bound Rh
i for computing the FDR adjusted p-values, then

the fact that cαk,M\{λ1,...,λk−1}
is an increasing function of k and that Pλi+1

>

cαi+1,M\{λ1,...,λi} implies

P(1),M0
≤ cαi+1,M\{λ1,...,λi}. (12)

Here P(j),K denotes the j-th smallest member of {Pi, i ∈ K}. As {λ1, . . . , λi}

is contained by M1, the set M\{λ1, . . . , λi} contains M0. Using the definition

of cα,K in (10), we have cαi+1,M\{λ1,...,λi} ≤ cαi+1,M0
. Combining this with (12)

gives

P(1),M0
≤ cαi+1,M0

. (13)

Therefore

FDR =
∑

i,Λ

E
{V

R
· I(Bi,Λ)

}
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=
∑

i,Λ

E
{V

R
· I(Bi,Λ) · I(P(1),M0

is rejected)
}

≤
∑

i,Λ

(m− i)

m
· P (Bi,Λ ∩ {P(1),M0

is rejected}) (Apply (11))

≤
∑

i,Λ

(m− i)

m
· P (Bi,Λ ∩ {P(1),M0

≤ cαi+1,M0
}) (Apply (13))

=
∑

i,Λ

(m− i)

m
· P (Bi,Λ) · P (P(1),M0

≤ cαi+1,M0
) (14)

=
∑

i,Λ

(m− i)

m
· P (Bi,Λ) ·

αm

(m− i)
(15)

=
∑

i,Λ

P (Bi,Λ) · α

= α.

At (14), we use the assumption that PM0
and PM1

are independent. At (15), by

subset pivotality,

P (P(1),M0
≤ cαi+1,M0

) = P (P(1),M0
≤ cαi+1,M0

| HM0
)

= P (P(1),M0
≤ cαi+1,M0

| HM)

= αi+1 =
αm

(m− i)
.

Proof of Corollary 3: Combining (7) and (4), we have

p̌di
= E

{

Rh
i

(Rh
i + i− 1)

}

= P
(

min
k=i,...,m

Pdk
≤ pdi

)

·
(m− i + 1)

m

≤ [1− (1− pdi
)m−i+1] ·

(m− i + 1)

m
(Apply (9)).

Therefore, if pdi
≤ 1 − [1 − min(1, αm/(m − i + 1))]1/(m−i+1), then [1 − (1 −

pdi
)m−i+1] · (m− i + 1)/m ≤ α, and so p̌di

≤ α. Thus the BL procedure is more

conservative than the step-down procedure in Section 4.2, which was shown to

give strong control according to Theorem 2. Therefore the BL procedure also

controls the FDR in the strong sense.

Proof of Lemma 4: Let µ = E(X). Construct a random variable Y = I(X ≥

µ) and write p = E(Y ). We have V ar(X) + (µ − p)2 = E(X − p)2 ≤ E(Y −

p)2 + (µ− p)2, hence V ar(X) ≤ V ar(Y ) = p(1− p) ≤ 1/4. Therefore V ar(X) =

V ar(X)/B ≤ 1/(4B).
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