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BOUNDS AND ADAPTIVE CONTROL

Zhiyi Chi and Zhiqiang Tan
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Supplementary Material

This note contains proofs for Theorems 4.2, 4.3, 5.1 and 5.2. The proofs for
the first two theorems are similar to those for the other two. Since the latter
ones are more of interest to applications, they will be demonstrated in detail.
The proofs of Theorems 4.2 and 4.3 will be outlined afterwards.

S1. Notation

For random variables Xn and Yn, Xn ≥p Yn, Xn ≤p Yn and Xn ∼p Yn denote

P (Xn ≥ Yn) → 1, P (Xn ≤ Yn) → 1 andXn/Yn
P−→ 1, respectively. The notation

Xn = op(Yn) means “|Xn| ≤p ǫ|Yn| for any ǫ > 0”, whereas Xn = Op(Yn) means
“for any ǫ > 0, there are M > 0 and n0 > 0, such that P (|Xn| ≥ M |Yn|) < ǫ for
all n ≥ n0”. When it is necessary to indicate the number n of tested hypotheses,
we use a superscript. For example, denote by R(n) the number of rejections when
there are n null hypotheses.

It will be easier to work with continuous time to prove the theorems. For
procedure (5.1), given p-values ξ

(n)
1 , . . . , ξ

(n)
n , the R

(n)
τn smallest ones are rejected,

where

τn = sup
t∈[0,1]

{

qbin

(

Γ∗(t);R
(n)
t ,

n(t ∨ ξn:kn
)

R
(n)
t ∨ kn

∧ 1

)

≤ α(R
(n)
t ∨ 1)

}

. (S1.1)

Denote qn(t; z) := qbin(z; R
(n)
t , (nt/R

(n)
t ) ∧ 1). For brevity, write τ = τn,

Rt = R
(n)
t and Vt = V

(n)
t . By definition, R = Rτ and V = Vτ . The same

relationship holds for the BH procedure (4.4), except that

τ = τn = sup {t ∈ [0, 1] : nt ≤ Rt} . (S1.2)

S2. Subcritical case with increasingly sparse false nulls

Define ηt = η(n) = nt/Rt, θt = θ
(n)
t = t/Fn(t) and ρ = 1/α − 1 > 0. Then

qn(z; t) = qbin(z;Rt, ηt ∧ 1) and by un = αFn(un),

θun
= α, (πn + ρ)un = πnGn(un). (S2.1)
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Under the subcritical condition (5.4), the following lemmas hold.

Lemma S2.1. For procedure (5.1) and the BH procedure (4.4), τ/un
P−→ 1 and

(a)
Gn(τ)

Gn(un)

P−→ 1, (b) θτ
P−→ α, (c) ητ

P−→ α, (d)
Rτ

(log n)4
P−→ ∞.

Lemma S2.2. For both procedures, θτRτ − nτ = αRun
− nun + op(

√
nun).

Lemma S2.3. For procedure (5.1), αRτ = qn(τ ; Γ(τ)) + Op(1) and for the BH

procedure (4.4), αRτ = nτ .

Let Rt− = R
(n)
t− and Vt− = V

(n)
t− be the numbers of rejected nulls and rejected

true nulls, respectively, whose p-values are strictly less than t.

Lemma S2.4. Given t ∈ (0, 1) and k > 0, for procedure (5.1), conditioning on

τ = t and Rτ− = k, Vτ− ∼ Bin(k, t/Fn(t)). The statement holds as well for the

BH procedure (4.4).

Recall that if pn ∈ (0, 1) satisfies npn(1 − pn) → ∞, then by Lindeberg’s

CLT, for Sn ∼ Bin(n, pn) and z ∈ (0, 1),

Sn − npn
√

npn(1 − pn)

d→ N(0, 1),
qbin(z; n, pn) − npn
√

npn(1 − pn)
→ Φ∗(z). (S2.2)

Proof of Theorem 5.1. Assume the Lemmas are true for now. We show

(a)−(d) in sequel.

(a) By Lemma S2.1, we get ητ
P−→ α and nτ(1 − ητ ) = Rτητ (1 − ητ ) ∼p α(1 −

α)Rτ
P−→ ∞. Then by Lemma S2.3,

P (Vτ ≤ αRτ ) = P (Vτ ≤ qn(τ ; Γ(τ)) +Op(1)) + o(1)

= P

(

Vτ − nτ
√

nτ(1 − ητ )
≤ qn(τ ; Γ(τ)) − nτ

√

nτ(1 − ητ )
+ op(1)

)

+ o(1).

Since qn(τ ; Γ(τ)) = qbin(Γ(τ);Rτ , ητ ) and nτ = Rτητ , Lindeberg’s CLT yields

qn(τ ; Γ(τ)) − nτ
√

nτ(1 − ητ )
∼p Φ∗(Γ(τ)) =

√

1 − τ

1 − α
Φ∗(1 − γ) . (S2.3)

Write (Vτ − nτ)/
√

nτ(1 − ητ ) = Z1Z + Z2, where

Z1 =
Vτ − θτRτ

√

θτ (1 − θτ )Rτ

, Z =

√

θτ (1 − θτ )Rτ

nτ(1 − ητ )
, Z2 =

θτRτ − nτ
√

nτ(1 − ητ )
.
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By Lemma S2.4, conditioning on τ = t and Rτ− = k, Vτ− ∼ Bin(k, θt).

By Rτ − Rτ−, Vτ − Vτ− ∈ {0, 1} and θτRτ → ∞, we get Z1
d→ N(0, 1). By

Lemma S2.1, Z
P−→ 1. By Lemma S2.2, Z2 = Z ′

2 + op(1), where Z ′
2 = (αRun

−
nun)/

√

nτ(1 − ητ ). From Fn(un) = un/α → 0, Run
∼ Bin(n,Fn(un)), τ/un

P−→
1 and ητ

P−→ α, it follows that

Z ′
2 =

α(Run
− nFn(un))

√

nFn(un)(1 − Fn(un))

√

un(1 − Fn(un))

ατ (1 − ητ )

d→
√

α

1 − α
N(0, 1)

and hence Z2
d→
√

α/(1 − α)N(0, 1).

We now show (Z1, Z2)
d→ (U1,

√

α/(1 − α)U2), where U1, U2 are i.i.d. ∼
N(0, 1). Let f(x, y) = E(eixZ1+iyZ2). Then by Lemma S2.4 and CLT, for any

an → ∞ and tn ∈ (0, 1), as long as anθtn(1 − θtn) → ∞,

lim
n→∞

E(eixZ1 |Rτ = an, τ = tn) = e−x2/2.

Since Z2 is a deterministic function of τ and Rτ , by Rτθτ (1 − θτ )
P−→ ∞ and

dominated convergence,

E(eixZ1+iyZ2) = E(E(eixZ1+iyZ2 |Rτ , τ))

∼ e−x2/2E(eiyZ2) → exp

{

−x
2

2
− αy2

2(1 − α)

}

.

Combining all the above results, it follows that

Vτ − nτ
√

nτ(1 − ητ )

d→ U√
1 − α

with U ∼ N(0, 1) ,

which, together with (S2.3) and τ
P−→ 0, implies

P (Vτ ≤ αRτ ) ∼ P (U ≤
√

1 − αΦ∗(Γ(τ))) → 1 − γ.

This completes the proof of part (a).

(b) This directly follows from Lemma S2.1(d).

(c) For the BH procedure (4.4), from (S1.2), 0 ≤ αRτ − nτ ≤ α. By Lemma

S2.2, P (Vτ ≤ αRτ ) = P (Vτ ≤ nτ +O(1)) = P (Z1 ≤ Z2 + o(1)), with

Z1 =
Vτ − θτRτ

√

θτ (1 − θτ )Rτ

,

Z2 =
nτ − θτRτ

√

θτ (1 − θτ )Rτ

.
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Following the argument for part (a), (Z1, Z2)
d→ (U1,

√

α/(1 − α)U2), where U1

and U2 are i.i.d. ∼ N(0, 1). As a result, P (Vτ ≤ αRτ ) → 1/2.

(d) From (5.4), nπn → ∞. Since n−N0 ∼ Bin(n, πn), by the law of large numbers

(LLN), (n−N0)/(nπn)
P−→ 1. By Lemmas S2.1, S2.2 and S2.4,

Rτ

nFn(un)

P−→ 1,
Rτ − Vτ

Rτ

P−→ 1 − α.

Therefore, by (S2.1) and πn → 0,

ψn

Gn(un)
=

Rτ − Vτ

Gn(un)(n−N0)
∼p

(1 − α)nFn(un)

Gn(un)nπn
=

ρun

πnGn(un)

P−→ 1.

The proof for the BH procedure (4.4) is similar and hence is omitted.

To show the lemmas, the following representation of the p-values ξ
(n)
1 , . . . ,

ξ
(n)
n will be used. Let ζ

(n)
k = Fn(ξ

(n)
k ). Then ζ

(n)
1 , . . . , ζ

(n)
n are i.i.d. ∼ U(0, 1).

Let

Wt := W
(n)
t = #

{

k ≥ 1 : ζ
(n)
k ≤ t

}

, (S2.4)

so Rt = WFn(t). Recall the following result Shorack and Wellner (1986, p.600).

Let bn =
√

2 log log n, cn = 2 log log n+ log
√

log log n− log
√

4π and Zt = (Wt −
nt)/

√

nt(1 − t). Then for any x ∈ (−∞,∞), as n→ ∞

P

(

bn sup
t∈[0,1]

|Zt| ≥ cn + x

)

→ e−4ex

. (S2.5)

From (5.4), it can be seen that as n→ ∞, nun/(log n)4 → ∞ and

√
n

(log n)2
π2

n [λGn(un) −Gn(λun)]√
un

→
{

∞, if λ > 1

−∞, if 0 < λ < 1.
(S2.6)

Indeed, because Gn is strictly concave, if λ > 1, (5.4) implies that

√
nun

(log n)2
πn

(

λ− Gn(λun)

Gn(un)

)

→ ∞.

Then the first limit in (S2.6) follows by (S2.1). The second limit similarly holds.

Proof of Lemma S2.1. We will only show the Lemma for procedure (5.1). The

proof for the BH procedure (4.4) is similar.

The main part of the proof is devoted to τ/un
P−→ 1. Denote

dn =
√

n log log n, fn(t) := πnGn(t) − (πn + ρ)t.
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Because Gn is strictly concave, so is fn. By (S2.1), fn(un) = 0. Also, fn(t) >

(<) 0 for t < (>) un. Given λ > 1, let vn = un/λ. On the one hand, by

(S2.2), qn(vn; Γ(vn)) ≤ nvn +
√
nvnAn, with An → Φ∗(Γ(vn)). On the other,

by (S2.5), for large n, Rvn
= WFn(vn) ≥p nFn(vn) − 2dn

√

Fn(vn). Therefore, by

Fn(vn) ≤ αvn and Fn(vn) ≤ Fn(un) = un/α,

Rvn
− 1

α
qn(vn; Γ(vn))

≥p n (Fn(vn) − (1 + ρ)vn) −
√

nFn(vn)

α
An − 2dn

√

Fn(vn)

≥p nfn(vn) − 3dn

√
un

α
.

By πn + ρ = πnGn(un)/un,

nfn(vn) = nπn

(

Gn(vn) − πnGn(un)

un
vn

)

≥ nπn

(

Gn(
un

λ
) − Gn(un)

λ

)

.

From (S2.6), it follows that nfn(vn) − 3dn

√

un/α
P−→ ∞, yielding αRvn

−
qn(vn; Γ(vn))

P−→ ∞ and hence P (τ > vn) → 1.

Now let wn = λun. Then for all t ≥ wn, Fn(t) < t/α. Similar to the above

argument, the probability that

Rt −
1

α
qn(t; Γ(t)) ≤ fn(t) + 3dn

√

Fn(t) ≤ fn(t) + 3dn

√

t

α
, all t ≥ wn

tends to 1. Because fn(t) is concave, it is upper bounded by fn(wn)t/wn. Note

fn(wn) < 0. Therefore, the probability that

Rt −
1

α
qn(t; Γ(t)) ≤ fn(wn)

t

wn
+ 3dn

√

t

α

≤
√

t

wn

(

fn(wn) + 3dn

√
wn

α

)

︸ ︷︷ ︸

xn

tends to 1. Similar to the above argument, xn → −∞ by (S2.6). Then P (τ ≤
wn) → 1. Together with P (τ > vn) → 1 and λ > 1 being arbitrary, τ/un

P−→ 1.

Now we can show parts (a)−(d) in sequel.

(a) Since Gn is concave, Gn(un/λ) > Gn(un)/λ and Gn(λun) < λGn(un).

Then from τ/un
P−→ 1, P (Gn(un)/λ ≤ Gn(τ) < λGn(un)) → 1 and hence

Gn(τ)/Gn(un)
P−→ 1.
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(b) Since Fn(t) = (1 − πn)t + πnGn(t), from the above results, it follows that

Fn(τ)/Fn(un)
P−→ 1. By Fn(un) = un/α, θτ = τ/Fn(τ)

P−→ α.

(c) Given λ > 1, define vn and wn as above. By P (Rτ > Rvn
) → 1 and P (τ <

wn) → 1, P (ητ < nwn/Rvn
) → 1. On the other hand, since nvn → ∞, by the

CLT in (S2.2), Rvn
= WFn(vn) ∼ nFn(vn) and wn/Fn(vn) = λ2vn/Fn(vn) ≤ αλ2.

Then P (ητ < αλ2) → 1. Similarly, P (ητ > α/λ2) → 1. Hence ητ
P−→ α.

(d) This follows from Rτ ≥ Rvn
∼ nFn(vn) ≥ nvn and nvn/(log n)4 → ∞.

By the weak version of Hungarian construction Shorack and Wellner (1986,

p.494), for each n, there exist a Brownian bridge B
(n)
t

d
= Zt−tZ1 and a stochastic

process r
(n)
t defined on the same probability space as ζ

(n)
1 , . . . , ζ

(n)
n , where Zt

is a standard Brownian motion, such that supt∈[0,1] |r
(n)
t | = Op(1) and Wt =

nt+
√
nB

(n)
t + r

(n)
t (log n)2.

Proof of Lemma S2.2. By Rt = WFn(t) and the Hungarian construction,

θtRt − nt =
√
nθtB

(n)
Fn(t) + (log n)2θtr

(n)
Fn(t) .

Note θun
= α and by Lemma S2.1, θτ = Op(1). Since (log n)2/

√
nun → 0 and

r
(n)
t is bounded, to show Lemma S2.2 for τ , it suffices to demonstrate

1√
un

[

θτB
(n)
Fn(τ) − αB

(n)
Fn(un)

]
P−→ 0.

Write the left hand side as I1 + αI2, where I1 = (θτ − α)B
(n)
Fn(τ)/

√
un and

I2 = (B
(n)
Fn(τ) − B

(n)
Fn(un))/

√
un. Given λ > 1, since un → 0, P (τ < λun) → 1

and Fn(λun) < λFn(un) = λun/α, it is seen that |B(n)
Fn(τ)| asymptotically is dom-

inated by supt≤λun/α |B(n)
t |, hence stochastically dominated by supt≤λun/α |Zt|+

(λun/α)|Z1|. Then B
(n)
Fn(τ)/

√
un = Op(1). By θτ

P−→ α, I1
P−→ 0.

Similarly, letting Dn = λun − un/λ, B
(n)
Fn(τ) − B

(n)
Fn(un) asymptotically is

stochastically dominated by supt∈[0,Dn] |Zt| + Dn|Z1|. Therefore, I2 asymptoti-

cally is stochastically dominated by
√

λ− 1/λ supt∈[0,1] |Zt| + op(1). Because λ

is arbitrary, I2
P−→ 0.

Recall that qbin(z;n, p) is increasing and left-continuous in z and p respec-

tively; for z, p ∈ (0, 1),

lim
x↓z

qbin(x;n, p), lim
x↓p

qbin(z;n, x) ∈ {qbin(z;n, p), qbin(z;n, p) + 1};

and qbin(z;n, p) ≤ qbin(z;n − 1, p) + 1.
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Proof of Lemma S2.3. By the definition of τ , when τ > 0 and Rτ > 0, for

all t > τ , qn(t; Γ(t)) > αRt. If t − τ > 0 is small enough, Rt = Rτ . Since

Γ(t) is decreasing in t, qbin(Γ(τ);Rτ , nt/Rτ ) ≥ αRτ . Letting t ↓ τ then yields

qn(τ,Γ(τ)) ≥ αRτ − 1.

On the other hand, there is a sequence tj ↑ τ , such that qn(tj ; Γ(tj)) ≤ αRtj .

If Rt is continuous at τ , then for large j, Rtj = Rτ and letting j → ∞ yields

qn(τ,Γ(τ)) ≤ αRτ . If Rt has a jump at τ , then for large j, Rtj = Rτ − 1 and

letting j → ∞ yields

qbin

(

Γ(τ);Rτ − 1,
nτ

Rτ − 1

)

≤ αRτ + 1

=⇒ qbin

(

Γ(τ);Rτ ,
nτ

Rτ − 1

)

≤ αRτ + 2.

Then qn(τ,Γ(τ)) − αRτ ≤ qbin (Γ(τ);Rτ , nτ/(Rτ − 1)) − αRτ ≤ 2.

The proof that for the BH procedure (4.4) is standard so is omitted.

Proof of Lemma S2.4. Let Ft = σ(1 {ξi ≤ s} , s ∈ [t, 1], i = 1, . . . , n). Then

for t running backward from 1 to 0, Ft consist a filtration and for both pro-

cedure (5.1) and the BH procedure (4.4), τ is a stopping time with respect

to the filtration. In particular, {τ ≥ t} ∩ {Rτ− = k} ∈ Ft. Let i1, . . . , iRt−

be the random indices of those ξi that are strictly less than t. By the inde-

pendence of (ξ1,H1), . . . , (ξn,Hn) and Vt− = Hi1 + . . . + HRt−
, it is not dif-

ficult to see that for any t, A ∈ Ft, k ≥ 0, and n1 < . . . < nk, condition-

ing on E = {Rt− = k, i1 = n1, . . . ik = nk}, Vt− and A are independent,

i.e. P ({Vt− = v} ∩ A |E) = P ({Vt− = v} |E) × P (A |E). Consequently,

P (Vt− = v | τ = t, E) = P (Vt− = v |E). By Proposition 2.1, the right end is

P (S = v), with S ∼ Bin(k, nt/Gn(t)). Since the conditional probability does not

involve n1, . . . , nk, then P (Vt− = v | τ = t, Rt− = k) = P (S = v).

S3. Supercritical case with increasing sparsity of false nulls

Let ζ
(n)
k be defined as in (S2.4). We need two lemmas in order to prove

Theorem 5.2.

Lemma S3.1. Given p0 ∈ (0, 1), for any ǫ > 0,

lim
n→∞

sup
p∈[p0,1]

P (|X1,p + · · · +Xn,p − np| ≥ ǫn) = 0.

where for each p, X1,p,X2,p, . . . are i.i.d. ∼ Bernoulli(p).

Lemma S3.2. If kn ≤ n satisfies kn → ∞, then

sup
kn≤k≤n

∣
∣
∣
∣

ζn:k

k/n
− 1

∣
∣
∣
∣

P−→ 0.
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Proof of Theorem 5.2. Assume the lemmas are true for now. Fix ǫ > 0 such

that (1 − ǫ)2 limn→∞ α
(n)
∗ > α. Then by condition (5.5), for n large enough,

(1 − ǫ)2/F ′
n(0) = (1 − ǫ)2α

(n)
∗ /(1 − πn) > α.

First, we show that for some K0 > 0, P (Rτ < K0) → 1. Let mn(t) = Rt∨kn.

Then

n(t ∨ ξn:kn
)

Rt ∨ kn
≥
nF ∗

n

(
ζmn(t)

)

mn(t)
. (S3.1)

By the selection of kn, mn(t) → ∞. Then by the convexity of F ∗
n(x) (because Fn

is concave) and Lemma S3.2,

nF ∗
n

(
ζmn(t)

)

mn(t)
≥p

F ∗
n ((1 − ǫ)mn(t)/n)

mn(t)/n

≥ (1 − ǫ)(F ∗
n)′(0) =

1 − ǫ

F ′
n(0)

≥ α

1 − ǫ
(S3.2)

and hence by Lemma S3.1, there is K0 > 0, such that for all K ≥ K0,

qbin

(

1 − γ; K,
1 − ǫ

F ′
n(0)

)

>
(1 − ǫ)2K

F ′
n(0)

> αK.

Combined with (S3.1) and (S3.2), this implies

P




⋂

t:Rt≥K0

{

qbin

(

1 − γ; Rt,
n(t ∨ ξn:kn

)

Rt ∨ kn

)

> αRt

}


→ 1.

As a result, P (Rτ < K0) → 1.

Now suppose condition (5.6) is satisfied. We show parts (a)−(d) in sequel.

(a) Note that

Rτ = max

{

k ≥ 1 : qbin

(

1 − γ; k,
nξn:(k∨kn)

k ∨ kn
∧ 1

)

≤ αk

}

.

Because P (Rτ < K0) → 1 and kn → ∞, P (Rτ = R′
n) → 1, where

R′
n = max {k ≥ 1 : qbin (1 − γ; k, pn ∧ 1) ≤ αk}

with pn = nξn:kn
/kn. Since pn

P−→ α∗, by the properties of qbin as listed before

the proof of Lemma S2.3, part (a) then follows from

P (qbin(1 − γ; k, pn) ∈ {qbin(1 − γ; k, α∗), qbin(1 − γ; k, α∗) + 1}) → 1.
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(b) Since Fn is concave, given Rτ = ℓ > 0 and τ = t, Vτ is stochastically

dominated by Bin(ℓ, (1 − πn)t/Fn(t)), but stochastically dominates Bin(ℓ, (1 −
πn)/F ′

n(0)). Because τ
P−→ 0, (1−πn)τ/Fn(τ)

P−→ α∗. Part (b) therefore follows.

(c) Let Z1, Z2, . . . be i.i.d. ∼ Bernoulli(α∗). If γ < γ∗, then ℓ0 = 0, or else there

were k > 0 such that P (Z1+· · ·+Zk ≤ αk) ≥ 1−γ. Then γ ≥ 1−P (Z1+· · ·+Zk ≤
αk) ≥ γ∗, which is a contradiction. It is clear that ℓ1 = 0. Therefore, by

part (a), Rτ
P−→ 0. On the other hand, if γ > γ∗, then ℓ0 > 0. By part

(b), P (Vτ ≤ αRτ |Rτ = ℓ0) → P (Z1 + · · · + Zℓ0 ≤ αℓ0) ≥ 1 − γ, and hence

limn P (Vτ/Rτ > α |Rτ = ℓ0) ≤ γ. The case Rτ = ℓ1 can be similarly shown as

long as ℓ1 > 0. This completes the proof of (c).

(d) For both procedure (5.1) and the BH procedure (4.4), in order to show that

their respective powers tend to 0, by P (R ≤ K0) → 1, it is enough to show

n − N0
P−→ ∞. Denote sn = F ∗

n(kn/n). Since Mn := #{i ≤ n : ξ
(n)
i ≤

sn, H
(n)
i = 1} ∼ Bernoulli(n, πnGn(sn)) and Mn ≤ n − N0, it is enough to

show nπnGn(sn) → ∞. Since kn/n = Fn(sn) = (1 − πn)sn + πnGn(sn) and

sn/Fn(sn) → α∗ < 1,

πnGn(sn)

kn/n
= 1 − (1 − πn)sn

Fn(sn)
→ 1 − α∗ > 0,

yielding nπnGn(sn) ∼ (1 − α∗)kn → ∞.

Proof of Lemma S3.1. It is enough to show

lim
n→∞

sup
p∈[p0,1]

P (X1,p + · · · +Xn,p > (p + ǫ)n) = 0, and

lim
n→∞

sup
p∈[p0,1]

P (X1,p + · · · +Xn,p < (p − ǫ)n) = 0.

We will only show the first limit. The second one can be shown similarly.

Clearly, when p ≥ 1 − ǫ, P (X1,p + · · · + Xn,p > (p + ǫ)) = 0. If p < 1 − ǫ,

then by Chernoff’s inequality, P (X1,p + · · · +Xn,p > (p+ ǫ)n) ≤ e−nI(p), where

I(p) = supt>0 ((p+ ǫ)t− Λp(t)), with Λp(t) = log(1 − p + pet). Since Λp(t) is

convex and Λ′
p(0) = p, I(p) > 0. It can be verified that I(p) is continuous on

[0, 1 − ǫ). Letting I(p) = ∞ for p ≥ 1 − ǫ, it follows that infp≥p0
I(p) > 0, which

implies the limit.

Proof of Lemma S3.2. ξn:1, . . . , ξn:n have the same joint distribution as

(
S1

Sn+1
, . . . ,

Sn

Sn+1

)
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where Sk = U1 + · · · + Uk and U1, U2, . . . are i.i.d. ∼ Exp(1). By the LLN,

Sn+1/n
P−→ 1. Therefore, it is enough to show supk≥kn

|Sk/k − 1| P−→ 0, which

follows from the strong law of large numbers (SLLN).

S4. Nonsparse case

Proof of Theorem 4.1. The proof of part (a) is omitted because it follows

closely Genovese and Wasserman (2002). For part (b), let R′ be the number of

projections in (4.3). Then by Proposition 4.1, P (R′ > kn) → 0. Since P (R >

0) ≤ P (R′ > kn), part (b) follows.

To prove Theorem 4.2, we need the following standard result for empirical

processes.

Lemma S4.1. Suppose τn is a sequence of random variables taking values in

[0, 1], such that for some u ∈ (0, 1), τn
d→ u as n→ ∞. Then, letting π0 = 1−π,

Vτn
− nπ0τn

√

nπ0u(1 − π0u)

d→ N(0, 1).

Following the proof for the sparse case, for procedure (4.7), define

τn = sup

{

t ∈ [0, 1] : qbin

(

Γ∗(t); Rt,
π0n(t ∨ ξn:kn

)

Rt ∨ kn
∧ 1

)

≤ α(Rt ∨ 1)

}

and for the BH procedure (4.3), define τn = sup {t ∈ [0, 1] : π0nt ≤ Rt}. Then

following the same notations, R = Rτ and V = Vτ .

The proof of Theorem 4.2 follows closely that of Theorem 5.1, so we only

give its sketch.

Proof of Theorem 4.2. (a) Following Genovese and Wasserman (2002), τ
P−→

u∗, with u∗ ∈ (0, 1) the only positive solution to π0u = αF (u). By the definition

of R and P (ξi ≤ u∗, Hi = 1) = F (u∗), from LLN, it follows that R/n
P−→

F (u∗) > 0 and hence pFDR ∼ FDR = α. Furthermore, Γ∗(t) can be replaced

with Γ(t) and by Lemma S2.3,

P (Vτ ≤ αRτ ) = P

(

Vτ ≤ qbin

(

Γ(τ);Rτ ,
π0nτ

Rτ
∧ 1

)

+Op(1)

)

.

Denote the binomial quantile on the right hand side by K. Applying the CLT to

the binomial distributions, from τ
d→ u∗, it follows that

K − π0nτ
√

nπ0u∗(1 − α)
∼p

K − π0nτ
√

π0nτ(1 − π0nτ/Rτ )

P−→ Φ∗(Γ(u∗)) .
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Combining this with Lemma S4.1 yields

P (Vτ ≤ αRτ ) → P

(√

1 − π0u∗

1 − α
Z ≤ Φ∗(Γ(u∗))

)

= 1 − γ.

(b) Since kn/n→ 0 whereas R/n
d→ F (u∗) > 0, part (b) easily follows.

Proof of Proposition 4.1. (a) Following the proof of Theorem 4.2 (a),

P (Vτ ≤ αRτ ) → P

(√

1 − π0u∗

1 − α
Z ≤ 0

)

=
1

2
,

where, for the BH procedure (4.3),

τ = τn = sup {t ∈ [0, 1] : π(1 − π)nt ≤ Rt} .

(b) See Chi (2007).

The proof of Theorem 4.3 is almost identical to that of Theorem 5.2 and so

is omitted.

Proof of Proposition 4.2. When α ∈ (α∗, 1 − π), then τ
P−→ u∗. Because

R−V = #
{

k ≤ n : Hk = 1, ξ
(n)
k ≤ τ

}

and n−N0 = # {k ≤ n : Hk = 1}, by the

LLN, ψn
P−→ P (ξ ≤ u∗ |H = 1) = G(u∗). On the other hand, when α < α∗,

then for procedures (4.6) and (4.7), by Theorem 4.1 and 4.2, it is apparent that

ψn = Op(1/n), and for the BH procedure (4.3), from Chi (2007), ψn
P−→ 0 as

well.
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