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The proofs of the theorems are established similarly to the nonhomogeneous

Poisson process models discussed by Wellner and Zhang (2000, 2007). Let C or

Ci, i = 1, 2, . . ., stand for generic constants which may change from line to line

in the proof. Let Pn denote the empirical measure and Gn denote the empirical

process. Denote Λ(TK,j) and Λ0(TK,j) by ΛK,j and Λ0,K,j, respectively. Let

α = (Λ, γ, δ) and α̃n = (Λ̃n, γ̃n, δ̃n). The true parameters are represented by Λ0,

γ0 and δ0.

Proof of Theorem 1. Denote

m̃α(X) =
K
∑

j=1

[

log
Γ(Λk,j + δ)

Γ(Λk,j)Γ(δ)
+ Λk,j log

Yk,j

Yk,j + γ
+ δ log

γ

Yk,j + γ

]

,

M̃n(α) = Pnm̃α(X) and M̃(α) = Pm̃α(X). Then, the MPLE α̃n = arg maxα

M̃n(α). Our proof of consistency will use the one-sided Glivenko-Cantelli theorem

which is summarized as Theorem A.1 by Wellner and Zhang (2000). We first find

the upper envelop function for the function class {m̃α(X) : α ∈ F × R × R}.
Note that Hδ(x) = log Γ(x+ δ)− log Γ(x) is an increasing function of x. We have

m̃α(X) ≤
K
∑

j=1

log
Γ(Λj + δ)

Γ(Λj)Γ(δ)
≤

K
∑

j=1

[Hδ(Λ(T )) − log Γ(δ)] ≤ CK.

Next we show that α̃n is uniformly bounded. γ̃n and δ̃n is bounded because

it is in the bounded compact set R. We only need to show that Λ̃n is uniformly

bounded. Since M̃n(α̃n) − M̃n(α0) ≥ 0, it follows that

Pn

K
∑

j=1

Λ̃n,K,j ≤ Pn

K
∑

j=1

Λ̃n,K,j log
Yj + γ̃n

YK,j
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≤ Pn

K
∑

j=1

log
Γ(Λ̃j + δ̃)

Γ(Λ̃K,j)Γ(δ̃)
+ δ̃ log

γ̃

YK,j + γ̃
− M̃n(α0)

≤ Pn

K
∑

j=1

Hδ̃(Λ(T )) − log Γ(δ̃) − M̃n(α0) ≤ PnCK − M̃n(α0),

where the right hand side has finite limit by strong law of large number. On the

other hand,

lim sup
n→∞

Pn

K
∑

j=1

Λ̃n,K,j ≥ lim sup
n→∞

Pn

K
∑

j=1

1[b,T ](TK,j)Λ̃n,K,j

≥ lim sup
n→∞

Λ̃n(b)
K
∑

j=1

1[b,T ](TK,j) = lim sup
n→∞

Λ̃n(b)µ([b, T ]).

So, Λ̃n is uniformly bounded almost surely for t ∈ [0, b] if µ([b, T ]) > 0 for some

0 < b < T or for t ∈ [0, T ] if µ({T}) > 0.

First consider the case when µ({T}) > 0 and the other case is similar. We

have

lim sup
n→∞

Λ̃n(b) ≤ C

µ({T}) = MT <∞.

By Helly-Selection Theorem, (Λ̃n, γ̃n, δ̃n) has a subsequence (Λ̃n′ , γ̃n, δ̃n) con-

verges to α+ = (Λ+, γ+, δ+) where Λ+ is an increasing function on [0, T ] taking

values in [0,MT ]. Consider the function class

ℵ = {m̃α(X) : (γ, δ) ∈ R×R,Λ ∈ FT },

where FT = {Λ ∈ F : Λ(T ) ≤MT + 1}. Note that FT is compact under d. Since

M̃n(α0) → M̃(α0) by strong law of large number and M̃n(α̃n) ≥ M̃n(α0), we have

M̃(α0) ≤ lim infn→∞ M̃n(α̃n). Moreover, we showed that the function m̃α(X)

has an integrable envelope function. By one-sided Glivenko-Cantelli theorem, we

have

lim sup
n→∞

sup
α

(Pn − P )(m̃α) ≤ 0, a.s.

So, lim supn′→∞ M̃n′(α̃n′) ≤ M̃(α+).

Next, we show that α0 is the unique maximum of M̃(α). Taylor expansion

of log(YK,j + γ) at γ0, we have

log(YK,j + γ) = log(YK,j + γ0) +

∞
∑

k=1

(−1)k−1(k − 1)!

(YK,j + γ0)k
(γ − γ0)

k.
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Then,

E[log(YK,j + γ)] = ψ0(Λ0,K,j) − ψ0(δ0) + log γ0

+

∞
∑

k=1

(−1)k−1(k − 1)!
∏k−1

i=0 (δ0 + i)
∏k−1

i=0 (Λ0,K,j + δ0 + i)

(γ − γ0

γ0

)k
,

E
[ 1

YK,j + γ

]

=

∞
∑

k=1

(−1)k−1k!
∏k−1

i=0 (δ0 + i)
∏k−1

i=0 (Λ0,K,j + δ0 + i)

(γ − γ0)
k−1

γk
0

.

Direct calculation of M̃(α) = Pmα(X) yields that M̃(α) has its unique maxima

when Λ = Λ0, γ = γ0 and δ = δ0. Thus, α+ = α0, a.s. Finally, the dominated

convergency theorem yields the consistency of α̃n under d.

Proof of Theorem 2. We derive the rate of convergence of (Λ̃n, γ̃n, δ̃n) by

checking the conditions in Theorem 3.2.5 or Corollary 3.2.6 of van der Vaart and

Wellner (1996). Since α0 is the maximum of M̃(α), then the first derivative is zero

at α0 and the second derivative is negative definite. Thus, for α in a neighborhood

of α0, there there exists a constant C such that M̃(α) − M̃(α0) ≤ −Cd2(α,α0).

Let

M̃ρ = {m̃α(X) − m̃α0(X) : d(α,α0) < ρ}
be a class of functions. To find the convergence rate, we need to find φ(ρ) such

that

E sup
d(α,α0)<ρ

‖Gn‖M̃ρ
≤ Cφ(ρ).

We shall find the bracket entropy number for class M̃δ. Let Fρ = {Λ ∈ F :

‖Λ−Λ0‖µ ≤ ρ}. Since Fρ is the class of monotone function, it is well known that

the set of all monotone functions possess a bracketing entropy of the order 1/ǫ.

Therefore, for any ǫ > 0, there exists a set of brackets [Λl
1,Λ

u
1 ], . . . , [Λl

q,Λ
u
q ] with

q < exp(M1/ǫ), such that for any Λ ∈ Fρ, Λl
i(t) < Λ(t) < Λu

i (t) for all t ∈ [Tl, Tu]

for some i and ‖Λu
i −Λl

i‖2
µ ≤ ǫ2. From Lemma 8.2 in Wellner and Zhang (2005),

we also can make these bracketing functions satisfying that Λu
i − Λl

i ≤ γ1 = 2ǫ2
and Λl

i ≥ γ2 = Λ0(Tl)− ǫ2 with ǫ2 = (
√
ǫ2 + δ2/C)2/3 for all t ∈ [Tl, Tu] and i for

sufficient small ǫ and ρ.

Since γ and δ are in a compact set, we can construct an ǫ-net for both γ and

δ, γ1, . . . , γp, with p = M2/ǫ such that for any γ there is s such that |γs − γ| ≤ ǫ.

Similarly we have an ǫ-net for δ, δ1, . . . , δp. We can construct a set of brackets

for M̃ρ: [m̃l
i,s, m̃

u
i,s], i = 1, . . . , q, s = 1, . . . , p, where

m̃l
i,s =

K
∑

j=1

[

Hδ∗s1
(Λl

i(TK,j)) − log Γ(δ∗s2
) + Λu

i (TK,j) log
YK,j

YK,j + γs + ǫ
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+(δs + ǫ) log
δs − ǫ

YK,j + δs − ǫ

]

and

m̃u
i,s =

K
∑

j=1

[

Hδ∗s3
(Λu

i (TK,j)) − log Γ(δ∗s4
) + Λl

i(TK,j) log
YK,j

YK,j + γs − ǫ

+(δs − ǫ) log
δs + ǫ

YK,j + δs + ǫ

]

,

where δ∗si
, i = 1, 2, 3, 4 are constants in [δs − ǫ, δs + ǫ]. In the following, we show

that ‖m̃u
i,s − m̃l

i,s‖P,B ≤ Cǫ2 where ‖ · ‖P,B is the “Bernstein norm” defined by

‖f‖P,B =
√

2P (e|f | − 1 − |f |).

Since 2(ex − 1− x) ≤ x2ex for x > 0, we have ‖f‖2
P,B ≤ P (e|f ||f |2). With simple

algebra, we can see that m̃u
i,s − m̃l

i,s are all uniformly bounded and there exists

a constant C such that

‖m̃u
i,s − m̃l

i,s‖P,B ≤ Cǫ2.

This shows that the total number of ǫ-brackets for M̃ρ will be of order M1/ǫ

exp(CM2/ǫ) and

logN[ ](ǫ, M̃ρ, ‖ · ‖P,B) ≤ C

ǫ
.

Similarly, we can show that P (m̃α(X) − m̃α0(X)) ≤ Cρ2 for any m̃α(X) −
m̃α0(X) ∈ M̃ρ(α0). By Lemma 3.4.3 of van der Vaart and Wellner (1996) or

Lemma 8.3 of van der Vaart (2002),

E∗
P‖Gn‖M̃ρ

≤ CJ[ ](ρ, M̃ρ, || · ||P,B)

(

1 +
J[ ](ρ, M̃ρ, ‖ · ‖P,B)

ρ2
√
n

)

,

where

J[ ](ρ, M̃ρ, ‖ · ‖P,B) =

∫ ρ

0

√

1 + logN[ ](ǫ, M̃ρ(α0), ‖ · ‖P,B)dǫ

= C

∫ ρ

0

√

1 +
1

ǫ
dǫ ≤ C

∫ ρ

0
ǫ−

1
2dǫ ≤ Cρ

1
2 .

So, φn(ρ) = ρ1/2(1+ρ1/2/(ρ2/
√
n)) = ρ1/2+ρ−1/

√
n, and φn(ρ)/ρ is a decreasing

function of ρ, and n2/3φn(n−1/3) = 2n1/2. So, by Theorem 3.2.5 of van der Vaart

and Wellner (1996), we have n1/3d(α̃n, α0) = Op(1).
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Proof of Theorem 3. We first show the asymptotic normal distribution of

θ̃n = (γ̃n, δ̃n)′ with convergency rate
√
n. This is done by checking conditions

A1-A6 of Theorem 7.1 in Wellner and Zhang (2005), which is a generalization

of Huang (1996). Let α = (Λ, γ, δ), θ = (γ, δ), Λt(y) =
∫ y
0 (1 + th(x))dΛ(x) and

hj =
∫ TK,j

0 h(x)dΛ(x). Denote

m(α) =

K
∑

j=1

[

log
Γ(ΛK,j + δ)

Γ(ΛK,j)Γ(δ)
+ ΛK,j log

YK,j

YK,j + γ
+ δ log

γ

YK,j + γ

]

,

m1(α) =
∂m

∂θ
=

( K
∑

j=1

[ δ

γ
−ΛK,j + γ

YK,j + γ

]

,
K
∑

j=1

[

ψ0(ΛK,j +δ)−ψ0(δ)+log
γ

YK,j + γ
]

)

,

m2(α)[h] =
∂m(Λt, γ, δ)

∂t
|t=0 =

K
∑

j=1

[

ψ0(ΛK,j + δ) − ψ0(δ) + log
γ

YK,j + γ

]

hj ,

m11(α) = ∇2
θm =

[

∑K
j=1[− δ

γ2 +
ΛK,j+δ

(YK,j+γ)2
]
∑K

j=1[
1
γ − 1

YK,j+γ ]
∑K

j=1[
1
γ − 1

YK,j+γ ]
∑K

j=1[ψ1(ΛK,j + δ) − ψ1(δ)]

]

,

m12(α)[h] =
∂m2(α)[h]

∂θ
=

( K
∑

j=1

[

− hj

YK,j + γ

]

,
K
∑

j=1

[ψ1(ΛK,j + δ)hj ]

)

m22(α)[h1, h2] =
∂m2(Λt, γ, δ)

∂t

∣

∣

∣

t=0
=

K
∑

j=1

[

ψ1(ΛK,j + δ) − ψ1(ΛK,j)
]

h1
jh

2
j .

Let Ṡ11 = Pm11, Ṡ12 = Pm21 = Pm12 and Ṡ22 = Pm2. The least favorable

directions h∗1 and h∗2 are defined as Ṡ12 − Ṡ22[h
∗, h] = 0 for all h. After straight-

forward algebra, we may choose

h∗1j = − δ

γ(ΛK,j + δ)(ψ1(ΛK,j + δ) − ψ1(ΛK,j))
,

h∗2j =
ψ1(ΛK,j + δ)

ψ1(ΛK,j + δ) − ψ1(ΛK,j)
,

for j = 1, . . . ,K.

To verify A4, we need check Pnm1(α̃n) = op(n
−1/2) and Pnm2(α̃n)[h∗] =

op(n
−1/2). The first part holds since α̃n satisfies the pseudo-score function and

Pnm1(α̃n) = 0. Since (Λ̃n, γ̃n, δ̃n) maximizes Pnm(Λ, γ, δ) over the feasible region,

consider the path (Λ̃n + ǫh, γ̃n, δ̃n) for nondecreasing h. Then,

lim
ǫ↓0

d

dǫ
Pnm(Λ̃n + ǫh, γ̃n, δ̃n) = Pnm2(α̃n)[h] = 0.
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We may choose h = h∗1 and h = −h∗2 to show the second part, where h∗1 is an

increasing function and h∗2 is a decreasing function.

To verify A5, note that

√
n(Pn − P )(m1(α;X) −m1(α0;X)) = Gnaα(X),

√
n(Pn − P )(m2(α;X)[h∗] −m2(α0;X)[h∗]) = Gnbα(X),

where

aα(X) =

( K
∑

j=1

[ δ

γ
− δ0
γ0

− ΛK,j + γ

YK,j + γ
+

Λ0,K,j + γ0

YK,j + γ0

]

,

K
∑

j=1

[

ψ0(ΛK,j + δ) − ψ0(δ)

−ψ0(Λ0,K,j + δ0) + ψ0(δ0) + log
γ

YK,j + γ
− log

γ0

YK,j + γ0

]

)

,

bα(X) =

( K
∑

j=1

[

ψ0(ΛK,j + δ) − ψ0(Λ0,K,j + δ0) − ψ0(δ) + ψ0(δ0) + log
γ

YK,j + γ

− log
γ0

YK,j + γ0
]h∗1j ,

K
∑

j=1

[

ψ0(ΛK,j + δ) − ψ0(Λ0,K,j + δ0) − ψ0(δ)

+ψ0(δ0) + log
γ

YK,j + γ
− log

γ0

YK,j + γ0

]

h∗2j

)

.

For any η > 0, define A(η) = {aα : d(α,α0) ≤ η} and B(η) = {bα : d(α,α0) ≤ η}.
Then by applying the same bracketing argument with the rate of convergence

proof, we can show that both classes A(η) and B(η) are P -Donsker. We also

can show that supa∈A(η) ρP (aα(X)) → 0 and supb∈B(η) ρP (bα(X)) → 0. Then,

by Corollary 2.3.12 of van der Vaart and Wellner (1996), we have

sup

|θ−θ0|≤ǫn,‖Λ−Λ0‖µ≤Cn−
1
3

|Gnaα(X)| = oP (1)

and

sup

|θ−θ0|≤ǫn,‖Λ−Λ0‖µ≤Cn−
1
3

|Gnbα(X)| = oP (1).

To verify A6, direct algebra yields

P
{

m1(α;X) −m1(α0;X) −m11(α0;X)(θ − θ0) −m12(α0;X)[Λ − Λ0]
}

≤ C(‖θ − θ0‖2 + ‖Λ − Λ0‖2
µ) = o(|γ − γ0|) + o(|δ − δ0|) +O(‖Λ − Λ0‖2

µ).

Similarly, we can show that

P
{

m2(α;X)[h∗] −m2(α0;X)[h∗] −m21(α0;X)[h∗](θ − θ0)
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−m22(α0;X)[h∗,Λ − Λ0]
}

≤ C(‖θ − θ0‖2 + ‖Λ − Λ0‖2
µ).

So we finish the proof of the first part of Theorem 3.

Recall that

ul = ul(γ) =
1

ωl

n
∑

i=1

Ki
∑

j=1

(

log
YKi,j

YKi,j + γ

)

1
{T

(i)
Ki,j

=tl}
, l = 1, . . . ,m,

and the isotonic version of u1(γ̃n), . . . , um(γ̃n), say Υ̃n(t; γ̃n), is the estimate of

function Υ(t) = −hδ0(Λ0(t)). Since Λ̃n(t) = h−1

δ̃n
(−Υ̃n(t; γ̃n)), we first derive the

asymptotic distribution of Υ̃n(t; γ̃n) and then use the ∆-method to obtain the

asymptotic distribution of Λ̃n(t0). Define two stochastic processes:

Vn(t; γ̃n) =

m
∑

l=1

ωlul(γ̃n)1
{T

(i)
Ki,j

=tl}
, Un(t) =

m
∑

l=1

ωl1{T (i)
Ki,j

=tl}
.

Following the same arguments of Theorem 4.3 in Wellner and Zhang (2000), we

have

P
[

n
1
3 (Υ̃n(t0; γ̃n) − Υ(t0)) ≤ x

]

= P
[

arg min
h

{Vn(t0 + n−
1
3h; γ̃n) − (Υ(t0) + n−

1
3x)Un(t0 + n−

1
3h)} ≥ 0

]

. (1)

Now rewrite Vn and Un as

Vn(t; γ) =
n
∑

i=1

Ki
∑

j=1

(log
YKi,j

YKi,j + γ
)1

{T
(i)
Ki,j

≤t}
= nPn

K
∑

j=1

(log
YK,j

YK,j + γ
)1{TK,j≤t},

Un(t) =
n
∑

i=1

Ki
∑

j=1

1
{T

(i)
Ki,j

≤t}
= nPn

K
∑

j=1

1{TK,j≤t}.

Then the argmin term in right hand side of (1) can be rewritten as

arg min
h

{

Vn(t0 + n−
1
3h; γ̃n) − (Υ(t0) + n−

1
3x)Un(t0 + n−

1
3h)
}

= arg min
h

{

n
2
3 Pn

K
∑

j=1

(

log
YK,j + γ0

YK,j + γ̃n

)(

1
{TK,j≤t+n−

1
3 h}

− 1{TK,j≤t}

)

+n−
1
3Vn(t0 + n−

1
3h; γ0) − n−

1
3

(

Υ(t0) + n−
1
3x
)

Un

(

t0 + n−
1
3h
)

}

.
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By applying the same bracketing argument with the rate of convergence proof,

we also have, for ǫn = Op(n
−1/2),

sup
|γ−γ0|≤epsilonn

n
2
3 Pn

K
∑

j=1

(

log
YK,j + γ0

YK,j + γ

)(

1
{TK,j≤t+n−

1
3 h}

− 1{TK,j≤t}

)

= op(1).

Wellner and Zhang (2000) also showed that

n−
1
3Vn(t0 + n−

1
3h; γ0) − n−

1
3 (Υ(t0) + n−

1
3x)Un(t0 + n−

1
3h)

→D
√

σ2(t0)G′(t0)Z(h) +
1

2
Υ′(t0)G

′(t0)h
2 −G′(t0)xh.

Thus, combining the above results, by the Argmax Continuous Mapping Theo-

rem (Van der Varr and Wellner 1996, page 286), we have the following limiting

process:

arg min
h

{

Vn(t0 + n−
1
3h; γ̃n) − (Υ(t0) + n−

1
3x)Un(t0 + n−

1
3h)
}

→D arg min
h

{

√

σ2(t0)G′(t0)Z(h) +
1

2
Υ′(t0)G

′(t0)h
2 −G′(t0)xh

}

.

Hence,

n
1
3

(

Υ̃n(t0; γ̃n) − Υ(t0)
)

→d
[σ(t0)

2Υ′
0(t0)

2G′(t0)

]
1
3
2 arg max

h
{Z(h) − h2},

where σ2(t0) = var(log Y (t0)
Y (t0)+γ0

). Further, since the convergence rate for δ̃n is√
n,

n
1
3

[

h−1
δ̃n

(Υ̃n(t0; γ̃n)) − h−1
δ0

(Υ̃n(t0; γ̃n))
]

= op(1).

Finally, by ∆-method, we have the proof of the second part of Theorem 3.
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