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Supplementary Material

The proofs of the theorems are established similarly to the nonhomogeneous
Poisson process models discussed by Wellner and Zhang (2000, 2007). Let C or
C;, 1 =1,2,..., stand for generic constants which may change from line to line
in the proof. Let P, denote the empirical measure and G,, denote the empirical
process. Denote A(Tk ;) and Ag(Tk ;) by Ax; and Ag i j, respectively. Let
a=(A,7,9) and &, = (An, Y, Sn) The true parameters are represented by A,
Yo and &p.

Proof of Theorem 1. Denote
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M, (@) = Py (X) and M(a) = Ping(X). Then, the MPLE &, = arg max,
M, (). Our proof of consistency will use the one-sided Glivenko-Cantelli theorem
which is summarized as Theorem A.1 by Wellner and Zhang (2000). We first find
the upper envelop function for the function class {m,(X) : @« € F x R x R}.

Note that Hs(z) = logI'(x 4 6) —log I'(z) is an increasing function of . We have

K
) < Z log <> [H; —1logI'(8)] < CK.
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Next we show that &, is uniformly bounded. 4,, and Sn is bounded because
it is in the bounded compact set R. We only need to show that A,, is uniformly
bounded. Since M, (&) — Mp(ag) > 0, it follows that
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where the right hand side has finite limit by strong law of large number. On the
other hand,

K K
lim sup ]P)n Z An,K,j > lim sup ]Pn Z 1[b,T] (TK,j)An,K,j

K
> lim sup A, (D) Z L 71(Tk ;) = lim sup A () pu([b, T7).

n—oo . n—oo
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So, A, is uniformly bounded almost surely for ¢ € [0,b] if u([b,T]) > 0 for some
0<b<Torfortel0,T]if n({T}) > 0.

First consider the case when p({7'}) > 0 and the other case is similar. We
have

C
lim sup A, (b) <
n—o0 p({T})
By Helly-Selection Theorem, (Anﬂn,én) has a subsequence (An/,fyn,gn) con-
verges to at = (AT 4", §T) where AT is an increasing function on [0, 7] taking
values in [0, M7]. Consider the function class

= Mpr < .

R = {1ia(X) : (7,0) € R x R, A € Fr},

where Fr = {A € 7 : A(T) < My +1}. Note that Fr is compact under d. Since
M, (ag) — M (o) by strong law of large number and M, (éy,) > M, (), we have
M (o) < liminf, e M, (). Moreover, we showed that the function 7 (X)
has an integrable envelope function. By one-sided Glivenko-Cantelli theorem, we
have

lim sup sup(P, — P)(my) <0, a.s.

n—oo «

So, limsup,,_, .. My (&) < M(at).
Next, we show that oy is the unique maximum of M («). Taylor expansion
of log(Yk ;j + ) at 4o, we have

Lk —1)!
J +’YO)

o0
k
log(Yi,j +7) = log(Yk.; +70) + ; YK (v — 70"



GAMMA PROCESSES WITH RANDOM EFFECTS S93

Then,

Ellog(Yr j +7)] = wo(/\o Kj) - %(50) + log 7o
(k — T (%o +14) 17 — 70 \*
+Z H (AOKJ+50+'L) ( Y0 )7

E[ 1 ] i( )’Hk‘Hf_ol5o+i)(v—vo)’“‘1.
YK]+’Y k=1 (AOK,]+6O+Z) ,-Yéc

Direct calculation of M () = Pma(X ) yields that M (a) has its unique maxima
when A = Ag, ¥ = v and § = Jy. Thus, ™ = ag, a.s. Finally, the dominated
convergency theorem yields the consistency of &, under d.

Proof of Theorem 2. We derive the rate of convergence of (A, Ay, 5n) by
checking the conditions in Theorem 3.2.5 or Corollary 3.2.6 of van der Vaart and
Wellner (1996). Since oy is the maximum of M («), then the first derivative is zero
at o and the second derivative is negative definite. Thus, for « in a neighborhood
of ayp, there there exists a constant C' such that M(a) — M(ag) < —Cd*(a, ap).
Let
My, = {ma(X) = Mao(X) = d(e, ) < p}

be a class of functions. To find the convergence rate, we need to find ¢(p) such
that
E sw [Gally <Colp).
d(o,a0)<p

We shall find the bracket entropy number for class Mj. Let F,={A € F:
|A—Aollu < p}. Since F, is the class of monotone function, it is well known that
the set of all monotone functions possess a bracketing entropy of the order 1/e.
Therefore, for any € > 0, there exists a set of brackets [Al, AY],..., [Aﬁl, Ay] with
q < exp(M; /e), such that for any A € F,, AL(t) < A(t) < A%(¢) for all t € [T}, T,]
for some i and ||AY — Ai”i < €%, From Lemma 8.2 in Wellner and Zhang (2005),
we also can make these bracketing functions satisfying that A¥ — Aé <y = 2e€9
and AL > y9 = Ag(T}) — €2 with e = (V2 + 62/C)?/3 for all t € [T}, T,,] and i for
sufficient small € and p.

Since v and 4 are in a compact set, we can construct an e-net for both -« and
3, V1, .-, Yp, With p = My/e such that for any v there is s such that |ys — | <e.
Similarly we have an e-net for d, 61,...,d,. We can construct a set of brackets
forM [l my ] i=1,...,q,s=1,...,p, where

ZS’

K

Yk i
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m. .= E H(;; (A(T’K7 )) — logF(5 ) + Al (TK7 ) log

1,8 o |: 1\ J S2 (] J YK,j +s+e€
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s — €
+(0s +€)log —————
(S 6) gYKJ_i_(SS_e}
and
=S |Hs: (A“(Tk;)) —logT(6%,) + AL(Tk ;) log ——F
1,8 J;[ 53( z( K:])) g (54) Z( KJ) gYK,j‘i"Ys_e
0s + €
+(0s — €)log —— |,

where 63, i = 1,2, 3,4 are constants in [§s — €, ds + ¢]. In the following, we show
that |/, — m§75]]p,3 < Ce€* where || - ||pp is the “Bernstein norm” defined by

1£lp.5 = /2Pl — 1~ | fI).

Since 2(e® — 1 —z) < 22%e® for x > 0, we have HfH%B < P(elfl|£]?). With simple
!

algebra, we can see that mj'; —m; ; are all uniformly bounded and there exists
a constant C such that

i, —mi Jlpp < CE.

This shows that the total number of e-brackets for Mp will be of order M /e
exp(CMs/e) and
~ C
log N j(e, M, || - lp,B) < -
Similarly, we can show that P (/s (X) — Mgy (X)) < Cp? for any mq(X) —
Mag(X) € M,(ag). By Lemma 3.4.3 of van der Vaart and Wellner (1996) or
Lemma 8.3 of van der Vaart (2002),

. ~ J| (vavu'HP,B)
EplGallyz, < CJpylp, My, [[ - [Ip5) (1 + =L pap\/a :

where

- P =
T Myl ) = [ /14108 Ny e M (o). |- )

P 1 ro
:C'/ 1+—de§C/ € 2de < Cp2.
0 € 0

So, dn(p) = p'2(1+p'2 ) (p?/v/n)) = p'+p~" [/n, and ¢, (p)/p is a decreasing
function of p, and n%3¢, (n~1/3) = 2n'/2. So, by Theorem 3.2.5 of van der Vaart
and Wellner (1996), we have n'/3d(a,,, ag) = O,(1).

N
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Proof of Theorem 3. We first show the asymptotic normal distribution of
0r, = (An,0n)" with convergency rate y/n. This is done by checking conditions
A1-A6 of Theorem 7.1 in Wellner and Zhang (2005) which is a generalization

of Huang (1996) Let oo = (A,7,0), 0 = (v,0), A(y) = [ (1 + th(z))dA(x) and
h; —fTK7h (x). Denote
K F(AK P+ ) Y i y
m(a) = 1 o + Ak jlog ——2— +4lo 7],
(@) — [ ST(Ax,)T0) 7% Yie; + Vit

nu«w=:%§::(fi{é—ﬁﬁiiiﬂ,fi[woAKj+é)1m<>+bg——1——0,

‘b Y+l Y+
Om(Ay, v, o K
mwm:ﬂgﬁﬁm—;WMm+®wwwmﬁﬁgh,
SE S+ it SR - ] ]
= V2m = J (YK,J+7) J=1lly Yk j+v 7
rmue) = Vom [zj;[% sl S Ak +8) — i (8)]
oma()[h] (& h; K | |
Oma(As, v, o K
ng(a)[hl,h2] — %‘tzo = Z [@bl(AK,j =+ 5) — ¢1(AKJ)] hjlh?

7=1
Let S’H = Pmqq, S’lg = Pm9y; = Pmio and S’gg = Pmsy. The least favorable

directions h] and h3 are defined as Sia — ng[h*, h] =0 for all h. After straight-
forward algebra, we may choose

. 1)
Y Ak 4+ 6) (Wi (Akj +0) — Yi(Ak )]
. Ya(Ar +9)
2

7 (A +0) — i (Aky)
forj=1,..., K.

To verify A4, we need check P,mi(ay,) = 0,(n™/2) and P,ma(a,)h*] =
op(nfl/ 2). The first part holds since &, satisfies the pseudo-score function and
P,,m1(&,) = 0. Since (/NXn, Ty O ) maximizes P,m(A,~, d) over the feasible region,
consider the path (A, + eh Ay On ) for nondecreasing h. Then,

d
thOl de an(A + €h 'Ynaén) = anQ(dn)[h] = 0.
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We may choose h = h] and h = —hj to show the second part, where h] is an
increasing function and A3 is a decreasing function.
To verify A5, note that

Vn(P, — P)(my(a; X) — my(ap; X)) = Gran(X),
V(B — P)(ma(os X)[h*] — ma(ao; X)) = Gubal(X),

where
K6 S0 Axj+v Aok, + &
o (X) = S0 KiTT COKGT R (Arj+ 8) — o(6
() (; [’y Y  Yrj+tv  Yij+ } ; {wo K. +8) = o(0)
v Y0
— (A Y 1) I —1
Yo(Ao,k,j + 00) + o(do) + log e og YK,jJr’YoD’
K Y
bo(X) = (; [%(AKJ +0) — o(Ao,x,; + 90) — Yo(d) + Yo(do) + log Vi, +5
K
—log —— YK,] +’y I [% (Ak,j +6) — to(Ao,k,j + do) — 1o(d)

7j=1

i "0
+19(dg) +log ——— — 1o 7}”‘)
Y0(do) gYK,jJr'y gYKj+’Yo 2

For any n > 0, define A(n) = {aq : d(a, ap) < n} and B(n) = {by : d(a, ap) < n}.
Then by applying the same bracketing argument with the rate of convergence
proof, we can show that both classes A(n) and B(n) are P-Donsker. We also
can show that supge () PP(@a(X)) — 0 and supye () pP(ba(X)) — 0. Then,
by Corollary 2.3.12 of van der Vaart and Wellner (1996), we have

sup |Graq(X)| =op(1)
160—80|<en, A~ Aof| <Cn 3

and

sup |Gnba(X)| = op(1).
160—80|<en, A~ Aof| <Cn 3

To verify A6, direct algebra yields
P{ml(&; X) —mi(ao; X) —mai(ao; X)(0 — o) — miz2(ao; X)[A — Ao]}
< C([10 = 6ol + IA = Aol[2) = o(ly = 70l) + o(|8 = do|) + O(|A = Aol[7,).
Similarly, we can show that

P{m2(a; X)[P*] = ma(ao; X)[R*] — mai (ao; X)[R7](6 — 0o)



GAMMA PROCESSES WITH RANDOM EFFECTS S97

—ng(ao; X)[h*,A - Ao]}
< C([10 = 6ol* + 1A = Aoll).

So we finish the proof of the first part of Theorem 3.
Recall that

n K;

1
_ 17.7 . —
up = w7y ( ){T@j:tz}’ l=1,...,m,
=1 j=1 Kis

and the isotonic version of ui (), ..., Um(n), say Tn(t;:yn), is the estimate of
function Y(¢) = —hs,(Ao(t)). Since A, (t) = hgl(—Tn(t;ﬁn)), we first derive the
asymptotic distribution of T, (¢;%,) and then use the A-method to obtain the
asymptotic distribution of A, (¢g). Define two stochastic processes:

m m
= Zwlul(:yn)l{Tl((i')j:tl}, Un(t) = an{T;((i.)j:t }
=1 B =1 v

Following the same arguments of Theorem 4.3 in Wellner and Zhang (2000), we
have

P[0 (Ta(toi i) = T(to)) < 2

Then the argmin term in right hand side of (l) can be rewritten as

arg min {Vn(to + 0730 A) — (X(to) + n~32)Un(to + n—%h)}

2 K Y.+
_ 2 K,j 0 —
= arg mm { 5P Z ( YK py %) (1{TK’j§t+n_%h} Ly, St})

03V (ty + 0 8hsn) —n 3 (T(to) + n—%x> U, (to + n—%h) }
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By applying the same bracketing argument with the rate of convergence proof,
we also have, for ¢, = O,(n"1/2),

waﬂyoIséus};ssilonnng]P> Z ( 1;;]]—:—10) <1{TK,,7St+n’%h} - 1{TK"7'St}) = o).
Wellner and Zhang (2000) also showed that
n8Valto + 0”5k n0) = 75 (Y(to) + 0 %) Un(to + 1 ¥h)
D 2 C eV Z(h) + %T’(tO)G’(tO)hQ G (ty)zh.

Thus, combining the above results, by the Argmax Continuous Mapping Theo-
rem (Van der Varr and Wellner 1996, page 286), we have the following limiting
process:

arg mhin {Vn(to + n_%h; In) — (Y(to) + n_%x)Un(tO + n_%h)}
" argmin { /o2 (00)G (ro (1) + %T’(tO)G’(to)hz ~ G (to)eh )}
Hence,

1/~ o 21 %
b (Taltoin) = Yt0)) 1 [0 2arg (i) - 12,

where o2(tg) = var(log Yz(f§?270)' Further, since the convergence rate for 4, is
v,
10, 1% N
03 (15 (Taltor i) = by (Talto: )] = 0p(1).

Finally, by A-method, we have the proof of the second part of Theorem 3.
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