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Abstract: There is a substantial literature on the estimation of error rate, or risk,

for nonparametric classifiers. Error-rate estimation has at least two purposes: ac-

curately describing the error rate, and estimating the tuning parameters that per-

mit the error rate to be mininised. In the light of work on related problems in
nonparametric statistics, it is attractive to argue that both problems admit the

same solution. Indeed, methods for optimising the point-estimation performance

of nonparametric curve estimators often start from an accurate estimator of error.

However, we argue in this paper that accurate estimators of error rate in classifi-

cation tend to give poor results when used to choose tuning parameters; and vice

versa. Concise theory is used to illustrate this point in the case of cross-validation
(which gives very accurate estimators of error rate, but poor estimators of tuning

parameters) and the smoothed bootstrap (where error-rate estimation is poor but

tuning-parameter approximations are particularly good). The theory is readily ex-

tended to other methods, for example to the 0.632+ bootstrap approach, which

gives good estimators of error rate but poor estimators of tuning parameters. Rea-
sons for the apparent contradiction are given, and numerical results are used to

point to the practical implications of the theory.

Key words and phrases: Bayes risk, bootstrap, cross-validation, discrimination,

error rate, kernel methods, nonparametric density estimation, risk.

1. Introduction

Cross-validation is a widely used technique for estimating the risk, or er-

ror rate, of classification procedures. It often gives estimators which are close

to unbiased, and which have good mean squared error properties. In fact,

cross-validation is frequently viewed as the method to beat when alternative

approaches to risk estimation are suggested. See, for example, Efron (1983) and

Efron and Tibshirani (1997).

One might expect that good performance in estimating risk would be ac-

companied by good performance in determining the values of tuning parameters

that minimise risk. Indeed, in a number of related model-selection problems,

computing a good estimator of error is the first step in approximating the values

of the parameters that minimise error. Early work of this type includes that of

Hall (1983), Bowman (1984), Stone (1984) and Faraway and Jhun (1990).
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However, in important ways the problem of risk estimation in classification is

significantly different from a number of apparently similar problems in nonpara-

metric statistics. A major reason is that the tuning parameters used to construct

classifiers may influence performance only in a relatively small number of places,

for example the places where population densities cross. Therefore, the impact

that the parameters have on risk can be relatively minor. As a result, in classi-

fication problems, it is possible to construct a particularly accurate estimator of

risk which is of very little value for estimating tuning parameters; cross-validation

turns out to be of this type. The contrary case also arises — empirical risk-based

methods for estimating tuning parameters may perform that task very well, but

give poor estimators of risk.

It is unsurprising that this problem is not well understood. Indeed, it is

somewhat contradictory to argue that one should not seek an accurate estima-

tor of risk when attempting to minimise that quantity empirically. However,

a consequence of not fully understanding the problem is that methods such as

cross-validation, and its jackknife or bootstrap competitors, which are designed

to minimise risk, are in practice pressed into service to select tuning parameters.

This can be inappropriate.

In the present paper we point to the shortcomings of cross-validation for

estimating tuning parameters for classifiers, and also to the advantages of certain

other approaches that give accurate estimators of tuning parameters but poor

estimators of risk. In order to make our discussion and technical arguments

transparent, we treat a relatively simple, univariate problem, where standard

kernel estimators are used as the basis for classifiers. However, similar results

can be derived in multivariate settings, and also when methods other than kernel

estimators are used for classification. In the kernel case, the tuning parameters

referred to above are bandwidths.

In this paper we derive theoretical results that address the following points.

(a) The cross-validation estimator of risk is root-n consistent and, in fact, is

asymptotically equivalent to a nonparametric maximum likelihood estimator.

(b) Notwithstanding property (a), the part of the cross-validation estimator that

depends on the tuning parameters is very highly stochastically variable, so much

so that it has an unboundedly large number of local extrema which bear no im-

portant asymptotic relationship to the parameters that actually minimise risk.

(c) In marked contrast to (a), a smoothed bootstrap estimator of risk is highly

biased, and in consequence can have poor convergence rates relative to the cross-

validation approach. (d) Despite the drawbacks noted in (c), the smoothed boot-

strap method produces accurate estimators of the parameters that minimise risk.

(e) The smoothed bootstrap method is particularly robust against inappropri-

ate choice of smoothing parameters, and in fact those quantities can be selected
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within a very broad range without appreciably influencing performance. Techni-

cal proofs of our results are given in Ghosh and Hall (2006).

Property (e) will be reinforced by our numerical work in Section 3, which

will also introduce an adaptive, empirical approach to smoothing the bootstrap.

Property (b) has been discussed by Hall and Kang (2005), but without a concise

mathematical account of the issues involved. The erratic way in which the cross-

validation criterion varies with tuning parameters is well known.

More generally, the theoretical results given in the present paper can be

augmented by others, which show that some of the problems that afflict cross-

validation can be reduced by applying Breiman’s (1996) bagging technique to

dampen the effects of excessive variability. However, it seems difficult to achieve

good performance of the smoothed bootstrap approach, and for that reason we

omit from this paper a theoretical treatment of bagged cross-validation.

The fact that bagging does not redress all the problems associated with

cross-validation is highlighted in our numerical work, where we treat three ad-

ditional approaches: bagged cross-validation, and the bootstrap methods sug-

gested by Efron (1983) and Efron and Tibshirani (1997), respectively. In terms

of their performance at estimating tuning parameters, the first and second of

these techniques lie between cross-validation (at the lower-performance end of

the scale) and the smoothed bootstrap (at the upper end). The method of

Efron and Tibshirani (1997) gives particularly poor estimators of tuning param-

eters.

There is an especially large literature on nonparametric classification. Kernel-

based approaches date from work of Fix and Hodges (1951). More generally, a

large variety of classification methodologies has been developed based on empir-

ical forms of the Bayes classifier. Relatively recent contributions include those

of Chanda and Ruymgaart (1989), Krzyżak (1991), Lapko (1993), Pawlak (1993),

Lugosi and Pawlak (1994), Devroye, Györfi and Lugosi (1996), Lugosi and Nobel

(1996), Ancukiewicz (1998), Yang (1999a,b), Mammen and Tsybakov (1999),

Steele and Patterson (2000), and Lin (2001).

2. Main Results

2.1. Error rates and their estimators

Let F and G denote distributions with respective densities f and g, and let

X = {X1, . . . ,Xm} and Y = {Y1, . . . , Yn} be datasets drawn respectively from F

and G. We consider ways of classifying a new data value, x say, to either the F

or the G population.

Assume that the distributions F and G have respective prior probabilities p

and 1 − p. Define

∆ = p f − (1 − p) g . (2.1)
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The Bayes classifier, A0 say, allocates x to F or G according as ∆(x) is positive

or negative, respectively. The corresponding error rate, or risk, for classification

of data on a compact interval I, is

errA0
= p

∫

I

I{∆(x) < 0} f(x) dx + (1 − p)

∫

I

I{∆(x) > 0} g(x) dx .

A general class of classifiers can be constructed by replacing ∆ by an esti-

mator, ∆̂. As a prelude to defining ∆̂ we introduce density estimators f̂ and ĝ,

and their leave-one-out versions f̂−i and ĝ−i. Let K be a nonnegative kernel and

h1 and h2 be bandwidths, and put m1 = m − 1, n1 = n − 1,

f̂(x) =
1

mh1

m∑

i=1

K

(
x − Xi

h1

)
, ĝ(x) =

1

nh2

n∑

i=1

K

(
x − Yi

h2

)
,

f̂−i(x) =
1

m1h1

m∑

j=1

(i)
K

(
x − Xj

h1

)
, ĝ−i(x) =

1

n1h2

n∑

j=1

(i)
K

(
x − Yj

h2

)
,(2.2)

where
∑(i)

j denotes summation over indices j not equal to i. Define

∆̂ = p f̂ − (1 − p) ĝ .

The empirical classifier A1, which assigns x to distribution F if ∆̂(x) > 0,

and to G otherwise, has the following empirical risk:

emperrA1
(h1, h2) = p

∫

I

I
{
∆̂(x) < 0

}
f(x) dx + (1 − p)

∫

I

I
{
∆̂(x) > 0

}
g(x) dx .

Its average value over all possible datasets X and Y, i.e. its expected value, is

errA1
(h1, h2) = p

∫

I

P
{
∆̂(x) < 0

}
f(x) dx + (1 − p)

∫

I

P
{
∆̂(x) > 0

}
g(x) dx .

The cross-validation estimator of errA1
is

CV(h1, h2) =
p

m

m∑

i=1

I
{
∆̂f,−i(Xi) < 0,Xi ∈ I

}

+
1 − p

n

n∑

i=1

I
{
∆̂g,−i(Yi) > 0, Yi ∈ I

}
, (2.3)

where ∆̂f,−i = p f̂−i − (1 − p) ĝ and ∆̂g,−i = p f̂ − (1 − p) ĝ−i.

An alternative way of estimating risk is to resample from smoothed versions

of the empirical distributions of X and Y , conditional on the data in Z = X ∪Y,

using bootstrap methods. Specifically, let f̃ and g̃ denote the versions of f̂ and
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ĝ, respectively, at (2.2), constructed using bandwidths h3 and h4 in place of

h1 and h2. (Potentially, the bandwidths employed at this point can be quite

different from those used to construct the classifier.) Let X ∗ = {X∗
1 , . . . ,X∗

m}

and Y∗ = {Y ∗
1 , . . . , Y ∗

n } denote datasets drawn by sampling randomly, conditional

on Z, from the distributions with respective densities f̃ and g̃. Construct the

versions f̂∗ and ĝ∗ of f̂ and ĝ from these resamples, on this occasion using the

original bandwidths h1 and h2:

f̂∗(x) =
1

mh1

m∑

i=1

K

(
x − X∗

i

h1

)
, ĝ∗(x) =

1

nh2

n∑

i=1

K

(
x − Y ∗

i

h2

)
.

Put ∆̂∗ = p f̂∗ − (1 − p) ĝ∗. The bootstrap classifier consists of assigning a new

data value x to F if ∆̂∗(x) > 0, and assigning it to G otherwise.

The long-run error rate of this classifier, conditional on the data Z, is given by

êrrA1
(h1, h2) = p

∫

I

P
{
∆̂∗(x) < 0

∣∣Z
}

f̃(x) dx+(1−p)

∫

I

P
{
∆̂∗(x)

∣∣Z
}

g̃(x) dx .

In particular, êrrA1
is an approximation to errA1

alternative to the cross-validation

criterion, CV.

Results related to those described in subsequent sections can be derived

for discriminative nonparametric approaches to classification, rather than the

generative one discussed above. For example, denoting the X and Y populations

by 0 and 1, respectively, taking W = 0 or 1 in this context, and writing Z to

denote a new data value (either an X or a Y ), we can treat the problem of

estimating π(z) ≡ P (W = 0 |Z = z) as one of regression rather than density

estimation. One option would be to run a local-polynomial regression smoother

through the data pairs (0,X1), . . . , (0,Xm), (1, Y1), . . . , (1, Yn), where each value

is interpreted as an observation of (W,Z) (here, p is taken to equal m/(m + n)),

and use the estimated regression function, π̂, to effect classification by assigning

a new datum Z to X if and only if π̂(Z) > 1/2. The properties that we discuss

below, relating (for example) to the high degree of variability of cross-validation

for choosing bandwidth, all have parallels in the setting of this discriminative

method.

2.2. Summary of properties of CV, emperr and êrr as approximations

to risk

It is known (see e.g., Hall and Kang (2005)) that the bandwidths that are

optimal in the sense of minimising the risk errA1
of the empirical classification

rule A1, are generally of the same size as h = n−1/5. Therefore we assess risks

when the bandwidths are on this scale.
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In this context, the “regret” of the rule A1 is of size h4. That is, when both
h1 and h2 are of size n−1/5, the difference between the risk errA1

for A1, and
the risk errA0

for the Bayes classifier, is asymptotic to a constant multiple of h4.
(See e.g., Hall and Kang (2005), and also (2.14) below.) The regret captures
all of the influence that bandwidth choice has on risk. Moreover the empirical
risk, emperrA1

, also equals the Bayes risk plus a term of order h4. However, in
the case of emperrA1

, the h4 term includes non-negligible stochastic fluctuations
that depend substantially on h1 and h2, but in a manner that does not reflect
the dependence of errA1

on those bandwidths.
We show that the cross-validation estimator of risk equals a term which does

not depend on either of the bandwidths h1 and h2, plus a highly stochastically
volatile quantity which is of size h7/2, and so is an order of magnitude larger
than h4. More particularly, the fluctuations of the cross-validation criterion CV,
as a function of the bandwidths h1 and h2, are largely unrelated to the ways
in which either the risk errA1

, or its empirical form emperrA1
, are influenced

by the bandwidths. Therefore, minimising the cross-validation criterion does
not correspond, in an asymptotic or in another meaningful sense, to minimising
either the true or the empirical risk.

However, we note that CV(h1, h2) is close to being an unbiased estimator of
errA1

(h1, h2), indeed so close that it captures all the main effects of bandwidth
choice on risk. Therefore, the difficulties that afflict cross-validation arise from
stochastic variability, not systematic error.

The strengths and weaknesses of êrrA1
, as an alternative to CV, are diamet-

rically opposite to those of CV. In particular, êrrA1
suffers from substantial bias

as an estimator errA1
, but the stochastic variability of that portion of êrrA1

that
captures the main effects of bandwidth is particularly low. As a result, êrrA1

can
be used to effectively choose bandwidths for density-based classifiers.

2.3. Details of properties of cross-validation

We assume that:

K is symmetric, compactly supported, integrates to 1 and has two

bounded derivatives; the function ∆, defined at (2.1), vanishes in

I only at r isolated points, say y1, . . . , yr, in the interior of I,

and at each point yi, ∆′(yi) 6= 0; f and g are continuous on the

real line, and have two Hölder-continuous derivatives in an open

neighbourhood of yi for 1 ≤ i ≤ r; m and n increase together, and

n/m → ρ, where 0 < ρ < ∞.

(2.4)

Put h = n−1/5. Given B > 1, let H = H(B) denote the set of values of hu for
which B−1 ≤ u ≤ B. We take both the bandwidths h1 and h2, used to construct
the estimators at (2.2), to be in H.
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For 1 ≤ i ≤ r, let WXi, WY i, GXi and GY i denote independent stochastic

processes, with WXi and WY i being standard Wiener processes, and GXi and GY i

Gaussian processes having zero means and covariance given by, for both Z = X

and Z = Y ,

Cov
{
GZi

(
t(1)

)
, GZi

(
t(2)

)}
=

∫
K

(
s t(1)

)
K

(
s t(2)

)
ds . (2.5)

Put κ =
∫

K2 and κ2 =
∫

x2 K(x) dx. Given 0 < ρ < ∞ and u1, u2 > 0, let

u = (u1, u2),

d(y |u) =
1

2
κ2

{
p u2

1 f ′′(y) − (1 − p)u2
2 g′′(y)

}
, (2.6)

Vi(u) =
1

∆′(yi)

[
p {ρ f(yi)}

1

2
GXi(u1)+(1−p)g(yi)

1

2
GY i(u2)+d(yi|u)

]
, (2.7)

T (u) =
r∑

i=1

[
p {ρ f(yi)}

1

2
WXi{Vi(u)} + (1 − p) g(yi)

1

2
WY i{Vi(u)}

]
,

τ(u) =
1

2
κ

r∑

i=1

|∆′(yi)|
−1

{
p2 ρ f(yi)u−1

1 + (1 − p)2 g(yi)u−1
2

}

+
1

2

r∑

i=1

|∆′(yi)|
−1 d(yi |u)2 . (2.8)

If I = [a, b], define y0 = a and yr+1 = b and, for 1 ≤ i ≤ r + 1, let Li denote

the number of indices j for which yi−1 < Xj < yi if ∆ < 0 on (yi−1, yi), or the

number of j for which yi−1 < Yj < yi if ∆ > 0 on (yi−1, yi). Put pi = p/m in the

first of these cases, and pi = (1 − p)/n in the second.

Theorem 2.1. Assume conditions (2.4). Then the stochastic processes WXi,

WY i and Vi can be constructed, depending in each instance on n, such that, with

hj = huj for j = 1 and 2,

CV(h1, h2) =

r+1∑

i=1

pi Li + h
7

2 T (u) + op

(
h

7

2

)
, (2.9)

where the remainder is of the stated order uniformly in B−1 ≤ u1, u2 ≤ B, with

B > 1. Furthermore,

E{CV(h1, h2)} = errA1
+ o

(
h4

)
(2.10)

= errA0
+ 1

2

r∑

i=1

|∆′(yi)|
−1E

{
pf̂(yi)−(1−p)ĝ(yi)

}2
+o

(
h4

)
(2.11)

= errA0
+ h4τ(u) + o

(
h4

)
, (2.12)
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again uniformly in B−1 ≤ u1, u2 ≤ B.

The two main terms on the right-hand side of (2.9) represent a division of

CV(h1, h2) into parts that represent, respectively, the dominant part of CV that

does not depend on the bandwidths h1 and h2, and the dominant part that

is influenced by those bandwidths. In particular, the series
∑

i pi Li does not

depend on h1 and h2. Its expected value equals the risk of the Bayes rule for

classification on the interval I:

E

( r+1∑

i=1

pi Li

)
= errA0

.

The variance of
∑

i pi Li is of order n−1.

If we were given the values of y1, . . . , yr, and told also the signs of ∆ on the

intervals between adjacent values of yi, then the nonparametric maximum likeli-

hood estimator of errA0
would be exactly

∑
i pi Li. In particular, this series has

minimum variance among all unbiased estimators of errA0
, and its convergence

rate, n−1/2, cannot be improved upon. Therefore, the series
∑

i pi Li, which rep-

resents the dominant part of CV and converges to its expected value at the slower

of the rates for the two respective terms in (2.9), cannot be made significantly

more accurate as an approximation to the Bayes-rule risk errA0
.

However, the term
∑

i pi Li does not provide any information about the

effect of bandwidth on classification performance in neighbourhoods of the points

y1, . . . , yr. Of course, that information is crucial to understanding how properties

of the classifier are influenced by its construction. We have to pass to the term

h7/2 T (u) on the right-hand side of (2.9) in order to obtain any information about

how h1 and h2 influence CV(h1, h2).

Revealingly, the second term varies stochastically in a very erratic manner.

Indeed, since the Wiener processes WXi and WY i have fractal sample paths then,

with probability 1, T (u1, u2) has an infinite number of local minima, as a function

of u1 and u2, in any rectangle. Indicative of this high degree of volatility, a graph

of a realisation of the function v = T (u1, u2), as a function of u1 and u2, is, with

probability 1, a surface of fractal dimension exceeding 2.

These difficulties persist even if we take u1 = u2 = t, say. (A choice that

reflects the common practice of using the same bandwidth to construct density

estimators from either dataset.) Of course, in practice the cross-validation crite-

rion CV(ht, ht) has only a finite number of local maxima in any nondegenerate

interval, but the fact that the stochastic approximant T (t, t) has an infinite num-

ber of local maxima there implies that the number of local minima of CV(ht, ht)

in the interval increases without bound as sample size diverges.

These results provide a theoretical explanation of the observed high degree

of stochastic variability of the cross-validation criterion, in terms of the way
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it describes the effect of bandwidth choice on risk. The results also indicate

why choosing the bandwidths to minimise CV is fraught with practical difficulty.

When using cross-validation with real data it is found that the criterion has many

local minima, few of which seem more appropriate than the others, and that this

problem becomes more, rather than less, pronounced as sample size increases.

Both these properties are implied by the theoretical results discussed in the two

previous paragraphs, and so the theory provides insight into practice.

On the other hand, results (2.10)–(2.12) assert that the cross-validation cri-

terion is close to being an unbiased approximation to the risk of the empirical

rule based on ∆̂.

2.4. Discussion of (2.4) and its multivariate version

If it is not true that, as prescribed by (2.4), ∆ “vanishes in I only at r

isolated points... y1, . . . , yr in the interior of I, and [each] ∆′(yi) 6= 0” (call this

assumption (A)), then the most natural alternative condition would arguably

be that “∆ ≡ 0 on a nondegenerate subinterval, I ′ say, of I.” In this case the

classification problem becomes substantially more difficult, since data that take

values in I ′ have equal likelihood of coming from either population. Reflecting

this fact, the minimum size of classification error is an order of magnitude larger

than n−4/5 (its value when (A) holds).

The d-variate analogue of (A) is the following: the set, J say, of points y for

which ∆(y) = 0, is of codimension 1 and of finite measure in d − 1 dimensions;

the slopes at which the functions pf and (1 − p)g meet are bounded away from

zero along J , i.e. |p {∂f(y)/∂yj} − (1 − p) {∂g(y)/∂yj}| is bounded away from

zero uniformly in 1 ≤ j ≤ d and y ∈ J . Call this assumption (B), and take

the two d-variate bandwidth matrices, one for each of the populations, to be

diagonal, with each component a fixed multiple of a common value h. Then it

can be shown that, under assumption (B) and the condition that both densities

have two derivatives, the optimal order of h for classification is n−1/(d+4). In

fact, an expansion of risk has, as its dominant terms, two quantities of respective

sizes (nhd)−1 and h4, leading to multivariate versions of (2.12) above and (2.13)–

(2.15) below, identical to those formulae except that now h = n−1/(d+4), and

τ and τ̂ have different expressions. Background to these properties is given in

Sections 5.3 and 5.4 of Hall and Kang (2005), and properties of cross-validation

can be derived similarly.

2.5. Properties of empirical risk

Here we state and discuss a version of Theorem 2.1 for emperrA1
, rather

than for the cross-validation approximation to the risk. The empirical risk is

not computable in practice, but from some viewpoints one would not expect the
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cross-validation approximation to be markedly inferior to the empirical risk, at

least in terms of the way it reflects properties of the bandwidths. In fact, it is

substantially inferior.

Recall that u = (u1, u2), and define τ̂ = τ + τ̂1, where τ is as at (2.8) and

τ̂1(u) =

r∑

i=1

∆′(yi)

∫ [
I{v < Vi(u)} − P{v < Vi(u)}

]
dv .

Theorem 2.2. Assume conditions (2.4). Then, with Vi as in Theorem 2.1, and

with hj = huj for j = 1 and 2,

emperrA1
(h1, h2) = errA1

(h1, h2) + h4 τ̂1(u) + op

(
h4

)

= errA0
+ h4 τ̂(u) + op

(
h4

)
, (2.13)

where the remainders are of the stated orders uniformly in B−1 ≤ u1, u2 ≤ B,

for any B > 1.

A formula for the error of the classification rule A1 is obtainable directly

from (2.10) and (2.12):

errA1
= errA0

+ h4 τ(u) + o
(
h4

)
, (2.14)

where the positive function τ is given at (2.8). In particular, (2.14) implies that

the regret is asymptotic to a constant multiple of h4. Result (2.13) shows that

the difference between the empirical risk and the actual risk is of the same size

as, but not asymptotically equal to, the regret. The former, multiplied by h−4,

converges in distribution to a nondegenerate random variable which can take both

positive and negative values, whereas the regret, multiplied by h−4, converges to

a positive constant.

More importantly, a comparison of (2.9), (2.13) and (2.14) shows that there

is no useful connection between the parts of CV(h1, h2) that depend on h1 and

h2, and the corresponding parts of either the risk errA1
or its empirical ver-

sion emperrA1
. In particular, the term h7/2 T (u) in (2.9) is an order of magnitude

larger than both h4 τ(u) and h4 τ̂(u), on the right-hand sides of (2.14) and (2.13),

respectively. Moreover, the fluctuations of T (u), as a function of u, bear no re-

lationship to those of τ(u) or τ̂(u). Therefore, cross-validation cannot be used

effectively to choose the bandwidths that minimise either errA1
or emperrA1

.

2.6. Properties of bootstrap estimator of risk

In the light of what we have learned in earlier sections, the properties of

êrrA1
(h1, h2) are relatively transparent. In particular, provided the bandwidths

h3 and h4 (used to construct the density estimators f̃ and g̃) are sufficiently large
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to ensure that f̃ ′′ and g̃′′ are consistent for f ′′ and g′′, respectively, the bootstrap

analogue of (2.14) holds:

êrrA1
(h1, h2) = êrrA0

+ h4 τ(u) + op

(
h4

)
, (2.15)

uniformly in B−1 ≤ u1, u2 ≤ B. In (2.15), êrrA0
denotes the estimator of errA0

that is obtained on replacing, in the definition of errA0
, the unknown densities f

and g by their estimators f̃ and g̃:

êrrA0
= p

∫

I

I
{
∆̃(x) < 0

}
f̃(x) dx + (1 − p)

∫

I

I
{
∆̃(x) > 0

}
g̃(x) dx ,

where ∆̃ = p f̃ − (1 − p) g̃. Note particularly that êrrA0
does not depend on the

bandwidths h1 and h2.

The quantity êrrA0
will generally not be a good estimator of errA0

. In partic-

ular, the relatively large values needed for the bandwidths h3 and h4 will ensure

that êrrA0
suffers from significant bias, although (e.g., under the conditions of

Theorem 2.3 below) it will be consistent. However, this inaccuracy is not neces-

sarily a problem if our aim is determine, from êrrA1
, the influence that h1 and

h2 have on the true risk, errA1
. Since êrrA0

does not depend on h1 and h2, then

the main effect of the influence of those quantities is expressed through the term

h4 τ(u) on the right-hand side of (2.15), and so is exactly the same as main ef-

fect of the influence of h1 and h2 on errA1
; see (2.14). Hence, we can use êrrA1

effectively to choose the bandwidth that minimises risk.

Theorem 2.3. Assume conditions (2.4), and that the bandwidths h3 and h4

both satisfy n(1/5)−ǫhj → ∞ and nǫhj → 0 for some ǫ > 0. Then (2.15) holds,

uniformly in B−1 ≤ u1, u2 ≤ B.

3. Numerical Properties

In this section we report the results of a simulation study addressing numer-

ical properties of risk estimators based on cross-validation and the bootstrap.

We know from our theoretical work that having an estimator of risk that is good

for estimating bandwidth, is not necessarily the same as having a good estima-

tor of risk itself. For example, we showed in Section 2 that the bootstrap gives

an estimator of risk that is seriously biased, relative to the estimator produced

by cross-validation, and that the bootstrap approach nevertheless gives better

bandwidth estimators. Both these results are reflected starkly in numerical ex-

periments, although we report here only the results about bandwidth choice.

Likewise, Efron’s (1983) bootstrap method is known not to be a good estima-

tor of risk, since it usually leads to overestimation (see e.g., Efron and Tibshirani

(1997)), but here we show that it nevertheless performs reasonably well as a

bandwidth selector. On the other hand, Efron and Tibshirani’s (1997) 0.632+
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bootstrap method gives very good estimators of risk, as that paper shows, but it

does not perform well when used to select bandwidth, as we demonstrate below.

For the most part we consider the case where the distributions with densities

f and g are equal-probability mixtures of two univariate normal distributions,

with means 0 and 2 (in the case of f) and 1 and 3 (for g), each component having

variance 0.25. The context where the Normal distributions are both replaced by

lognormal distributions, or by Cauchy distributions, will also be discussed. We

take p = 1/2 and m = n, and h2 = sh1, where s denotes the ratio of a measure of

the scale of f to that for g. This approach is often used in practice. Throughout,

K is the standard Gaussian kernel.

The first panel of Figure 3.1 depicts 100 plots of CV(h1, sh1) as a function

of h1, when s is taken equal to 1. Since the two population distributions have

the same variance then this choice of s is reasonable. We discuss shortly the case

where s is estimated from data.

(a) Cross-validation

(a) Bootstrap with h3 = h4 = 0.3

Figure 3.1. Estimated risk using (a) cross-validation method or (b) the bootstrap.
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(a) Cross-validation (b) Bootstrap with h3 = h4 = 0.3

Figure 3.2. Histogram estimators of empirical bandwidth distributions, when

bandwidths are selected using (a) cross-validation or (b) the bootstrap.

Each curve in Figure 3.1 is computed for a different pair (X ,Y) of random

samples, of sizes m = n = 100. The second panel of the figure shows, for the

same 100 sample pairs, plots of the bootstrap alternative to the cross-validation

criterion, êrrA1
(h1, sh1). We used h3 = h4 = 0.3 when computing the bootstrap

density estimators f̂∗ and ĝ∗.

The erratic nature of the graphs in the first panel of Figure 3.1 reflects the

high degree of variability of cross-validation, demonstrated theoretically in Sec-

tion 2. This suggests that cross-validation has substantial difficulty, relative to

the bootstrap, approximating the optimal bandwidth. That is confirmed by Fig-

ure 3.2, which gives a histogram estimator of the distribution of the bandwidths

that minimise CV(h1, sh1) (in the left-hand panel of Figure 3.2) or êrrA1
(h1, sh1)

(in the right-hand panel). In this setting the theoretically optimal bandwidth, in

the sense of minimising risk under the constraint h2 = sh1, can be shown to be

h1 = 0.26, which value is indicated by a small black triangle on the horizontal

axes. The bootstrap bandwidth estimator is close to being unbiased, and has

low stochastic variability, whereas the cross-validation estimator is skewed to the

right and is very highly variable. Results for different sample sizes, and for other

densities f and g, are similar.

In order to improve the performance of cross-validation we used the boot-

strap aggregation, or bagging, technique suggested by Breiman (1996). From

each sample, a proportion α (where 0 < α < 1) of data was resampled, without

replacement, to form a new subsample. Cross-validation was applied to this sub-

sample to estimate the risk function. This step was repeated many times, and an

overall estimator of risk was obtained by averaging. The first panel of Figure 3.3

shows that the resulting bagged version of CV(h1, sh1) has substantially lower

stochastic variation than its unbagged counterpart.

Of course, when using the bagged form of CV(h1, sh1) to select bandwidth,

we need to correct for the fact that we reduced sample size by the factor α. As
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(a) Bagged cross-validation

(a) Bootstrap with estimated plug-in bandwidths

Figure 3.3. Estimated risk for (a) bagged version of cross-validation or

(b) bootstrap using estimated plug-in bandwidths.

discussed in Section 2, it is known that the optimal bandwidth is of size n−1/5,

and so an appropriate correction is readily obtained by taking the bandwidth

that minimises the bagged form of CV(h1, sh1), and reducing it by multiplying

by the factor α1/5.

As an aid to determining the appropriate value of α we experimented with

different training-sample sizes (m = n = 50, 100, 150 and 200) and different

values of α. In each case, we generated 100 different training samples and com-

puted the true risk function corresponding to the selected bandwidth. Average

values of these risk functions are reported in Figure 3.4, for different values of

α and n. It can be seen that, for n ≥ 100, the method is largely unaffected by

different choices of α, although values in the range 0.2 ≤ α ≤ 0.4 are mildly

preferable. Similar results are obtained for other density pairs (f, g). Therefore

we take α = 0.3 in the work below.
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Figure 3.4. Average risk for the bagged cross-validation rule, expressed as a

function of α, equal to the proportion of the sample that is resampled.

Analogous experiments were conducted to determine appropriate formulae
for the plug-in bandwidths h3 and h4 used in the bootstrap algorithm. Echoing
the wide theoretical range permitted in Theorem 2.3, and reflecting our experi-
ence when determining the amount of bagging that should be applied, the effect
of choice of smoothing parameter was found to be particularly small for n ≥ 100.
Indeed, choice of h3 and h4 does not seem to be a significant issue. Our nu-
merical experiments suggest that if the training-sample sizes are approximately
equal then the choices h3 = n0.05 ĥ1 and h4 = n0.05 s ĥ1 are appropriate in the
bootstrap stage, where ĥ1 is the optimum bandwidth estimated by the bagged
version of cross-validation. This approach was used to produce the second panel
of Figure 3.3.

Figure 3.5 depicts the relative performances of two of the bandwidth selectors
discussed above: bagged cross-validation with sampling fraction equal to 0.3, and
the bootstrap with empirical choice of h3 and h4. (Figure 3.2 gave the analogous
histogram in the case of cross-validation.) For comparison we also include the
bootstrap method suggested by Efron (1983), and the 0.632+ bootstrap method
proposed by Efron and Tibshirani (1997).

Like standard cross-validation based on CV(h1, sh1), the 0.632+ bootstrap
does a good job estimating risk for its own sake and, in particular, produces
estimators that are significantly less biased than those given by the bootstrap
criterion êrrA1

(h1, sh1). However, also like cross-validation, it has poor perfor-
mance when used to estimate bandwidth. Likewise, Efron’s (1983) method is
superior to êrrA1

at estimating risk; the fact that it is inferior to êrrA1
when used

to choose bandwidth is not a contradiction.
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(a) Bagged cross-validation (b) Bootstrap with estimated plug-in
bandwidths

(c) Bootstrap - Efron (d) 0.632+ Bootstrap

Figure 3.5. Histogram estimators of empirical bandwidth distributions, when

bandwidths are selected using (a) bagged cross-validation, (b) bootstrap em-

ploying estimated plug-in bandwidths, (c) Efron’s (1983) method, or (d) the

0.632+ bootstrap.

In practice one would use an estimator, ŝ say, of s, for example the ratio of

standard deviations or of the interquartile ranges. In the normal-mixture case,

results obtained for either of these approaches were virtually identical to that

when s = 1. In particular, Figures 3.1–3.5 were almost unchanged. The results

reported for the remainder of this section will be for the case where s was replaced

by the ratio of interquartile ranges.

In practice, cross-validation leads to an estimator of error rate with multiple

local minima. Ghosh and Chaudhuri (2004) suggested choosing, in such cases,

the maximum of the optimisers. In the present paper we examined performance

of both the minimum and the maximum of the optimisers, and again chose the

latter because it gave reduced misclassification rate.

An alternative to leave-one-out cross-validation is ℓ-fold cross-valdiation,

where the data are divided randomly into ℓ parts. This can be done many

times, using different random partitions, and the error rates aggregated. The

resulting “bagged ℓ-fold cross-validation” method can be used as the basis for

bandwidth selection, by minimising the bagged criterion and then multiplying
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Figure 3.6. Relative increase in regret for different classifiers, in the case of

normal mixture distributions.

the resulting bandwidth by the correction factor (1 − ℓ−1)1/5. We explored this
approach numerically for ℓ = 2, 5 and 10, and, as expected, found that the results

obtained were similar to those for bagged leave-one-out cross-validation. (Like-

wise, unbagged ℓ-fold cross-validation gave results similar to those for unbagged
leave-one-out cross-validation.) We report here only the results for ℓ = 2; they

are slightly better than their counterparts for either of the other two values of ℓ.

Complementing Figure 3.5, Figure 3.6 shows the relative increase, R say, in
regret for six different methods, with R defined as R = (a− b)/b, where a equals

the regret when the empirically chosen version of h1 is used, and b is the regret

for the optimal choice of h1. This comparison shows that the rule based on êrrA1

performs better than the other five approaches; that cross-validation and the

0.632+ bootstrap perform worst; and that bagged cross-validation, bagged two-
fold cross-validation and Efron’s (1983) approach are between those two groups.

We carried out the same experiment for the case where the normal mixture is

replaced by a mixture of two lognormal distributions, or a mixture of two Cauchy
distributions. In each setting the components in the mixture were taken to have

the same location and scale parameters as in the normal case. The results are

presented in Figure 3.7, and closely reflect those in Figure 3.6. In particular,
apart from the Cauchy mixture case with n = 50, cross-validation and 0.632+

bootstrap methods again give the highest regret ratios. In the Cauchy case,

although generally not for lognormal data, Efron’s bootstrap methods edges out
the bootstrap approach suggested in Section 2.

We also explored properties of cross-validation in problems where at least one

of the densities f and g becomes increasingly complex as sample size increases.
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Figure 3.7. Relative increase in regret for different classifiers, in the case of
(a) lognormal mixtures or (b) Cauchy mixtures.

Figure 3.8. Relative increase in regret for different choices of n and k, when
the problem becomes increasingly complex with sample size.

This setting favours cross-validation. For example, taking f to be the uniform

density on [0, 1] and g(x) = 1 + cos(2kπx), the value of R, in the case of cross-

validation, decreases as k increases across a broad range; see Figure 3.8. The

ratio also decreases if k and n increase together, in particular if k = log n.

This reflects the fact that cross-validation is essentially a global procedure;
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it performs well at estimating tuning parameters determined by global issues,

but does poorly at estimating those parameters when they have only a local in-

fluence. If two densities cross at only a small number of points then, since the

performance of a classifier is determined by properties of the densities close to

those points, optimising the classifier is a distinctly local problem. Therefore,

cross-validation performs poorly. However, as the number of crossing points in-

creases, the problem becomes more global in nature, and cross-validation becomes

more competitive.
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