OPTIMAL DESIGNS FOR FREE KNOT LEAST SQUARES SPLINES

Holger Dette ${ }^{1}$, Viatcheslav B. Melas ${ }^{2}$ and Andrey Pepelyshev ${ }^{2}$
${ }^{1}$ Ruhr-Universität Bochum and ${ }^{2}$ St. Petersburg State University

Supplementary Material

5. On-line supplement: More technical proofs

Proof of Theorem 3.4 and 3.5. We start presenting two auxiliary results
Lemma 5.1. Consider the spline polynomial

$$
\begin{equation*}
\psi(x)=\sum_{i=1}^{\mu} \alpha_{i} f_{i}(x, \lambda), \tag{5.1}
\end{equation*}
$$

where the functions $f_{1}(x, \lambda), \ldots, f_{\mu}(x, \lambda)$ are defined by (2.2) and condition (3.1) is satisfied. If $\sum_{i=1}^{\mu} \alpha_{i}^{2} \neq 0$, the number of isolated roots counted with their multiplicity is at most $\mu-1$.
Proof. Assume that the spline polynomial in (5.1) has more than $\mu-1$ isolated roots, then it follows that the function

$$
\tilde{\psi}(x)=\left(\frac{d}{d x}\right)^{m-k_{1}-1} \psi(x)
$$

has at least $\mu-m+k_{1}+1$ isolated roots. On the other hand this polynomial is of the form

$$
\tilde{\psi}(x)=\sum_{j=0}^{k-m+k_{1}} \tilde{\alpha}_{j} x^{j}+\sum_{i=1}^{r} \sum_{j=1}^{k_{1}+1} \tilde{\alpha}_{i j}\left(x-\lambda_{i}\right)^{j} .
$$

Therefore $\tilde{\psi}$ is a polynomial of degree $\leq k-m+k_{1}$ on the interval $\left[a, \lambda_{1}\right]$ and a polynomial of degree $k_{1}+1$ on the remaining r intervals $\left(\lambda_{1}, \lambda_{2}\right], \ldots,\left(\lambda_{r}, \lambda_{r+1}\right]$. Consequently, $\tilde{\psi}$ has at most

$$
\tilde{\mu}:=k-m+k_{1}+r\left(k_{1}+1\right)
$$

isolated roots counted with multiplicity, which yields

$$
\mu-m+k_{1}+1 \leq \tilde{\mu}=k-m+k_{1}+r\left(k_{1}+1\right) .
$$

Observing that $\mu=k+r\left(k_{1}+1\right)$ this inequality reduces to $1 \leq 0$, which is a contradiction.

Lemma 5.2. Any minimally supported local D-optimal design has the boundary points a and b as its support points.
Proof. If ξ is a minimally supported local D-optimal design it must have equal weights $1 / \mu$ at its support points $x_{1}<\cdots<x_{\mu}$. From the discussion in the proof of Theorem 2.1 it follows that

$$
\operatorname{det} M(\xi, \lambda)=\left\{\operatorname{det}\left(f_{i}\left(x_{j}, \lambda\right)\right)_{i, j=1}^{\mu}\right\}^{2} \mu^{-\mu}
$$

Now consider the function

$$
\psi\left(x_{1}\right)=\operatorname{det}\left(f_{i}\left(x_{j}, \lambda\right)\right)_{i, j=1}^{\mu}=\sum_{i=1}^{\mu} \alpha_{i} f_{i}\left(x_{1}, \lambda\right),
$$

where the last identity follows from Laplace's rule and the constants $\alpha_{1}, \ldots, \alpha_{\mu}$ depend on the points x_{2}, \ldots, x_{μ} but not on the point x_{1}. Obviously, $\psi\left(x_{j}\right)=0$ for $j=2, \ldots, \mu$ and consequently $\psi^{\prime}(x)$ vanishes at $\mu-2$ points $\tilde{x}_{j} \in\left(x_{j}, x_{j+1}\right)$; $(j=2, \ldots, \mu-1)$. If $x_{1}>a$ we would also have $\psi^{\prime}\left(x_{1}\right)=0$. On the other hand it follows from Lemma 5.1 that ψ^{\prime} has at most $\mu-2$ roots which is a contradiction. Consequently, $x_{1}=a$ and it can be proved by similar arguments that $x_{\mu}=b$.

It now follows that a minimally supported local D-optimal design is characterized by its interior support points

$$
\tau=\left(\tau_{1}, \ldots, \tau_{\mu-2}\right)=\left(x_{2}, \ldots, x_{\mu-1}\right)
$$

and consequently we denote candidates for such designs by

$$
\xi_{\tau}=\left(\begin{array}{cccc}
a & \tau_{1} & \ldots & \tau_{\mu-2} \\
\frac{1}{\mu} & \frac{1}{\mu} & \ldots & \frac{1}{\mu} \\
\hline
\end{array}\right)
$$

Therefore the problem of determining minimally supported local D-optimal designs reduces to the maximization of the function

$$
\begin{equation*}
\psi(\tau, \lambda)=\left[\operatorname{det} M\left(\xi_{\tau, \lambda}\right)\right]^{\frac{1}{\mu}} \tag{5.2}
\end{equation*}
$$

over the set

$$
\begin{equation*}
T=\left\{\tau=\left(\tau_{1}, \ldots, \tau_{\mu-2}\right)^{T} \mid a \leq \tau_{1} \leq \cdots \leq \tau_{\mu-2} \leq b\right\} \tag{5.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda \in \Omega:=\left\{\left(\lambda_{1}, \ldots, \lambda_{k}\right)^{T} \mid a<\lambda_{1}<\cdots<\lambda_{k}<b\right\} \tag{5.4}
\end{equation*}
$$

is a fixed parameter. Note that under the assumptions of Theorem 3.4 this optimization problem has a unique solution, say $\tau^{*}=\tau^{*}(\lambda)$, which satisfies the necessary conditions for an extremum, i.e.

$$
\begin{equation*}
\left.\frac{\partial}{\partial \tau_{i}} \psi(\tau, \lambda)\right|_{\tau=\tau^{*}}=0 ; \quad i=1, \ldots, \mu-2 \tag{5.5}
\end{equation*}
$$

Using the same arguments as in Melas (2006, pp.65-66), it now follows from Lemma 5.1 that the Jacobi matrix of equation (5.5),

$$
J(\lambda):=\left(\left.\frac{\partial^{2}}{\partial \tau_{i} \partial \tau_{j}} \psi(\tau, \lambda)\right|_{\tau=\tau^{*}(\lambda)}\right)_{i, j=1}^{\mu-2},
$$

is non-singular and

$$
\begin{align*}
& \left(J^{-1}(\lambda)\right)_{i j}<0 ; \quad i, j=1, \ldots, \mu-2 \tag{5.6}\\
& \left.\frac{\partial^{2}}{\partial \tau_{i} \partial \lambda_{j}} \psi(\tau, \lambda)(-1)^{s(i)}\right|_{\tau=\tau^{*}}<0 ; \quad i=1, \ldots, \mu-2 ; \quad j=1, \ldots, r \tag{5.7}
\end{align*}
$$

where $s(i) \in\{1,2\}$. Note that there could exist several solutions of (5.5) corresponding to local extrema of the function ψ. However, from the assumptions of the theorem it follows that for a fixed parameter $\lambda_{0} \in \Omega$ there exists a global maximum of the function ψ and we denote by $\bar{\tau}=\tau^{*}\left(\lambda_{0}\right)$ a solution of (5.5) corresponding to this global maximum. From the implicit function theorem [see Gunning and Rossi (1965)] it therefore follows that the function $\tau^{*}(\lambda)$ is a unique continuous solution of (5.5) such that $\bar{\tau}=\tau^{*}\left(\lambda_{0}\right)$. By the same theorem we obtain for $j=1, \ldots, r ; i=1, \ldots, \mu-2$

$$
\frac{\partial}{\partial \lambda_{j}} \tau_{i}^{*}(\lambda)=\left(J^{-1}(\lambda) G_{j}(-1)^{s(i)}\right)_{i}>0
$$

where the vector G_{j} is defined by

$$
G_{j}=\left(\left.\frac{\partial^{2}}{\partial \tau_{\ell} \partial \tau_{j}} \psi(\tau, \lambda)\right|_{\tau=\tau^{*}(\lambda)}\right)_{\ell=1}^{\mu-2}
$$

As a consequence the support points of the local D-optimal design for the spline regression model are increasing functions of the knots. Finally, if λ is an interior point of one of the sets Ω_{j} in the partition (3.12), the function $\psi(\tau, \lambda)$ is real analytic and by the implicit function theorem the solution $\tau(\lambda)$ of (5.5) is also real analytic.
Proof of Theorem 4.2. Note that a minimally supported standardized maximin D-optimal design (with respect to any set Ω) must have equal weights. Recall the definition of the function ψ in (5.2), define

$$
\begin{equation*}
\varphi(\tau, \lambda)=\frac{\psi(\tau, \lambda)}{\psi\left(\tau^{*}(\lambda), \lambda\right)} \tag{5.8}
\end{equation*}
$$

where $\tau^{*}=\tau^{*}(\lambda)$ is the vector of support points of the minimally supported local D-optimal design. Obviously, we have

$$
\begin{equation*}
\min _{\lambda \in \Omega_{\delta}^{*}} \varphi(\tau, \lambda)=\min _{\alpha \in[0,1]} \varphi(\tau, \alpha, \delta) \tag{5.9}
\end{equation*}
$$

with

$$
\begin{equation*}
\varphi(\tau, \alpha, \delta)=(1-\alpha) \varphi(\tau,(1-\delta) c)+\alpha \varphi(\tau,(1+\delta) c) \tag{5.10}
\end{equation*}
$$

Consequently, the problem of finding the minimally supported standardized maximin D-optimal design with respect to the set Ω_{δ}^{*} can be reduced to finding a solution $(\hat{\tau}, \hat{\alpha})$ of

$$
\begin{equation*}
\max _{\tau \in T} \min _{\alpha \in[0,1]} \varphi(\tau, \alpha, \delta) \tag{5.11}
\end{equation*}
$$

where the set T is defined by

$$
T=\left\{\tau=\left(\tau_{1}, \ldots, \tau_{\mu-2}\right) \mid a<\tau_{1}<\cdots<\tau_{\mu-2}<b\right\}
$$

(if two components of the vector τ would be equal the determinant would vanish). The necessary conditions for an extremum yield

$$
\begin{align*}
& \left.\frac{\partial}{\partial \tau_{i}} \varphi(\tau, \alpha, \delta)\right|_{\tau=\hat{\tau}}=0 ; \quad i=1, \ldots, \mu-2 \\
& \left.\frac{\partial}{\partial \alpha} \varphi(\tau, \alpha, \delta)\right|_{\alpha=\hat{\alpha}}=0 \tag{5.12}
\end{align*}
$$

which will be further investigated using the following parameterization

$$
\begin{equation*}
\Phi(u, \delta)=\varphi\left(\tau^{*}+\rho \delta^{2}, \frac{1}{2}+\beta \delta, \delta\right) \cdot \frac{\psi\left(\tau^{*}, c\right)}{\delta^{2}} \tag{5.13}
\end{equation*}
$$

Here $u=(\rho, \beta)=\left(\rho_{1}, \ldots, \rho_{\mu-2}, \beta\right)$ and τ^{*} denotes the vector of interior support points of the minimally supported local D-optimal design for the vector $c=$ $\left(c_{1}, \ldots, c_{r}\right)$; i.e. $\tau^{*}=\tau^{*}(c)$. Obviously, the equations (5.12) are equivalent to

$$
\begin{equation*}
\left.\frac{\partial}{\partial u_{i}} \Phi(u, \delta)\right|_{u=\hat{u}}=0, \quad i=1, \ldots, \mu-1 \tag{5.14}
\end{equation*}
$$

and the solutions $\hat{u}=(\hat{\rho}, \hat{\beta})$ and $(\hat{\tau}, \hat{\alpha})$ are related by

$$
\begin{equation*}
\hat{\tau}=\tau^{*}+\hat{\rho} \delta^{2} ; \hat{\alpha}=\frac{1}{2}+\hat{\beta} \delta \tag{5.15}
\end{equation*}
$$

Assume that δ^{*} is sufficiently small and define the set

$$
\mathcal{U}_{\rho}:=\left\{u=(\rho, \beta) \left\lvert\, \frac{a-\tau^{*}}{\delta^{2}}<\rho_{1}<\cdots<\rho_{\mu-2}<\frac{b-\tau^{*}}{\delta^{2}}\right. ;-\frac{1}{2 \delta} \leq \beta \leq \frac{1}{2 \delta}\right\}
$$

then we prove the following assertions.
(I) There exists a unique continuous function

$$
\hat{u}:\left\{\begin{array}{cl}
\left(-\delta^{*}, \delta^{*}\right) & \rightarrow \mathcal{U} \tag{5.16}\\
\delta & \rightarrow \hat{u}(\delta)
\end{array}\right.
$$

such that for each $\delta \in\left(-\delta^{*}, \delta^{*}\right)$ the value $\hat{u}(\delta)$ is a solution of the system (5.14).
(II) The function defined in (I) is real analytic and the coefficients in the corresponding Taylor expansion

$$
\hat{u}(\delta)=\sum_{j=0}^{\infty} u_{(j)} \delta^{j}
$$

can be calculated recursively as

$$
\begin{align*}
u_{(0)} & =-\hat{J}^{-1}[h(0, \delta)]_{(2)}, \tag{5.17}\\
u_{(s+1)} & =-\hat{J}^{-1}\left[h\left(u_{\langle s\rangle}(\delta), \delta\right)\right]_{(s+3)}, \quad s=0,1,2, \ldots,
\end{align*}
$$

where $u_{\langle s\rangle}$ is defined in (3.15),

$$
\begin{align*}
h(u, \delta) & =\left(\frac{\partial}{\partial u_{1}} \Phi(u, \delta), \ldots, \frac{\partial}{\partial u_{\mu-1}} \Phi(u, \delta)\right)^{T} \tag{5.18}\\
A & =\left(\left.\frac{\partial^{2}}{\partial \tau_{i} \partial \tau_{j}} \psi(\tau, c)\right|_{\tau=\tau^{*}}\right)_{i, j=1}^{\mu-2} \\
b & =\left(\left.\sum_{j=1}^{r} c_{j} \frac{\partial^{2}}{\partial \tau_{i} \partial c_{j}} \psi(\tau, c)\right|_{\tau=\tau^{*}}\right)_{i=1}^{\mu-2} \\
\hat{J} & =\left(\begin{array}{cc}
A & b \\
b^{T} & 0
\end{array}\right) \in \mathbb{R}^{\mu-1 \times \mu-1} \tag{5.19}
\end{align*}
$$

(III) The design

$$
\xi_{\hat{\tau}}=\left(\begin{array}{cccc}
a & \hat{\tau}_{1} & \ldots & \hat{\tau}_{u-2} \\
\frac{1}{\mu} & \frac{1}{\mu} & \ldots & \frac{1}{\mu} \\
\frac{1}{\mu}
\end{array}\right)
$$

is the unique minimally supported standardized maximin D-optimal design with respect to the set Ω_{δ}^{*}.
(IV) The design $\xi_{\hat{\tau}}$ is the unique minimally supported standardized maximin D-optimal design with respect to the set Ω_{δ}.

For a proof of (I) and (II) we note that $h(u, \delta)$ is a real analytic vector valued function in a neighbourhood of the point $\left(u^{*}, \delta^{*}\right)=(0,0)$, with components satisfying

$$
h_{i}(0,0)=\left.\frac{\partial}{\partial u_{i}} h(u, \delta)\right|_{(u, \delta)=(0,0)}=0 ; \quad i=1, \ldots, \mu-1,
$$

and

$$
\left(\frac{\partial}{\partial u_{j}} h_{i}(u, \delta)\right)_{i, j=1}^{\mu-1}=\delta^{2} \hat{J}+O\left(\delta^{3}\right)
$$

where the matrix \hat{J} is defined in (5.19). Obviously,

$$
\operatorname{det} \hat{J}=-(\operatorname{det} A) b^{T} A^{-1} b,
$$

where $\operatorname{det} A \neq 0$ as demonstrated in the proof of Theorem 3.4 and 3.5. A similar argument shows that $b \neq 0$ and therefore the matrix \hat{J} is non singular. The implicit function theorem [see Gunning and Rossi (1965)] now shows the existence of a unique real analytic solution \hat{u} of (5.14) in a sufficiently small interval $\left(-\delta^{*}, \delta^{*}\right)$. The recursive relation (5.17) for the coefficients in the corresponding Taylor expansion is now a consequence of from Theorem 5.3 in Melas (2005).

In order to prove (III) we note that it follows from the uniqueness of the minimally supported local D-optimal design for any $\delta \in(0,1)$

$$
\begin{equation*}
\min _{0 \leq \alpha \leq 1}(1-\alpha) \frac{\psi(\tau,(1-\delta) c)}{\psi\left(\tau^{*}((1-\delta) c),(1-\delta) c\right)}+\alpha \frac{\psi(\tau,(1+\delta) c)}{\psi\left(\tau^{*}((1+\delta) c),(1+\delta) c\right)}<1 . \tag{5.20}
\end{equation*}
$$

For $\delta \in[0,1]$ define as $(\tilde{\tau}, \tilde{\alpha})$ a point where the optimum in (5.11) is attained, that is

$$
\varphi(\tilde{\tau}, \tilde{\alpha}, \delta)=\max _{\tau \in T} \min _{\alpha \in[0,1]} \varphi(\tau, \alpha, \delta) .
$$

If $\tilde{\alpha}=0$ we would obtain

$$
\varphi(\tilde{\tau}, \tilde{\alpha}, \delta)=\varphi(\tilde{\tau}, 0, \delta)=\max _{\tau \in T} \frac{\psi(\tau,(1-\delta) c)}{\psi\left(\tau^{*}((1-\delta) c),(1-\delta) c\right)}=1
$$

which contradicts (5.20). Similary, we can exclude the case $\tilde{\alpha}=1$. The matrix A in (5.18) is nonsingular and the Hesse matrix of the function $\psi(\tau, c)$ evaluated at the extreme point τ^{*} must be negative definite. Consequently, it follows that for sufficiently small δ the function $\varphi(\tau, \alpha, \delta)$ defined in (5.10) is a concave function of τ in a neighbourhood of the point τ^{*}. This means that $(\hat{\tau}, \hat{\alpha})=(\tilde{\tau}, \tilde{\alpha})$ and consequently the design $\xi_{\hat{\tau}}$ is the unique minimally supported standardized maximin D-optimal design with respect to the set Ω_{δ}^{*}.

Finally, we prove assertion (IV), which follows from the equation

$$
\begin{equation*}
\min _{\lambda \in \Omega_{\delta}} \varphi(\hat{\tau}, \lambda)=\min _{\lambda \in \Omega_{\delta}^{*}} \varphi(\hat{\tau}, \lambda) \tag{5.21}
\end{equation*}
$$

To prove (5.21) we define the rescaled quantities $\gamma_{i}=\left(\lambda_{i}-c_{i}\right) /\left(\delta c_{i}\right)(i=1, \ldots, r)$ and note that $\left|\gamma_{i}\right| \leq 1$ if $\lambda \in \Omega_{\delta}$. A straightforward but tedious calculation yields

$$
\begin{equation*}
\varphi(\hat{\tau}, \lambda)=1+\delta^{2} \gamma^{T} B^{T} A B \gamma+O\left(\delta^{3}\right) \tag{5.22}
\end{equation*}
$$

where $\gamma=\left(\gamma_{1}, \ldots, \gamma_{r}\right)^{T}, B=A^{-1} D$, the matrix D is defined by

$$
D=\left(\left.\frac{\partial^{2} h(\tau, c)}{\partial \tau_{i} \partial c_{j}}\right|_{\tau=\tau^{*}}\right)_{i=1, \ldots, \mu-2}^{j=1, \ldots, r}
$$

and the elements of the matrix A^{-1} and D are negative and positive, respectively (this follows by similar arguments as given in Melas (2006, pp.56-57)). Consequently, the elements of the matrix $D^{T} A^{-1} D$, say $z_{i j}(i, j=1, \ldots, r)$, are negative and (5.22) yields

$$
\varphi(\hat{\tau}, \lambda)=1+\delta^{2} \sum_{i, j=1}^{r} z_{i j} \gamma_{i} \gamma_{j}+O\left(\delta^{3}\right)
$$

Therefore, if δ is sufficiently small, the minimum of $\varphi(\hat{\tau}, \lambda)$ is attained if all components of $\gamma=\left(\gamma_{1}, \ldots, \gamma_{r}\right)$ have the same sign and are equal to +1 or -1 . Consequently, the minimum is attained either at $\lambda=(1-\delta) c$ or $\lambda=(1+\delta) c$.

References

Melas, V. B. (2005). On the functional approach to optimal designs for nonlinear models. J. Statist. Plann. Inference 132, 93-116.
Melas, V. B. (2006). Functional Approach to Optimal Experimental Design. Springer, Heidelberg.

Ruhr-Universität Bochum, Fakultät für Mathematik, 44780 Bochum, Germany.
E-mail: holger.dette@rub.de
Department of Mathematics, St. Petersburg State University, St. Petersburg, Russia.
E-mail: v.melas@pobox.spbu.ru
Department of Mathematics, St. Petersburg State University, St. Petersburg, Russia.
E-mail: andrey@ap7236.spb.edu

