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Abstract: We investigate the asymptotic minimax properties of an adaptive wavelet

block thresholding estimator under the L
p risk over Besov balls. It can be viewed

as a L
p version of the BlockShrink estimator developed by Cai (1999, 2002). First

we show that it is (near) optimal for numerous statistical models, including certain

inverse problems. In this statistical context, it achieves better rates of convergence

than the hard thresholding estimator introduced by Donoho and Johnstone (1995).

We apply this general result to a deconvolution problem.
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1. Motivations

Wavelet shrinkage methods have been very successful in nonparametric func-

tion estimation. They provide estimators that are spatially adaptive and (near)

optimal over a wide range of function classes. Standard approaches, such as

that the hard and soft thresholding rules introduced by Donoho and Johnstone

(1995), are based on term-by-term thresholding.

Recent works have shown that block thresholding methods can enjoy better

theoretical (and practical) properties than conventional term-by-term methods.

This is the case for the construction developed by Hall, Kerkyacharian and Picard

(1999), the BlockShrink algorithm proposed by Cai (1999, 2002), and the block-

wise Stein’s algorithm studied by Cavalier and Tsybakov (2001). If we adopt the

minimax point of view, the resulting estimators are optimal under L2 risk over

a wide range of Besov balls for various statistical models.

In the present paper, we synthetically analyze the asymptotic performances

of a Lp version of the BlockShrink estimator. In a first part, we consider the

estimation of an unknown function f in Lp([0, 1]) from a general sequence of

models Γn. Under very mild assumptions on Γn, we determine a simple upper

bound for the Lp risk

R(f̂n, f) = E(‖f̂n − f‖p
p) = E

(

∫ 1

0
|f̂n(t) − f(t)|pdt

)

, p ≥ 2,
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where f̂n is a Lp version of the BlockShrink estimator and E is the expectation

with respect to the distribution of the observations. Then, we use this result

to isolate the rates of convergence achieved by this estimator when f belongs to

Besov balls. For numerous statistical models (including several inverse problems),

we show that they are (near) minimax. Moreover, the estimator considered is

better in the minimax sense than the hard thresholding estimator.

In a second part, we provide some applications of this general result. After

a brief study of the standard Gaussian white noise model, we focus our attention

on a more delicate problem: the convolution in Gaussian white noise model.

The rest of the paper is organized as follows. Section 2 describes wavelets

and Besov balls. Section 3 introduces the Lp version of the BlockShrink estimator

and the key assumptions. Asymptotic properties of this estimator are presented

in Section 4. In Section 5, we apply this result to the Gaussian white noise model

and the convolution in Gaussian white noise model. Section 6 contains proofs of

the main theorems.

2. Wavelets and Besov Balls

We work with a wavelet basis on the interval [0, 1] of the form

ζ = {φτ,k(x), k = 0, . . . , 2τ − 1; ψj,k(x), j = τ, . . . ,∞, k = 0, . . . , 2j − 1}.

In general, φj,k(x) and ψj,k(x) are “periodic” or “boundary adjusted” dilations

and translations of a “father” wavelet φ and a “mother” wavelet ψ, respectively.

We assume that ψ has N vanishing moments and N continuous derivatives. The

factor τ is a large enough integer. For the sake of simplicity, we set φj,k(x) =

2j/2φ(2jx − k) and ψj,k(x) = 2j/2ψ(2jx − k). We assume that the following

geometrical properties are satisfied.

1. Property of concentration. Let p ∈ [1,∞) and h ∈ {φ,ψ}. For any integer

j ≥ τ and any sequence u = (uj,k)j,k, there exists a constant C > 0 such

that
∥

∥

∥

2j−1
∑

k=0

uj,khj,k

∥

∥

∥

p

p
≤ C2j(p

2
−1)

2j−1
∑

k=0

|uj,k|
p. (2.1)

2. Property of unconditionality. Let p ∈ (1,∞). Take ψτ−1,k = φτ,k. For any

sequence u = (uj,k)j,k, we have

∥

∥

∥

∞
∑

j=τ−1

2j−1
∑

k=0

uj,kψj,k

∥

∥

∥

p

p
≍

∥

∥

∥

(

∞
∑

j=τ−1

2j−1
∑

k=0

|uj,kψj,k|
2
)

1
2
∥

∥

∥

p

p
. (2.2)

(The notation a ≍ b means there exist two constants C > 0 and c > 0 such

that cb ≤ a ≤ Cb.)
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3. Temlyakov property. Let σ ∈ [0,∞). Take ψτ−1,k = φτ,k. For any subset

A ⊆ {τ − 1, ...,∞} and any subset Ω ⊆ {0, . . . , 2j − 1}, we have

∥

∥

∥

(

∑

j∈A

∑

k∈Ω

|2σjψj,k|
2
)

1
2
∥

∥

∥

p

p
≍

∑

j∈A

∑

k∈Ω

2σjp‖ψj,k‖
p
p. (2.3)

The first property is standard. The others are powerful geometrical properties of

wavelet bases. They are generally not shared by other bases. For instance, the

Fourier basis does not satisfy the property of unconditionality of L
p for p 6= 2.

The main advantage of the property of unconditionality and the property of

Temlyakov is simply to transfer the arguments from L2 to Lp. See Meyer (1990)

for further details about wavelets and the concentration property. See Donoho

(1993, 1996) for the importance of the property of unconditionality in statisti-

cal estimation. See Johnstone, Kerkyacharian, Picard and Raimondo (2004) for

further details about the Temlyakov property.

For any integer l ≥ τ , a function f in Lp([0, 1]) can be expanded in a wavelet

series as

f(x) =

2l−1
∑

k=0

αl,kφl,k(x) +

∞
∑

j=l

2j−1
∑

k=0

βj,kψj,k(x),

where αj,k =
∫ 1
0 f(t)φj,k(t)dt and βj,k =

∫ 1
0 f(t)ψj,k(t)dt.

A suitable choice of the wavelet basis ζ depends on the considered statistical

model. Further details are given in Section 4.

Now, let us define the main function spaces used in our study. Let M ∈

(0,∞), s ∈ (0, N), π ∈ [1,∞] and r ∈ [1,∞]. Take βτ−1,k = ατ,k. We say that

a function f belongs to the Besov balls Bs
π,r(M) if and only if the associated

wavelet coefficients satisfy

( ∞
∑

j=τ−1

[

2j(s+ 1
2
− 1

π
)
(

2j−1
∑

k=0

|βj,k|
π
)

1
π
]r

)
1
r

≤M.

For a particular choice of parameters s, π and r, these sets contain the Hölder

and Sobolev balls. See Meyer (1990).

3. Estimator and Assumptions

In the first part of the paper, following the mathematical framework adopted

by Kerkyacharian and Picard (2000), we consider the estimation of an unknown

function f in Lp([0, 1]). We assume a sequence of models Γn in which we are able

to produce estimates of the wavelet coefficients αj,k and βj,k of f on the basis ζ.

The corresponding estimators will be denoted by α̂j,k and β̂j,k.
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Now, let us explain the role of two factors δ and ν that will appear in our

mathematical framework. The first is supposed to be a parameter characterizing

the model. It plays a crucial role in the study of some inverse problems; for

the standard models, it is zero. The second has only a technical utility; it may

depend on δ.

We are now in position to describe the main estimator of the study. It is a

Lp version of the BlockShrink estimator developed by Cai (1999). It was first

defined by Picard and Tribouley (2000). Let us mention that it does not require

any a priori knowledge on f .

Let p ∈ [2,∞), d ∈ (0,∞), δ ∈ [0,∞), and ν ∈ (0, (2δ + 1)−1]. Let j1 and

j2 be the integers defined by j1 = ⌊(p/2) log2(log n)⌋ and j2 = ⌊ν log2 n⌋ (or,

without loss of generality, j2 = ⌊ν log2 (n/ log n)⌋). For any j ∈ {j1, . . . , j2}, let

L = ⌊(log n)p/2⌋, Aj = {1, . . . , 2jL−1} and, for any K ∈ Aj , consider the set

Uj,K = {k ∈ {0, . . . , 2j −1}; (K−1)L ≤ k ≤ KL−1}. We define the (Lp version

of the) BlockShrink estimator by

f̂n(x) =

2j1−1
∑

k=0

α̂j1,kφj1,k(x) +

j2
∑

j=j1

∑

K∈Aj

∑

k∈Uj,K

β̂j,k1n

b̂j,K≥d2δjn− 1
2

oψj,k(x), (3.1)

where b̂j,K = (L−1
∑

k∈Uj,K
|β̂j,k|

p)1/p.

For the sake of legibility, we set
∑

K =
∑

K∈Aj
and

∑

(K) =
∑

k∈Uj,K
. We

make the following assumptions.

(H1) Moments inequality We denote by j1 − 1 an integer such β̂j1−1,k = α̂j1,k.

There exists a constant C > 0 such that, for any j ∈ {j1 − 1, . . . , j2},

k ∈ {0, . . . , 2j − 1} and n large enough, we have

E(|β̂j,k − βj,k|
2p) ≤ C22δjpn−p.

(H2) Large deviation inequality There exist two constants µ and C > 0 such that,

for any j ∈ {j1, . . . , j2}, K ∈ Aj and n large enough, we have

P
(

(L−1
∑

(K)

|β̂j,k − βj,k|
p)

1
p ≥ 2−1µ2δjn−

1
2

)

≤ Cn−p.

For numerous statistical models, we can find α̂j,k, β̂j,k, ν and µ that satisfy the

assumptions (H1) and (H2). Several applications will be considered in Section 5.

4. Optimality Results

Theorem 4.1 below provides an upper bound for the Lp risk (with p ≥ 2)

of the block thresholding estimator f̂n defined by (3.1). The function f is only

supposed to belong to Lp([0, 1]).
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Theorem 4.1. Let p ∈ [2,∞) and suppose the assumptions (H1) and (H2)

are satisfied. Consider the estimator f̂n defined by (3.1) with the thresholding

constant d = µ. Then there exists a constant C > 0 such that, for any α ∈ (0, 1)

and n large enough, we have

E(‖f̂n − f‖p
p) ≤ C(Q1(f) +Q2(f) + n−

αp
2 ),

where

Q1(f) =

∞
∑

m=0

2−mp
∥

∥

∥

j2
∑

j=j1

∑

K

∑

(K)

βj,k1n

bj,K≤2−1µn− 1
2 2δj2m+1

oψj,k

∥

∥

∥

p

p
,

Q2(f) =
∥

∥

∥

∞
∑

j=j2+1

2j−1
∑

k=0

βj,kψj,k

∥

∥

∥

p

p
.

The quantity bj,K is defined by bj,K = (L−1
∑

(K) |βj,k|
p)1/p.

Such an inequality was proved for the hard thresholding estimator by

Kerkyacharian and Picard (2000, Thm. 5.1); the geometrical properties of the

basis ζ under the Lp norm are at the heart of the proof.

Theorem 4.2 below is a consequence of Theorem 4.1. We now suppose that f

belongs to Besov ball Bs
π,r(M). We investigate the rates of convergence achieved

by the block thresholding estimator f̂n defined by (3.1) under the Lp risk, p ≥ 2.

Theorem 4.2. Let p ∈ [2,∞) and suppose that the assumptions (H1) and (H2)

are satisfied. Consider the estimator f̂n defined by (3.1) with the thresholding

constant d = µ. Then there exists a constant C > 0 such that, for any π ∈ [1,∞],

r ∈ [1,∞], s ∈ (1/π − 1/2 + 1/(2ν) − δ,N), and n large enough, we have

sup
f∈Bs

π,r(M)
E(‖f̂n − f‖p

p) ≤ Cϕn,

where

ϕn =







n−α1p(log n)α1p1{p>π} , when ǫ > 0,

( log n
n )α2p(log n)(p−

π
r
)+1{ǫ=0} , when ǫ ≤ 0,

with α1 = s/(2(s + δ) + 1), α2 = (s − 1/π + 1/p)/(2(s − 1/π + δ) + 1) and

ǫ = πs+ (δ + 1/2)(π − p).

For numerous statistical models, the rates of convergence exhibited in The-

orem 4.2 are minimax, except for the case ǫ > 0 with p > π, where an additional

logarithmic factor appears. For further details about the minimax rates of con-

vergence under the Lp risk over Besov balls, see Delyon and Juditsky (1996) and

Härdle, Kerkyacharian, Picard and Tsybakov (1998).
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Moreover, let us notice that if (H2) is satisfied then there exist two constants

C > 0 and µ∗ > 0 such that, for any j ∈ {j1, . . . , j2}, k ∈ {0, . . . , 2j − 1} and n

large enough, we have P (|β̂j,k − βj,k| ≥ 2−1µ∗2
δj

√

(log n/n)) ≤ P ((
∑

(K) |β̂j,k −

βj,k|
p)1/p ≥ 2−1µ2δj

√

(log n/n)) ≤ Cn−p. So, by considering a result proved by

Kerkyacharian and Picard (2000, Thm. 6.1), under the assumptions (H1) and

(H2), the Lp version of the BlockShrink estimator achieves better rates of con-

vergence than the hard thresholding estimator. More precisely, it removes the

logarithmic term in the case π ≥ p.
Finally, let us mention that we can prove Theorem 4.2 for p ∈ (1, 2) if we

consider the block thresholding estimator (3.1) with L = log n. To obtain this

result, we only need (H1) and (H2), the concentration property of the wavelet

basis, and some lp-norm inequalities.

In the following section, we apply our general results to the standard Gaus-

sian white noise model and a well-known deconvolution problem.

5. Applications

− Gaussian white noise model. We consider the random process {Y (t); t ∈ [0, 1]}

defined by

dY (t) = f(t)dt+ n−
1
2 dW (t),

where {W (t); t ∈ [0, 1]} is a standard Brownian motion. We wish to estimate
the unknown function f via {Y (t); t ∈ [0, 1]}.

Here, we work with the compactly supported wavelet basis on the unit in-

terval introduced by Cohen, Daubechies, Jawerth and Vial (1993). It satisfies

the concentration property, the property of unconditionality, and the Temlyakov

property. See, for instance, Kerkyacharian and Picard (2000).

Picard and Tribouley (2000) have proved that (H1) and (H2) are satisfied
with α̂j,k =

∫ 1
0 φj,k(t)dY (t), β̂j,k =

∫ 1
0 ψj,k(t)dY (t), δ = 0, ν = 1, and µ large

enough. Therefore, if we define the estimator (3.1) with the previous elements,

then we can apply Theorem 4.2. This theorem can be viewed as a Lp version of

some results obtained by Cai (2002) under L2 risk.

− Convolution in Gaussian white noise model. We consider the random process

{Y (t); t ∈ [0, 1]} defined by

dY (t) = (f ⋆ g)(t)dt + n−
1
2 dW (t),

where {W (t); t ∈ [0, 1]} is a standard Brownian motion and (f ⋆g)(t) =
∫ 1
0 f(t−

u)g(u)du. The function f is unknown and the function g is known. We assume

that f and g are periodic on the unit interval and that there exists a real number

δ > 2−1 satisfying

|F (g)(l)| ≍ |l|−δ, l ∈ Z∗. (5.1)
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For any h ∈ L1([0, 1]) and any real number l, F (h) denotes the Fourier transform

of h defined by F (h)(l) =
∫ 1
0 h(x)e

−2iπlxdx. We wish to recover the unknown

function f via {Y (t); t ∈ [0, 1]}. This model has been studied in many papers.

See, for instance, Cavalier and Tsybakov (2002) and Johnstone, Kerkyacharian,

Picard and Raimondo (2004).

Here, we adopt the framework of Johnstone, Kerkyacharian, Picard and

Raimondo (2004). We work with a basis constructed from a Meyer-type wavelet

adapted to the interval [0, 1] by periodization. We denote this family by ζM =

{φM
τ,k(x), k = 0, . . . , 2τ − 1; ψM

j,k(x); j = τ, . . . ,∞, k = 0, . . . , 2j − 1}, where

τ denotes a large integer. The main feature of ζM is that F (ψM ) and F (φM )

are compactly supported. Moreover, ζM satisfies the property of concentration,

the property of unconditionality, and the Temlyakov property. See, for instance,

Johnstone, Kerkyacharian, Picard and Raimondo (2004).

Proposition 5.1. The assumptions (H1) and (H2) are satisfied by the Johnstone,

Kerkyacharian, Picard and Raimondo (2004) estimates:

α̂j,k =
∑

l∈Cj

F ∗(Y )(l)F (g)(l)−1F (φM
j,k)(l), β̂j,k =

∑

l∈Cj

F ∗(Y )(l)F (g)(l)−1F (ψM
j,k)(l),

ν = (1 + 2δ)−1, and µ large enough. Here Cj = {l ∈ Z; F (ψM
j,k)(l) 6= 0} = {l ∈

Z; |l| ∈ [2π3−12j , 8π3−12j ]} and, for any integrable process {R(t); t ∈ [0, 1]},

F ∗(R)(l) =
∫ 1
0 e

−2iπltdR(t).

So, if we define the estimator (3.1) with the elements α̂j,k, β̂j,k, δ, ν and µ

presented in Proposition 5.1, then we can apply Theorem 4.2. In particular, if

we consider the minimax point of view under the Lp risk for p ≥ 2 over Besov

balls, the considered estimator achieves better rates of convergence than the

hard thresholding estimator developed by Johnstone, Kerkyacharian, Picard and

Raimondo (2004).

6. Proofs

In this section, C represents a constant which may differ from one term to

another. We suppose that n is large enough.

Proof of Theorem 4.1. For the sake of simplicity, we set θ̂j,k = β̂j,k − βj,k.

Applying the Minkowski inequality and an elementary inequality of convexity,

we have E(‖f̂n − f‖p
p) ≤ 4p−1(G1 +G2 +G3 +Q2(f)), where

G1 = E(‖

2j1−1
∑

k=0

(α̂j1,k − αj1,k)φj1,k‖
p
p),
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G2 = E(‖

j2
∑

j=j1

∑

K

∑

(K)

βj,k1n

b̂j,K<2δjµn− 1
2

oψj,k‖
p
p),

G3 = E(‖

j2
∑

j=j1

∑

K

∑

(K)

θ̂j,k1n

b̂j,K≥2δjµn− 1
2

oψj,k‖
p
p).

Let us analyze each term G1, G2 and G3, in turn.

• The upper bound for G1. It follows from (2.1) and (H1) that

G1 ≤ C2j1(
p
2
−1)

2j1−1
∑

k=0

E(|α̂j1,k − αj1,k|
p) ≤ Cn−

p
2 2j1(δ+

1
2
)p

≤ Cn−
p
2 (log n)(

δ
2
+ 1

4
)p2

≤ Cn−
αp
2 . (6.1)

• The upper bound for G2. Applying the Minkowski inequality and an ele-

mentary inequality of convexity, we have G2 ≤ 2p−1(G2,1 +G2,2), where

G2,1 = E

(

∥

∥

∥

j2
∑

j=j1

∑

K

∑

(K)

βj,k1n

b̂j,K<2δjµn− 1
2

o1n

bj,K≤22δjµn− 1
2

oψj,k

∥

∥

∥

p

p

)

,

G2,2 = E

(

∥

∥

∥

j2
∑

j=j1

∑

K

∑

(K)

βj,k1n

b̂j,K<2δjµn− 1
2

o1n

bj,K>22δjµn− 1
2

oψj,k

∥

∥

∥

p

p

)

.

− The upper bound for G2,1. Using (2.2), we find

G2,1 ≤ C‖

j2
∑

j=j1

∑

K

∑

(K)

βj,k1n

bj,K≤22δjµn− 1
2

oψj,k‖
p
p ≤ CQ1(f).

− The upper bound for G2,2. Notice that the lp Minkowski inequality yields

1n

bj,K>22δjµn− 1
2

o1n

b̂j,K<2δjµn− 1
2

o ≤ 1n

|b̂j,K−bj,K |≥2δjµn− 1
2

o

≤ 1n

(L−1
P

(K) |θ̂j,k|p)1/p≥2δjµn− 1
2

o. (6.2)

Using (2.2), the generalized Minkowski inequality (see, for instance, Temlyakov

(1993, Eq. (1.10)), (6.2), (H2), and again (2.2), we obtain

G2,2 ≤ CE

(

∥

∥

∥
(

j2
∑

j=j1

∑

K

∑

(K)

|βj,k|
21n

bj,K>22δjµn− 1
2

o1n

b̂j,K<2δjµn− 1
2

o|ψj,k|
2)

1
2

∥

∥

∥

p

p

)

≤ C

∥

∥

∥

∥

(

j2
∑

j=j1

∑

K

∑

(K)

|βj,k|
2[E(1n

bj,K>22δjµn− 1
2

o1n

b̂j,K<2δjµn− 1
2

o)]
2
p |ψj,k|

2
)

1
2

∥

∥

∥

∥

p

p
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≤ C

∥

∥

∥

∥

(

j2
∑

j=j1

∑

K

∑

(K)

|βj,k|
2[P ((L−1

∑

(K)

|θ̂j,k|
p)

1
p ≥ 2δjµn−

1
2 )]

2
p |ψj,k|

2
)

1
2

∥

∥

∥

∥

p

p

≤ Cn−p

∥

∥

∥

∥

(

∞
∑

j=τ

2j−1
∑

k=0

|βj,k|
2|ψj,k|

2
)

1
2
‖p

p ≤ C‖f

∥

∥

∥

∥

p

p

n−
αp
2 ≤ Cn−

αp
2 .

It follows from the upper bounds of G2,1 and G2,2 that

G2 ≤ C(Q1(f) + n−
αp
2 ). (6.3)

• The upper bound for G3. By the Minkowski inequality and an elementary

inequality of convexity, we have G3 ≤ 2p−1(G3,1 +G3,2), where

G3,1 = E

(

∥

∥

∥

j2
∑

j=j1

∑

K

∑

(K)

θ̂j,k1n

b̂j,K≥2δjµn− 1
2

o1n

bj,K<2δj2−1µn− 1
2

oψj,k

∥

∥

∥

p

p

)

,

G3,2 = E

(

∥

∥

∥

j2
∑

j=j1

∑

K

∑

(K)

θ̂j,k1n

b̂j,K≥2δjµn− 1
2

o1n

bj,K≥2δj2−1µn− 1
2

oψj,k

∥

∥

∥

p

p

)

.

− The upper bound for G3,1. Using the inequality

1
{b̂j,K≥2δjµn− 1

2 }
1n

bj,K<2δj2−1µn− 1
2

o ≤ 1
{(L−1

P

(K) |θ̂j,k|p)
1
p ≥2δj2−1µn− 1

2 }
,

the Cauchy-Schwarz inequality, and the assumptions (H1) and (H2), we obtain

E(|θ̂j,k|
p1

{b̂j,K≥2δjµn− 1
2 }

1n

bj,K<2δj2−1µn− 1
2

o)

≤ E(|θ̂j,k|
p1

{(L−1
P

(K) |θ̂j,k|p)
1
p ≥2δj2−1µn− 1

2 }
)

≤ [E(|θ̂j,k|
2p)]

1
2

[

P
((

L−1
∑

(K)

|θ̂j,k|
p
)

1
p
≥ 2δj2−1µn−

1
2

)

]
1
2

≤ C2δjpn−p. (6.4)

Using (2.2), the generalized Minkowski inequality, (6.4), (2.3), and the fact that

ν ∈ (0, (2δ + 1)−1], we have

G3,1 ≤ CE

(

∥

∥

∥

(

j2
∑

j=j1

∑

K

∑

(K)

|θ̂j,k|
21

{b̂j,K≥2δjµn− 1
2 }

1n

bj,K<2δj2−1µn− 1
2

o|ψj,k|
2
)

1
2
∥

∥

∥

p

p

)

≤ C

∥

∥

∥

∥

(

j2
∑

j=j1

∑

K

∑

(K)

[

E(|θ̂j,k|
p1

{b̂j,K≥2δjµn− 1
2 }

1n

bj,K<2δj2−1µn− 1
2

o)
]

2
p
|ψj,k|

2
)

1
2

∥

∥

∥

∥

p

p
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≤ Cn−p
∥

∥

∥

(

j2
∑

j=τ

2j−1
∑

k=0

22δj |ψj,k|
2
)

1
2
∥

∥

∥

p

p
≤ Cn−p

j2
∑

j=τ

2j−1
∑

k=0

2δjp‖ψj,k‖
p
p

= Cn−p
j2

∑

j=τ

2j(δ+ 1
2
)p ≤ Cn−p2j2(δ+

1
2
)p ≤ Cn−pnνp(δ+ 1

2
) ≤ Cn−

αp
2 .

− The upper bound for G3,2. Using (2.2), the generalized Minkowski inequality,

(H1) and (2.3), we obtain

G3,2 ≤ CE

(

∥

∥

∥

(

j2
∑

j=j1

∑

K

∑

(K)

|θ̂j,k|
21n

bj,K≥2δj2−1µn− 1
2

o|ψj,k|
2
)

1
2
∥

∥

∥

p

p

)

≤ C

∥

∥

∥

∥

(

j2
∑

j=j1

∑

K

∑

(K)

[E(|θ̂j,k|
p)]

2
p 1n

bj,K≥2δj2−1µn− 1
2

o|ψj,k|
2
)

1
2

∥

∥

∥

∥

p

p

≤ Cn−
p
2

∥

∥

∥

∥

(

j2
∑

j=j1

∑

K

∑

(K)

1n

bj,K≥2δj2−1µn− 1
2

o22δj |ψj,k|
2
)

1
2

∥

∥

∥

∥

p

p

≤ Cn−
p
2

j2
∑

j=j1

∑

K

∑

(K)

1n

bj,K≥2δj2−1µn− 1
2

o2δjp‖ψj,k‖
p
p.

Using the fact that
∑

(K) ‖ψj,k‖
p
p = L2j(p/2−1)‖ψ‖p

p, the inequality

1n

2δj2−1µn− 1
2 2m≤bj,K<2δj2−1µn− 1

2 2m+1
o

≤ 2−δjp2pµ−pn
p
2 2−mp(bj,K)p1n

2δj2−1µn− 1
2 2m≤bj,K<2δj2−1µn− 1

2 2m+1
o

≤ 2−δjp2pµ−pn
p
2 2−mp(bj,K)p1n

bj,K<2δj2−1µn− 1
2 2m+1

o,

the lp-norm inequality
∑

i |ai|
p ≤ (

∑

i |ai|
2)p/2 (since p ≥ 2), and the uncondi-

tional property, we find

G3,2 ≤ Cn−
p
2

∞
∑

m=0

j2
∑

j=j1

∑

K

1n

2δj2−1µn− 1
2 2m≤bj,K<2δj2−1µn− 1

2 2m+1
o2δjpL2j(p

2
−1)

≤ C

∞
∑

m=0

2−mp
j2

∑

j=j1

∑

K

(bj,K)p1n

bj,K<2δj2−1µn− 1
2 2m+1

oL2j(p
2
−1)

= C
∞

∑

m=0

2−mp
j2

∑

j=j1

∑

K

∑

(K)

|βj,k|
p1n

bj,K<2δj2−1µn− 1
2 2m+1

o2j(p
2
−1)
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≤ C
∞

∑

m=0

2−mp

∫ 1

0

j2
∑

j=j1

∑

K

∑

(K)

|βj,k|
p1n

bj,K<2δj2−1µn− 1
2 2m+1

o|ψj,k(x)|
pdx

≤ C

∞
∑

m=0

2−mp

∥

∥

∥

∥

(

j2
∑

j=j1

∑

K

∑

(K)

|βj,k|
21n

bj,K<2δj2−1µn− 1
2 2m+1

o|ψj,k|
2
)

1
2

∥

∥

∥

∥

p

p

≤ C

∞
∑

m=0

2−mp

∥

∥

∥

∥

j2
∑

j=j1

∑

K

∑

(K)

βj,k1n

bj,K<2δj2−1µn− 1
2 2m+1

oψj,k

∥

∥

∥

∥

p

p

≤ CQ1(f).

It follows from the upper bounds of G3,1 and G3,2 that

G3 ≤ C(Q1(f) + n−
αp
2 ). (6.5)

Combining (6.1), (6.3) and (6.5), for any α ∈ (0, 1), we have

E(‖f̂n − f‖p
p) ≤ C(Q1(f) +Q2(f) + n−

αp
2 ).

The proof of Theorem 4.1 is complete.

Proof of Theorem 4.2. We investigate separately the case π ≥ p and the case
p > π.

• If π ≥ p. According to Theorem 4.1, it suffices to show that, for any
f ∈ Bs

π,r(M) , there exists a constant C > 0 satisfying the inequality Q1(f) ∨

Q2(f) ≤ Cn−α1p where α1 = s/(2(s + δ) + 1).

• The upper bound for Q1(f). For any integer m, j3 is the integer defined
by j3 = ⌊log2(2

−m/(2s)n1/(2(s+δ)+1))⌋. Using the Minkowski inequality, an el-

ementary inequality of convexity, and (2.2), we have Q1(f) ≤ 2p−1(S1 + S2),
where

S1 =
∞
∑

m=0

2−mp
∥

∥

∥

j3
∑

j=j1

∑

K

∑

(K)

βj,k1n

bj,K≤µ2δj2mn− 1
2

oψj,k

∥

∥

∥

p

p
,

S2 =

∞
∑

m=0

2−mp
∥

∥

∥

j2
∑

j=j3+1

2j−1
∑

k=0

βj,kψj,k

∥

∥

∥

p

p
.

Let us analyze S1 and S2, in turn.

− The upper bound for S1. If bj,K ≤ µ2δj2mn−1/2 then we clearly have (
∑

(K)

|βj,k|
p)1/p ≤ µn−1/22m2δjL1/p. It follows from the Minkowski inequality and

(2.1) that

S1 ≤ C
∞

∑

m=0

2−mp
[

j3
∑

j=j1

2j( 1
2
− 1

p
)
(

∑

K

∑

(K)

|βj,k|
p1n

bj,K≤µ2δj2mn− 1
2

o

)
1
p
]p
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≤ Cn−
p
2

∞
∑

m=0

[

j3
∑

j=τ

2j( 1
2
− 1

p
)(Card(Aj)2

δjpL)
1
p

]p
= Cn−

p
2

∞
∑

m=0

2j3(δ+ 1
2
)p

≤ Cn
− sp

2(s+δ)+1

∞
∑

m=0

2−
mp(1+2δ)

4s ≤ Cn−α1p.

− The upper bound for S2. The Minkowski inequality, (2.1), and the inclusion
Bs

π,r(M) ⊆ Bs
p,∞(M) imply that

S2 ≤ C

∞
∑

m=0

2−mp

[ j2
∑

j=j3+1

2
j( 1

2
− 1

p
)
(

2j−1
∑

k=0

|βj,k|
p
)

1
p

]p

≤ C

∞
∑

m=0

2−mp
(

∞
∑

j=j3+1

2−js
)p

≤ C

∞
∑

m=0

2−mp2−j3sp ≤ Cn
− sp

2(s+δ)+1

∞
∑

m=0

2−
mp
2 ≤ Cn−α1p.

Putting the upper bounds of S1 and S2 together, we conclude that

Q1(f) ≤ Cn−α1p. (6.6)

• The upper bound for Q2(f). Using the Minkowski inequality, (2.1), the
inclusion Bs

π,r(M) ⊆ Bs
p,r(M), and the fact that s > 1/(2ν) − δ − 1/2, we find

Q2(f) ≤ C
[

∞
∑

j=j2+1

2
j( 1

2
− 1

p
)
(

2j−1
∑

k=0

|βj,k|
p
)

1
p
]p

≤ C
(

∞
∑

j=j2+1

2−js
)p

≤ C2−j2sp

≤ C

(

log n

n

)νsp

≤ Cn−α1p. (6.7)

We obtain the desired result by combining (6.6) and (6.7) and applying
Theorem 4.1 with α = 2α1.

• If p > π. According to Theorem 4.1, it suffices to show that, for any
f ∈ Bs

π,r(M), there exists a constant C > 0 satisfying the inequality Q1(f) ∨

Q2(f) ≤ C (log n/n)α∗p (log n)(p−π/r)+1{ǫ=0} , where α∗ = α11{ǫ>0} + α21{ǫ≤0},
α1 = s/(2(s + δ) + 1), α2 = (s − 1/π + 1/p)/(2(s − 1/π + δ) + 1), and ǫ =
πs+ (δ + 1/2)(π − p).

• The upper bound for Q1(f). Let j4 be the integer defined by

j4 =

⌊

log2

(

2−
m
2s

( n

log n

)(2(s+δ)+1−( 2
π

)1{ǫ≤0})−1
)⌋

.

The Minkowski inequality and an elementary property of convexity give Q1(f) ≤
2p−1(T1 + T2), where

T1 =
∞

∑

m=0

2−mp
∥

∥

∥

j4
∑

j=τ

∑

K

∑

(K)

βj,k1n

bj,K≤µ2δj2mn−1
2

oψj,k

∥

∥

∥

p

p
,
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T2 =
∞
∑

m=0

2−mp
∥

∥

∥

j2
∑

j=j4+1

∑

K

∑

(K)

βj,k1n

bj,K≤µ2δj2mn− 1
2

oψj,k

∥

∥

∥

p

p
.

Let us distinguish the case ǫ > 0 with p > π and the case ǫ ≤ 0.

• For ǫ > 0 with p > π.

− The upper bound for T1. If bj,K ≤ µ2δj2mn−1/2 then we clearly have (
∑

(K)

|βj,k|
p)1/p ≤ µn−1/22m2δjL1/p. The Minkowski inequality and (2.1) imply that

T1 ≤ C

∞
∑

m=0

2−mp

[ j4
∑

j=τ

2j( 1
2
− 1

p
)
(

∑

K

∑

(K)

|βj,k|
p1n

bj,K≤µ2δj2mn− 1
2

o

)
1
p

]p

≤ Cn−
p
2

∞
∑

m=0

(

j4
∑

j=τ

2j( 1
2
+δ)

)p
≤ Cn−

p
2

∞
∑

m=0

2j4(
1
2
+δ)p

≤ C

(

log n

n

)
sp

2(s+δ)+1
∞

∑

m=0

2−mp( 1+2δ
4s

) ≤ C

(

log n

n

)α1p

.

− The upper bound for T2. Since L = ⌊(log n)p/2⌋, for any k ∈ Uj,K, we have the

following inclusion

{bj,K ≤ µ2mn−
1
2 2δj} ⊆

{

|βj,k| ≤ µ2m2δj

√

(
log n

n
)

}

. (6.8)

Since Bs
π,r(M) ⊆ B

s−1/π+1/p
p,r (M) and ǫ > 0 with p > π, we have

T2 ≤ C

∞
∑

m=0

2−mp

[ j2
∑

j=j4+1

2
j( 1

2
− 1

p
)
(

∑

K

∑

(K)

|βj,k|
p1n

bj,K≤µ2δj2mn−1
2

o

)
1
p

]p

≤ C(log n)
p−π

2 n
π−p

2

∞
∑

m=0

2−mπ

[ j2
∑

j=j4+1

2
j( 1

2
− 1

p
)
2

δj(p−π
p

)
(

2j−1
∑

k=0

|βj,k|
π
)

1
p

]p

≤ C(log n)
p−π

2 n
π−p

2

∞
∑

m=0

2−mπ
(

j2
∑

j=j4+1

2−
jǫ
p

)p

≤ C(log n)
p−π

2 n
π−p

2

∞
∑

m=0

2−mπ2−j4ǫ

≤ C(log n)
p−π

2 n
π−p

2

(

log n

n

)
ǫ

(2(s+δ)+1)
∞
∑

m=0

2−
mπ
2

+m(2δ+1)π−p
4s

≤ C

(

log n

n

)α1p

.
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• For ǫ < 0.

− The upper bound for T1. Proceeding in a similar fashion to the upper bound

of T2 for ǫ > 0, we obtain

T1 ≤ C(log n)
p−π

2 n
π−p

2

∞
∑

m=0

2−mπ
(

j4
∑

j=τ

2j( 1
2
− 1

p
)2δj(p−π

p
)2−j(s+ 1

2
− 1

π
)π

p

)p

≤ C(log n)
p−π

2 n
π−p

2

∞
∑

m=0

2−mπ
(

j4
∑

j=τ

2−
jǫ
p

)p

≤ C(log n)
p−π

2 n
π−p

2

∞
∑

m=0

2−mπ2−j4ǫ

≤ C

(

log n

n

)α2p ∞
∑

m=0

2−
mπ
2

+m(2δ+1)π−p
4s ≤ C

(

log n

n

)α2p

.

− The upper bound for T2. Using the property of concentration (2.1) and the

inclusion Bs
π,r(M) ⊆ B

s−1/π+1/p
p,∞ (M), we have

T2 ≤ C

∞
∑

m=0

2−mp

[ ∞
∑

j=j4+1

2
j( 1

2
− 1

p
)
(

2j−1
∑

k=0

|βj,k|
p
)

1
p

]p

≤ C
∞
∑

m=0

2−mp2−j4(s− 1
π

+ 1
p
)p ≤ C

(

log n

n

)α2p ∞
∑

m=0

2−
mp
2

+ m
2s

( p
π
−1)

≤ C

(

log n

n

)α2p

.

We deduce that

Q1(f) ≤ C

(

log n

n

)α2p

.

• For ǫ = 0. The upper bound obtained previously for the term T2 is always

valid. Thus, it suffices to analyze the upper bound of T1. Proceeding in a similar

fashion to the upper bound of T1 for ǫ < 0, and using (6.8), we find

T1 ≤ Cn
π−p

2 (log n)
p−π

2

∞
∑

m=0

2−mπ
(

j4
∑

j=τ

Λj

)p
,

where Λj = (2j(s+1/2−1/π)π
∑2j−1

k=0 |βj,k|
π)1/p. Let us investigate separately the

case π ≥ rp and the case π < rp.
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− For π ≥ rp. The inclusion Bs
π,r(M) ⊆ Bs

π,π/p(M) implies
∑∞

j=τ Λj ≤ C and,

a fortiori,

T1 ≤ Cn
π−p

2 (log n)
p−π

2 ≤ C
( log n

n

)α2p
.

− For π < rp. Since f ∈ Bs
π,r(M) ⊆ Bs

π,∞(M), we have (
∑∞

j=τ Λ
pr/π
j )π/r ≤ L.

The Hölder inequality yields

∞
∑

m=0

2−mπ
(

j4
∑

j=j1

Λj

)p
≤

∞
∑

m=0

2−mπ
(

∞
∑

j=τ

Λ
pr
π
j

)
π
r
(

j4
∑

j=τ

1
1

(1− π
rp )

)p−π
r

≤ C

∞
∑

m=0

2−mπj
(p−π

r
)

4 ≤ C(log n)(p−
π
r
).

Hence,

T1 ≤ C(log n)(p−
π
r
)n

π−p
2 (log n)

p−π
2 ≤ C

( log n

n

)α2p
(log n)(p−

π
r
).

Combining the previous inequalities, we obtain the desired upper bounds.

• The upper bound for Q2(f). Using the Minkowski inequality, (2.1), the

inclusion Bs
π,r(M) ⊆ B

s−1/π+1/p
p,r (M), and the fact that s > 1/π+1/(2ν)−δ−1/2,

we have

Q2(f) ≤ C

[ ∞
∑

j=j2+1

2j( 1
2
− 1

p
)
(

2j−1
∑

k=0

|βj,k|
p
)

1
p

]p

≤ C
(

∞
∑

j=j2+1

2−j(s− 1
π

+ 1
p
)
)p

≤ C2−j2(s−
1
π

+ 1
p
)p ≤ C

(

n−α1p ∧
( log n

n

)α2p)

. (6.9)

We obtain the desired upper bounds according to the sign of ǫ.

The proof of Theorem 4.2 is complete.

Proof of Proposition 5.1.

Lemma 6.1.(Cirelson’s inequality (1976)) Let D be a subset of R and consider

a centered Gaussian process (ηt)t∈D. If E(supt∈D ηt) ≤ N and supt∈D V ar(ηt) ≤

V , then for all x > 0, we have

P
(

sup
t∈D

ηt ≥ x+N
)

≤ exp
(

−
x2

(2V )

)

. (6.10)

For (H1), we refer the reader to Johnstone, Kerkyacharian, Picard and Rai-

mondo (2004, Thm. 1). Now, let us show that the assumption (H2) is satisfied.

The aim is to apply (6.10).
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Set θ̂j,k = β̂j,k − βj,k = n−1/2
∑

l∈Cj
F ∗(W )(l)F (g)(l)−1F (ψM

j,k)(l). Consider

the set Ωq defined by Ωq = {a = (aj,k);
∑

(K) |aj,k|
q ≤ 1}, and the centered

Gaussian process Z(a) =
∑

(K) aj,kθ̂j,k. By an argument of duality, we have

supa∈Ωq
Z(a) = (

∑

(K) |θ̂j,k|
p)1/p. Let us analyze the values of N and V which

appear in (6.10).

− Value of N . The Hölder inequality and the assumption (H1) imply that

E
(

sup
a∈Ωq

Z(a)
)

= E
(

|
∑

(K)

|θ̂j,k|
p|

1
p

)

≤
[

∑

(K)

E(|θ̂j,k|
p)

]
1
p
≤ Cn−

1
2L

1
p 2δj .

Hence N = Cn−1/2L1/p2δj .

− Value of V . Notice that the assumption (5.1) yields |F (g)(l)|−2 ≍ 22δj for

any l ∈ Cj . Using the fact that F ∗(W )(l) ∼ N(0, 1), the elementary equality

E(F ∗(W )(l)F ∗(W )(l′)) =
∫ 1
0 e

−2iπ(l−l′)tdt = 1{l=l′} and the Plancherel inequal-

ity, we obtain

sup
a∈Ωq

Var (Z(a)) = sup
a∈Ωq

[

E(
∑

k∈Uj,K

∑

k′∈Uj,K

aj,kθ̂j,kaj,k′ θ̂j,k′)
]

= n−1 sup
a∈Ωq

[

∑

k∈Uj,K

∑

k′∈Uj,K

aj,kaj,k′

∑

l∈Cj

∑

l′∈Cj

F (g)(l)−1F (ψM
j,k)(l) · · ·

(F (g)(l′))−1F (ψM
j,k′)(l′)E(F ∗(W )(l)F ∗(W )(l′))

]

= n−1 sup
a∈Ωq

[

∑

k∈Uj,K

∑

k′∈Uj,K

aj,kaj,k′

∑

l∈Cj

|F (g)(l)|−2F (ψM
j,k)(l)F (ψM

j,k′)(l)
]

≤ Cn−122δj sup
a∈Ωq

[

∑

k∈Uj,K

∑

k′∈Uj,K

aj,kaj,k′

∑

l∈Cj

F (ψM
j,k)(l)F (ψM

j,k′)(l)
]

= Cn−122δj sup
a∈Ωq

[

∑

k∈Uj,K

∑

k′∈Uj,K

aj,kaj,k′

∫ 1

0
ψM

j,k(x)ψ
M
j,k′(x)dx

]

= Cn−122δj sup
a∈Ωq

(

∑

k∈Uj,K

|aj,k|
2
)

≤ C22δjn−1.

Hence V = C22δjn−1. By taking d large enough and x = 4−1dn−1/2L1/p2δj ,

(6.10) yields

P

(

(

L−1
∑

(K)

|θ̂j,k|
p
)

1
p
≥ 2δj2−1dn−

1
2

)

≤ P
(

sup
a∈Ωq

Z(a) ≥ x+N
)

≤ exp
(

−
x2

(2V )

)

≤ exp(−Cd2L
2
p ).
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Since L2/p ≍ log n, we have (H2) by taking d large enough. The proof of Propo-

sition 5.1 is complete.

Acknowledgement

We thank two referees for their thorough and useful comments which have

helped to improve the presentation of the paper.

References

Cai, T. (1999). Adaptive wavelet estimation: a block thresholding and oracle inequality ap-

proach. Ann. Statist. 27, 898-924.

Cai, T. (2002). On block thresholding in wavelet regression: adaptivity, block size and threshold

level. Statist. Sinica 12, 1241-1273.

Cavalier, L. and Tsybakov, A. (2001). Penalized block-wise Stein’s method, monotone oracles

and sharp adaptive estimation. Math. Meth. Statist. 10, 247-282.

Cavalier, L. and Tsybakov, A. (2002). Sharp adaptation for inverse problems with random

noise. Probab. Theory Related Fields 123, 323-354.

Cirelson, B.S., Ibragimov, I. A. and Sudakov, V. N. (1976). Norm of Gaussian Sample Functions.

Springer Verlag, Berlin.

Cohen, A., Daubechies, I., Jawerth, B. and Vial, P., (1993). Wavelets on the interval and fast

wavelet transforms. Appl. Comput. Harmon. Anal. 24, 54-81.

Delyon, B. and Juditsky, A. (1996). On minimax wavelet estimators. Appl. Comput. Harmon.

Anal. 3, 215-228.

Donoho, D. L. (1993). Unconditional bases are optimal bases for data compression and statistical

estimation. Appl. Comput. Harmon. Anal. 1, 100-115.

Donoho, D. L. (1996). Unconditional bases and bit-level compression. Appl. Comput. Harmon.

Anal. 3, 388-392.

Donoho, D. L. and Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet

shrinkage. J. Amer. Statist. Assoc. 90, 432, 1200-1224.

Hall, P., Kerkyacharian, G. and Picard, D. (1999). On the minimax optimality of Block thresh-

olded wavelet estimators. Statist. Sinica 9, 33-49.
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