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Abstract: A common interest in microarray data analysis is to identify genes hav-

ing changes in expression values between different biological conditions. The ex-

isting methods include using two-sample t-statistics, modified t-statistics (SAM),

Bayesian t-statistics (Cyber-T), semiparametric hierarchical Bayesian models, and

nonparametric permutation tests. All these methods essentially compare two pop-

ulation means. Unlike these methods, we consider using Bayes factors to compare

gene expression levels that allows us to compare two population distributions. To

adapt the use of Bayes factors to microarray data, we propose a new calibration

approach that weighs two types of prior predictive error probabilities differently

for each gene and, at the same time, controls the overall error rate for all genes.

Moreover, a new gene selection algorithm based on the calibration approach is de-

veloped and its properties are examined. The proposed method is shown to have a

smaller false discovery rate (FDR) and a smaller false non-discovery rate (FNDR)

than several existing methods in several simulations. Finally, a data set from an

affymetrix microarray experiment to identify genes associated with the mature os-

teoblast differentiation is used to further illustrate the proposed methodology.

Key words and phrases: Gene selection, Bayes factor, calibrating value, multilevel

model, marginal likelihood.

1. Introduction

A common objective in microarray data analysis is to identify genes hav-

ing different gene expression values between two conditions. A two-sample t-

test based on the log transformed replicated data applied to each gene is often

used. Significance Analysis of Microarray (SAM) (Tusher, Tibshirani and Chu

(2001)) modifies the t test by adding a “fudge” factor to the standard error es-

timate of the two sample difference in the denominator of the t statistic. Cyber-

T (Baldi and Long (2001)) uses similar test statistics except the denomi-

nator is replaced by a pooled variance estimate from neighboring genes.

Newton, Noueiry, Sarkar and Ahlquist (2004) fit the data with gamma distribu-

tions with latent mean parameters distributed as a common mixture distribution

of three nonparametric components. Methods based on linear models also exist

to test whether the effects from the treatment relative to the control are zero
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(MAANOVA, Kerr, Martin and Churchill (2000) and LIMMA, Smyth (2004)).

These linear methods essentially conduct tests on equal means while controlling
the variations of array, dye, etc.

The data set, however, may have a very complex structure. For example, it

might be a mixture of normal distributions with several modes, so the selection

of differentially expressed (DE) genes by comparing population means may lead
to biased results. We use Bayes factors to select DE genes because they allow

us to compare population means as well as the entire distributions. As pointed

out by Kass and Raftery (1995), it may be technically simpler to calculate Bayes

factors than to derive non-Bayesian significance tests in “nonstandard” statisti-
cal models that do not satisfy common regularity conditions. The Bayes factor

approach directly measures the evidence of each gene being equally expressed

(EE) versus DE. It has a direct interpretation on whether the null/alternative

(EE/DE) hypothesis is true. In the literature, the Bayes factor value has been
compared to the traditional p-value. The p-value approach tends to overstate

the evidence against the null hypothesis, especially when a point null hypoth-

esis is tested. Edwards, Lindman and Savage (1963), Berger and Sellke (1987)
and Sellke, Bayarri and Berger (2001) provide more detailed discussions on the

relationship between the Bayes factor and the p-value.

Liu, Parmigiani and Caffo (2004) discuss the use of Bayes factors to screen

DE genes. When two distributions are different only in mean, the Bayes factor
can be reduced to a test of equality of means. They consider the model where the

replicated intensities are normally distributed with the same variance across two

conditions. They assume that the distribution of Bayes factors is exchangeable

among genes and then select the DE genes based on the ordered values of Bayes
factors. No guidelines are given on the determination of the threshold value for

each Bayes factor to select a DE gene.

In practice, it is unrealistic to assume the distribution of Bayes factors to be

exchangeable across genes. Figure 1 gives the boxplots of the Bayes factors as
a function of the variance of the intensities for each gene. It clearly shows that

the distribution is not exchangeable across genes. Thus, new cut-off values of

Bayes factors need to be developed. Garcia-Donato and Chen (2005) propose a

new decision rule based on the sampling distribution of the Bayes factor instead
of the observed Bayes factor value. This is reasonable because the uncertainty of

the Bayes factor can be large depending on the observed data. They point out

that the prior predictive distributions of the Bayes factor under each hypothesis

are asymmetric. So they propose a calibration value to be the threshold that
makes the two types of prior predictive error probabilities equal. However, the

calibration value is based on the principle of prior equity, which may not be

applicable here, as this does not put any control on the overall error rate for all

genes.
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Figure 1. Boxplots of Bayes factors ordered by the variance of each gene

ranging from 0.5 to 10 with an increment of 0.5.

In this paper, we propose an adjusted calibration value that weighs two types

of prior predictive error probabilities differently, being more stringent on the EE

genes, but also controls the overall error rate for all genes. Based on the ad-

justed calibration value, a novel gene selection algorithm is proposed. However,

it is challenging to compute the calibration value because it requires a compu-

tationally intensive iterative procedure. Instead, we propose an alternative, but

equivalent, gene selection algorithm. This alternative algorithm is attractive as

(i) it only requires computation of the relative probability p∗ of making a mistake

under the null hypothesis for each gene; (ii) it directly provides evidence that a

gene is DE; and (iii) the resulting relative probability is much easier to interpret

than the original calibration value since p∗ is analogous to the classical p-value.

The rest of the paper is organized as follows. In Section 2, we introduce

the definition of the Bayes factor and describe different models considered in the
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paper. They include a normal model with unequal variances. In Section 3, we

propose an adjusted calibration method and examine its theoretical properties.

We then develop a gene selection algorithm based on the calibration value. Fur-

ther, the implementation issues of the proposed algorithm are discussed, and an

efficient Monte Carlo algorithm is proposed when there is no closed form for the

distribution of the Bayes factor. In Section 4, we carry out an extensive sim-

ulation study to investigate the performance of the proposed method. Section

5 provides an analysis of a data set from an affymetrix chip experiment. We

conclude the paper with a brief discussion in Section 6.

2. The Bayes Factor Approach

We focus on the scenario in which the intensities are observed under two

conditions (test or control) for replicated experiments. Let X1gj denote the

expression intensity of the gth gene in the jth sample under the first condition,

and X2gj the expression intensity under the second condition. There are a total

of G genes with sample size n1g under condition 1 and sample size n2g under

condition 2 for the gth gene. Thus, the data on gene g can be summarized in two

vectors that we label X1g = (x1g1, . . . , x1gn1g ) and X2g = (x2g1, . . . , x2gn2g ).

To detect whether the gth gene is DE or not, we consider two hypothe-

ses for each gene: H0g: gene g is equally expressed (EE) and H1g: gene g

is differentially expressed (DE). The problem then becomes which hypothesis

is more supported by the data. Assume the data have already been prepro-

cessed with appropriate transformations and normalization. The two prior pre-

dictive distributions under the null hypothesis and the alternative hypothesis are

given by m0g(X1g,X2g) =
∫

f0g(X1g,X2g|ξ0g)π0g(ξ0g)dξ0g and m1g(X1g,X2g) =
∫

f1g(X1g,X2g|ξ1g)π1g(ξ1g)dξ1g, where f0g(X1g,X2g|ξ0g) denotes the probability

density of the gth gene’s data given the null H0g hypothesis, and π0g(ξ0g) denotes

the prior distribution of ξ0g under H0g. Similarly, f1g(X1g,X2g|ξ1g) and π1g(ξ1g)

are defined under the alternative hypothesis. Then, given the observed data, the

Bayes factor for H0g against H1g is given by

BF01(g) =
m0g(X1g,X2g)

m1g(X1g,X2g)
. (2.1)

The more evidence for the gene to be DE, the smaller the BF01(g).

One of the important issues for the Bayes factor based method is the spec-

ification of prior distributions. We use three examples to illustrate how prior

distributions are constructed and the corresponding Bayes factors are computed,

under various settings.
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Example 1.(Equal Variance). Assume that we have equal replication numbers

from both conditions for each gene, say ng for gene g, and the observed expression

measurements x1gj and x2gj come from independent normal distributions with

x1gj|µg, σ
2
g , δg ∼ N (µg − δg/2, σ

2
g) and x2gj|µg, σ

2
g , δg ∼ N (µg + δg/2, σ

2
g) for

j = 1, . . . , ng. The mean and variance parameters are assumed to come from

conjugate priors: µg|τ
2 ∼ N (0, τ2) and δg|λ

2 ∼ N (µδ, λ
2). Then the problem

becomes that of testing whether δg = 0 (H0g). Let x1g and x2g denote the

sample means of the observed intensities from conditions 1 and 2, respectively.

Then the mean difference of the intensities across two conditions is dg = x2g−x1g.

Assuming that σ2
g is known, after some algebra, the Bayes factor is given by

BF01(g) =
(ngλ

2

2σ2
g

+ 1
)

1

2

exp
{

−
ng(dg +

2σ2
g

ngλ2 µδ)
2

4σ2
g(1 +

2σ2
g

ngλ2 )
+

µ2
δ

2λ2

}

.

Observe that the distributions from different conditions under H1g differ

from each other only due to different means induced by the parameter δg. So

the test presented here is the same as that for testing the equality of the means:

µg + δg/2 = µg − δg/2. This is also the same as the hypotheses tested in SAM

(Tusher et al. (2001)), Cyber-T (Baldi and Long (2001)), and the SHB method

(Newton et al. (2004)). The Bayes factor can handle more general normal models

such as unequal variances across conditions, as discussed in Example 2, or other

distributions as in Example 3.

Example 2.(Unequal Variances). Assume that the intensities under two con-

ditions have different variances. Then, the intensities under H1g come from

x1gj|µ1g, σ
2
1g ∼ N (µ1g, σ

2
1g) and x2gj |µ2g, σ

2
2g ∼ N (µ2g, σ

2
2g). Here we consider a

prior predictive data-based conjugate prior (Chen and Ibrahim (2003)) for µ1g,

σ2
1g, µ2g, and σ2

2g. Specifically, we take

π(µ1g, µ2g, σ
2
1g, σ

2
2g)

∝
(

σ2
1g

)−
a01g

2

exp
{

−
a01g

2σ2
1g

[(µ1g − x01g)
2 + s2

01g]
}

×
(

σ2
2g

)−
a02g

2

exp
{

−
a02g

2σ2
2g

[(µ2g−x02g)
2 + s2

02g]
}

π0(µ1g, µ2g, σ
2
1g, σ

2
2g), (2.2)

where x01g and x02g are the prior predictive means, s2
01g and s2

02g are the prior

predictive variances, and π0(µ1g, µ2g, σ
2
1g, σ

2
2g) is an initial prior. The quanti-

ties a01g and a02g are positive scalar parameters that quantify one’s belief in

the prior predictors denoted by (x01g, x02g, s
2
01g, s

2
02g). When a01g → 0 and
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a02g → 0, (2.2) reduces to the initial prior. We specify the initial prior as

π0(µ1g, µ2g, σ
2
1g, σ

2
2g) ∝ π0(σ

2
1g, σ

2
2g), where σ2

1g ∼ IG(α1g, β1g) and, indepen-

dently, σ2
2g ∼ IG(α2g, β2g). Note that the prior (2.2) has a more general setting

than the traditional conjugate normal-inverse gamma prior. For example, when

π0 ∝ 1, (2.2) reduces to a conjugate prior. Another attractive feature of (2.2) is

that it allows us to incorporate data information, where (x01g, x02g, s
2
01g, s

2
02g) can

be calculated from historical data. Also the initial prior is added in case there is

no prior predictive information available. We choose the hyperparameters α1g,

α2g, β1g, and β2g, so that the prior moments of σ2
1g and σ2

2g exist. We note that

(β1g, β2g) are the variance-stabilized parameters, and play a role similar to the

“fudge” factor in SAM. With a suitable choice of (β1g, β2g), a gene with small

variances will not be declared DE because of a small difference in the means.

Under H0g: x1gj|µg, σ
2
1g ∼ N (µg, σ

2
1g) and x2gj |µg, σ

2
2g ∼ N (µg, σ

2
2g). In this

case, the prior predictive data-based conjugate prior reduces to π(µg, σ
2
1g, σ

2
2g) ∝

(σ2
1g)

−(a01g/2) exp{−(a01g/2σ
2
1g)[(µg−x01g)

2+s2
01g]} (σ2

2g)
−a02g/2 exp{−(a02g/2σ

2
2g)

[(µg−x02g)
2+s2

02g]} π0(µg, σ
2
1g, σ

2
2g). We take π0(µg, σ

2
1g, σ

2
2g) ∝ π0(σ

2
1g, σ

2
2g), and

π0(σ
2
1g, σ

2
2g) is the same prior for (σ2

1g, σ
2
2g) under H1g. After some messy algebra,

the Bayes factor takes the form:

BF01(g) ∝
[

∑

j

x2
1gj + a01g(s

2
01g + x2

01g) +
β1g

2
−

(n1gx1g + a01gx01g)
2

n1g + a01g

]− 1

2

×
[

∑

j

x2
2gj + a02g(s

2
02g + x2

02g) +
β2g

2
−

(n2gx2g + a02gx02g)
2

n2g + a02g

]− 1

2

×

∫

[

1+
(n1g + a01g)(µg −

n1gx1g+a01gx01g

n1g+a01g
)2

∑

j x2
1gj + a01g(s2

01g + x2
01g) +

β1g

2 −
(n1gx1g+a01gx01g)2

n1g+a01g

]−
n1g+a01g+2α1g

2

×
[

1+
(n2g + a02g)(µg −

n2gx2g+a02gx02g

n2g+a02g
)2

∑

j x2
2gj +a02g(s2

02g+x2
02g)+

β2g

2 −
(n2gx2g+a02gx02g)2

n2g+a02g

]−
n2g+a02g+2α2g

2

dµg.(2.3)

Example 3.(Non-normal Distributions). In this example, we use the same no-

tation as before, except that x1gj (x2gj) denotes the raw intensity instead of the

log-transformed intensity. Assume the raw intensities come from a gamma dis-

tribution, such that under H1g, x1gj ∼ G(αg, µg/αg), x2gj ∼ G(αg, κgµg/αg), and

µg ∼ IG(α0, β0); under H0g, everything is the same except κg = 1. Then the

Bayes factor is given by

BF01(g) = κ
αgn2g
g

[β0 + αg
∑n1g

j=1 x1gj +
αg

κg

∑n2g

j=1 x2gj

β0 + αg
∑2

i=1

∑nig

j=1 xigj

]α0+αg(n1g+n2g)
.



CALIBRATING BAYES FACTORS FOR GENE EXPRESSIONS 789

3. Threshold and Calibration Method

3.1. Constant threshold

As discussed before, the smaller the Bayes factor, the stronger the evidence

against the null hypothesis. Thus, for each gene, after BF01(g) is computed, the

threshold c can be specified so that gene g is declared to be DE if and only if

BF01(g) < c.

It is crucial to select a proper threshold for the Bayes factor in order to make

a valid decision. For example, Jeffreys (1961), Kass and Raftery (1995) propose

rules to define a series of constant values for the different levels of evidence of

the Bayes factor against H0. Applying the rule in Kass and Raftery (1995):

if BF01(g) < 1, the data show evidence that the gene g is DE; BF01(g) <

1/20, the data show strong evidence to support the gene g to be DE. However,

Vlachos and Gelfand (2003) and Garcia-Donato and Chen (2005) argue against

these rules due to the asymmetric distributions of the Bayes factor under the

two hypotheses. Consider the rule when the value 1 is chosen as the threshold.

In Example 1, let ng = 3, λ2 = 0.9, µδ = 3, τ2 = 0.5, and σ2
g = 0.1. Then the

probability of making mistake under H0g is Pr(BF01(g) < 1|H0g) = 0.03, and

the probability of making mistake under H1g is Pr(BF01(g) > 1|H1g) = 0.14.

Choosing a constant as a threshold, independent of g, may lead to a biased

decision.

3.2. Ordering method

Liu et al. (2004) propose putting the calculated Bayes factors in nondecreas-

ing order and choosing the top genes with small Bayes factors as the significant

DE genes. This approach requires that the distribution of Bayes factors be ex-

changeable. Unfortunately, in most cases, the exchangeability condition is not

satisfied. Even in a simple model with intensities from normal distributions, if

the sample sizes are different among genes, the distribution of Bayes factors is

not exchangeable across genes.

Example 1.(Continued). Define the new variable Zg = 2σ2
g/(ngλ

2). Consider

the situation where the observed intensities on different genes may have dif-

ferent variances or sample sizes. Assume g1 is a DE gene and g2 is an EE

gene. It is possible to have ln((Zg1
)−1 + 1) − (dg1

+ Zg1
µδ)

2/[λ2Zg1
(1 + Zg1

)] >

ln((Zg2
)−1 + 1) − (dg2

+ Zg2
µδ)

2/(λ2Zg2
(1 + Zg2

)). Thus the simple ordering

method (Liu et al. (2004)) becomes inappropriate.

Figure 1 gives a visual illustration of the non-exchangeability for Example 1

with ng = 20, λ2 = 10, µδ = 0, and p = 0.05. While σ2 changes from 0.5 to 10

with an increment of 0.5 at each step, we sample 10,000 Bayes factor values for

each σ2 value and then draw a boxplot for the sampled Bayes factors for each
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σ2. The plot shows that the centers of the Bayes factors monotonically decrease

as a function of σ2.

3.3. Adjusted calibration method

3.3.1. Calibration method

Let X denote the data. Given that c is a threshold value for the Bayes fac-

tor, then there are two possible mistakes: reject the null hypothesis when it is

true (i.e., BF01(X) < c when H0 is true), and fail to reject the null hypothesis

when it is false (i.e., BF01(X) ≥ c when H1 is true). Consider the asymme-

try of the two conditional distributions of the Bayes factor under H0 and H1.

Garcia-Donato and Chen (2005) define the calibration value, a nonnegative num-

ber c that satisfies Pr(BF01(X) ≥ c|H1) = Pr(BF01(X) < c|H0). Although their

method was designed to compare only one pair of models, it can be extended in

our context by obtaining a threshold independently for each gene. Such calibra-

tion values are free of the ordering, exist, and are unique. As thresholds they

ensure that the probability of wrongly choosing each gene to be DE is the same

as the probability of wrongly declaring that gene to be EE. Unfortunately, this

method fails to offer any adjustment for multiple comparisons over a large number

of genes by considering the fact that the proportion of EE genes is usually much

larger than the proportion of DE genes. Direct application of this method yields

a large false positive rate (low specificity) when applied to microarray expression

data.

3.3.2. Calibration method

Assume all genes have the same probability of being DE. Define Hg = 1 if

the gth gene is DE, and Hg = 0 if the gth gene is EE, then Hg ∼ Bernoulli (p)

for g = 1, . . . , G (Storey (2002)). On average, we expect to declare p × G genes

to be DE, and propose a new calibration value to meet this expectation.

Definition 3.1. If for gene g with Pr(Hg = 1) = p, cg is a non-negative value

satisfying Pr(BF01(g) < cg) = p, then cg is called the adjusted calibration value.

Here we declare gene g to be DE if BF01(g) < cg and EE otherwise. It is

clear from the definition that cg is gene dependent. Although the distribution of

BF01(g) may not be exchangeable, the distribution of the indicator 1{BF01(g)<cg}

is exchangeable. Furthermore, this adjusted calibration value has a correct pro-

portion of genes being declared to be DE on average. Mathematically, we have

E
[

G−1
∑G

g=1 1{BF01(g)<cg}

]

= G−1
∑G

g=1 Pr(BF01(g) < cg) = p. This adjusted

calibration value also has several other attractive properties, formally stated in

the following theorems.
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Theorem 3.1. The adjusted calibration value can be rewritten as

Pr(BF01(g) ≥ cg|Hg = 1) × p = Pr(BF01(g) < cg|Hg = 0) × (1 − p). (3.1)

Proof. Since p = Pr(BF01(g) < cg), Pr(Hg = 1) = p, and Pr(BF01(g) < cg) =

Pr(BF01(g) < cg|Hg = 1)×Pr(Hg = 1) + Pr(BF01(g) < cg|Hg = 0)×Pr(Hg =

0), we have p = Pr(BF01(g) < cg|Hg = 1)p + Pr(BF01(g) < cg|Hg = 0)(1 − p),

which leads to (3.1).

Theorem 3.1 shows that the adjusted calibration value has a similar form as

that of Garcia-Donato and Chen (2005). When p = 1/2, the adjusted calibration

value cg is the same as theirs which is expected to select 50% of genes as DE.

On the other hand, when p is close to 1, most genes will be declared DE genes;

when p is close to 0, most genes are declared as not DE genes.

Theorem 3.2. Let the density of the sampling distribution of BF01(g) under Hig

be fBF,ig for i = 0, 1. Assume that, for each gene, fBF,0g > 0 and fBF,1g > 0 for

all intensities X1g and X2g, then there exists a unique value cg satisfying (3.1).

Proof. Let FBF,ig denote the cumulative distribution function of BF01(g) under

Hig for i = 0, 1. Then (3.1) can be written as p(1 −
∫ cg

0 fBF,1g(b)db) = (1 −

p)
∫ cg

0 fBF,0g(b)db or pFBF,1g(cg) + (1 − p)FBF,0g(cg) = p. Since the function

g(t) = pFBF,1g(t)+(1−p)FBF,0g(t) is continuous and strictly increasing in [0,∞)

with limt→∞ g(t) = 1 and limt→0 g(t) = 0, the adjusted calibration value exists

and is unique.

Example 1.(Continued). Assuming the observed intensities come from the dis-

tribution structure defined in this example, we obtain

Pr(BF01(g) < cg|Hg = 0)

= Pr
{

χ2

1,
(

2σ2
gµ2

δ
ngλ4

) > 2
(

1 +
2σ2

g

ngλ2

)[1

2
ln(

ngλ
2

2σ2
g

+ 1) +
µ2

δ

2λ2
− ln cg

]}

and

Pr(BF01(g) ≥ cg|Hg = 1)

= Pr
{

χ2

1,
(

1+
2σ2

g

ngλ2

)

µ2
δ

λ2

≤
4σ2

g

ngλ2

[1

2
ln(

ngλ
2

2σ2
g

+ 1) +
µ2

δ

2λ2
− ln cg

]}

,

where χ2
1,ν denotes a noncentral chi-square variate with 1 degree of freedom

and non-centrality parameter ν. Thus, the adjusted calibration value cg can be
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calculated using the formula:

pPr
{

χ2

1,
(

1+
2σ2

g

ngλ2

)

µ2
δ

λ2

≤
4σ2

g

ngλ2

[1

2
ln(

ngλ
2

2σ2
g

+ 1) +
µ2

δ

2λ2
− ln cg

]}

=
(

1 − p
)

Pr
{

χ2

1,
(

2σ2
gµ2

δ
ngλ4

) > 2
(

1 +
2σ2

g

ngλ2

)[1

2
ln(

ngλ
2

2σ2
g

+ 1) +
µ2

δ

2λ2
− ln cg

]}

.

For illustration, we take ng = 20, λ2 = 5, µδ = 0, σ2
g = 0.5, and p =

0.05. Then, the Bayes factor can be at most (ngλ
2/2σ2

g + 1)−1/2 exp(µ2
δ/2λ

2) =

(ngλ
2/2σ2

g + 1)−1/2 = 10. Figure 2 displays the distributions of BF01(g) un-

der H0g and H1g, respectively. In Figure 2, the intersection of the yellow/grey

and red/cyan parts is the calibration value of Garcia-Donato and Chen (2005),

which is around 3.1. Based on this calibration value, the probabilities of mak-

ing mistake under both hypothesis (blue+yellow+gray for H0, red for H1) are

both approximately 0.122. The intersection of the blue and green/yellow parts

is the adjusted calibration value, which is around 0.4: the probability of wrongly

declaring the gene to be EE (green+yellow+red, equals 0.201) is 0.95/0.05 = 19

times the probability of wrongly declaring this gene as DE (blue, equals 0.011).

We note that in Examples 2 and 3, the model structures are so complex that

none of the error probabilities evaluated from the Bayes factor have closed forms.

In Example 2, even the Bayes factor does not have a closed form. A numerical

integration algorithm is needed for calculating the adjusted calibration value.

Figure 2. Density of BF01 on one gene under H0 (solid line) and under H1

(dashed line).
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3.3.3. Gene selection algorithm

Let cg denote the adjusted calibration value and let BF ∗
01|X(g) be the Bayes

factor based on the observed data for gene g. Consider the following gene se-

lection algorithm: (i) compute BF ∗
01|X(g); (ii) given p, compute the adjusted

calibration value cg via (3.1); and (iii) declare gene g to be DE if BF ∗
01|X(g) < cg

and EE if BF ∗
01|X(g) ≥ cg. However, when the calibration distribution is an-

alytically intractable, it is expensive to compute cg in (ii). To overcome the

computational difficulty of the above gene selection algorithm, we propose the

following alternative gene selection algorithm: (i) compute BF ∗
01|X(g); (ii) given

the calculated Bayes factor BF ∗
01|X(g), compute p∗g such that

p∗g =
Pr(BF01(g) < BF ∗

01|X(g)|Hg =0)

1 + Pr(BF01(g)<BF ∗
01|X(g)|Hg =0)−Pr(BF01(g)<BF ∗

01|X(g)|Hg =1)
;

(3.2)

and (iii) declare gene g to be DE if p∗g < p and EE if p∗g ≥ p.

From Theorem 3.3 below, we observe that the two algorithms are equivalent.

In (i) and (ii), we evaluate the evidence against H0g, and p∗g in (3.2) is the relative

probability of declaring gene g to be DE to the probability of declaring gene g to

be EE. In practice, p∗g behaves like the classical p-value because a small value of

p∗g measures evidence against H0g, while a large value of p∗g indicates evidence in

favor of H0g. The alternative algorithm is computationally attractive as it avoids

the time-consuming iterative calculation of the threshold cg.

Theorem 3.3. Suppose the cumulative distribution function of the Bayes factor

is continuous and strictly increasing. Given the probability p = Pr(Hg = 1),

BF ∗
01|X(g) < cg if and only if p∗g < p.

Proof. Since cg is the adjusted calibration value satisfying (3.1), we have p =

h(cg) = Pr(BF01(g) < cg|Hg = 0)/(1 + Pr(BF01(g) < cg|Hg = 0) − Pr(BF01(g)

< cg|Hg = 1)). Note that h(cg) is an increasing function of cg and p∗g =

h(BF ∗
01|X(g)). Thus, under the assumption given in the theorem, BF ∗

01|X(g) < cg

if and only if p∗g = h(BF ∗
01|X(g)) < h(cg) = p.

In practice, p is not known. We propose two methods for determining a

guide value for it. In Method 1, we set the type I error at a pre-specified level

α, calculate cg using Pr(BF01(g) < cg|Hg = 0) = α, and compute pg via (3.2)

by replacing BF ∗
01|X(g) with cg. We take the guide value to be the first quartile

of the pg values across all genes. In Method 2, we let SAM identify DE genes

with the FDR at a pre-specified level γ, and let kγ be the number of DE genes

selected by SAM. Then the guide value is taken as the kth
γ smallest ordered

value of the p∗g’s obtained in (3.2). Based on empirical results obtained from a
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simulation study in Section 4, and a data example in Section 5, both methods

work reasonably well.

3.3.4. Computational development

When the distribution of the Bayes factor under each hypothesis is a standard

distribution as in Example 1, the calculation of p∗g is straightforward. However,

in general, p∗g is analytically intractable, as in Examples 2 and 3. Therefore, a nu-

merical or Monte Carlo algorithm is needed for computing p∗g. From (3.2), we see

that the computation of p∗g involves two integrals Pr(BF01(g) < BF ∗
01|X(g)|Hg =

i) =
∫

BF01(g)<BF ∗
01|X

(g) fBF,ig(t)dt for i = 0, 1. As these integrals share the same

structure, the following Monte-Carlo procedure can be used to compute them,

here stated under H1g. For r = 1, 2, . . . , R,

S1. generate data (X∗
1g,r,X

∗
2g,r) from its marginal likelihood:

S1.1. generate ξ1g,r from its prior distribution π1,g(ξ1g),

S1.2. given ξ1g,r, generate data (X∗
1g,X

∗
2g)r from f1g(X

∗
1g,r,X

∗
2g,r|ξ1g,r),

S2. compute the Bayes factor BF01(g)(X∗
1g,r,X

∗
2g,r).

The probability Pr(BF01(g) < BF ∗
01|X(g)|Hg = 1) can be approximated by

the proportion of BF01(g)(X∗
1g,r,X

∗
2g,r) less than BF ∗

01|X(g), that is Pr(BF01(g)

< BF ∗
01|X(g)|Hg = 1) ≈ 1

R

∑

r 1{
BF01(g)(X∗

1g,r ,X∗
2g,r)<BF ∗

01|X
(g)

}, with equality at-

tained when R → ∞. The proposed computational algorithm is easy to imple-

ment, and has the additional advantage that we do not need to compute the data

independent constants involved in the Bayes factor.

Theorem 3.4. If BF01(g) = κ × B(X1g,X2g), where κ is the constant inde-

pendent of the observed data and B is a function of the observed data, then the

inequality: BF01(g) < BF ∗
01|X(g) does not involve κ.

Thus, analytically intractable normalizing constants involved in the prior

distributions under H0g and H1g need not be computed, and the calibration-

based method is more practical than other Bayes factor-based methods, such as

the one discussed in Section 3.2.

3.3.5. Protecting violation of exchangeability

As discussed in Section 3.2, in order for the ordering method (Liu et al.

(2004)) to work, one requires that the distributions of Bayes factors be iden-

tical across genes. Fortunately, the adjusted calibration method can make a

correct decision without exchangeability. For example, suppose gene g1 is DE

and gene g2 is EE. For a given data set and a particular choice of the prior

distribution, we may have BF ∗
01|X(g2) < BF ∗

01|X(g1). Based on the ordering
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method, gene g2 is more likely to be declared DE. Based on (3.2), our calibra-

tion method will declare gene g1 to be DE if Pr(BF01(g1) ≥ BF ∗
01|X(g1)|Hg =

1) × p ≥ Pr(BF01(g1) < BF ∗
01|X(g1)|Hg = 0) × (1 − p), and gene g2 to be EE

if Pr(BF01(g2) ≥ BF ∗
01|X(g2)|Hg = 1) × p ≤ Pr(BF01(g2) < BF ∗

01|X(g2)|Hg =

0) × (1 − p).

Example 1.(Continued). Based on the inequality above, the adjusted calibration

method will protect against the violation of exchangeability if

p

1−p
Pr

[

χ2

1,
(

1+Zg1

)

µ2
δ

λ2

≤
(dg1

+ Zg1
µδ)

2

λ2(1 + Zg1
)

]

+ Pr
[

χ2

1,Zg1

(

µ2
δ

λ2

)≤
(dg1

+ Zg1
µδ)

2

λ2Zg1

]

≥ 1

and
p

1−p
Pr

[

χ2

1,
(

1+Zg2

)

µ2
δ

λ2

≤
(dg2

+ Zg2
µδ)

2

λ2(1 + Zg2
)

]

+Pr
[

χ2

1, Zg2

(

µ2
δ

λ2

)≤
(dg2

+ Zg2
µδ)

2

λ2Zg2

]

≤ 1.

We note that when the exchangeability assumption is not violated, the adjusted

calibration method makes the same decision as the ordering method because the

adjusted calibration method uses the same percentile of the identical distribution

as the threshold.

4. A Simulation Study

We conducted a simulation study to compare the performance of the ad-

justed calibration method (Cal. BF) to the six other methods: the ordering of

Bayes factor (BF), SAM (Tusher et al. (2001)), QVALUE (Storey (2002)), SHB

(Newton et al. (2004)), LIMMA (Smyth (2004)), and EBarrays (parametric em-

pirical Bayes methods for microarray data, Kendziorski et al. (2003)).

To evaluate the performance of these seven methods, we use four error rates:

false negative, false positive, conditional false discovery rate (cFDR), and false

non-discovery rate (FNDR). Of the truly DE genes, the false negative rate is the

proportion not detected as DE; of the truly EE genes, the false positive rate is

the proportion declared to be DE. cFDR is the realized rate of false detections

in the detected genes with a given positive size, and FNDR is the realized rate

of false non-detections in the non-detected genes. Since the truth is known for

all simulated data, the four error rates can be easily estimated.

Several simulations were conducted. In all simulations, the data were sim-

ulated so that 250 genes are in truth “differentially expressed” and 4,750 genes

are in truth “not differentially expressed”. In each simulation 500 data sets were

generated from the same model and each method was applied to select 200, 250,

and 300 genes to be DE.

Simulation I. We set n1g = n2g = ng = 10. For each j, j = 1, . . . , 10, we

independently generated x1gj ∼ N(µg + 0.5, 0.32) and x2gj ∼ N(µg − 0.5, 1.22)
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Table 1. Method comparison based on simulation

Claimed

DE
Method

Correctly

Claimed DE

Correctly

Claimed EE
False Neg. False Pos. cFDR FNDR

200 Cal. BF 185.9 (3.5) 4735.9 (3.5) 0.257 (0.014) 0.003 (0.001) 0.071 (0.017) 0.013 (0.001)

BF 173.4 (5.2) 4673.4 (5.2) 0.306 (0.021) 0.016 (0.001) 0.133 (0.026) 0.026 (0.001)

SAM 156.0 (5.3) 4706.0 (5.3) 0.376 (0.021) 0.009 (0.001) 0.220 (0.027) 0.020 (0.001)

QVALUE 135.0 (5.5) 4685.0 (5.5) 0.460 (0.022) 0.014 (0.001) 0.325 (0.027) 0.024 (0.001)

SHB 157.3 (5.8) 4707.3 (5.8) 0.371 (0.023) 0.009 (0.001) 0.213 (0.029) 0.019 (0.001)

LIMMA 179.6 (4.0) 4729.6 (4.0) 0.282 (0.016) 0.004 (0.001) 0.102 (0.020) 0.015 (0.001)

EBarray 181.2 (3.9) 4731.2 (3.9) 0.275 (0.016) 0.004 (0.001) 0.094 (0.020) 0.014 (0.001)

250 Cal. BF 206.3 (4.6) 4706.3 (4.6) 0.175 (0.018) 0.009 (0.001) 0.175 (0.018) 0.009 (0.001)

BF 184.2 (6.1) 4684.2 (6.1) 0.263 (0.024) 0.014 (0.001) 0.263 (0.024) 0.014 (0.001)

SAM 173.7 (6.1) 4673.7 (6.1) 0.305 (0.025) 0.016 (0.001) 0.305 (0.025) 0.016 (0.001)

QVALUE 151.6 (5.9) 4651.6 (5.9) 0.394 (0.023) 0.021 (0.001) 0.394 (0.023) 0.021 (0.001)

SHB 166.3 (6.6) 4666.3 (6.6) 0.335 (0.026) 0.018 (0.001) 0.335 (0.026) 0.018 (0.001)

LIMMA 198.4 (5.0) 4698.4 (5.0) 0.206 (0.020) 0.011 (0.001) 0.206 (0.020) 0.011 (0.001)

EBarray 199.7 (4.9) 4699.7 (4.9) 0.201 (0.020) 0.011 (0.001) 0.201 (0.020) 0.011 (0.001)

300 Cal. BF 216.9 (4.6) 4666.9 (4.6) 0.132 (0.018) 0.017 (0.001) 0.277 (0.015) 0.007 (0.001)

BF 189.4 (6.4) 4689.4 (6.4) 0.242 (0.026) 0.013 (0.001) 0.369 (0.021) 0.002 (0.001)

SAM 185.9 (6.6) 4635.9 (6.6) 0.257 (0.027) 0.024 (0.001) 0.380 (0.022) 0.014 (0.001)

QVALUE 164.3 (6.1) 4614.3 (6.1) 0.343 (0.024) 0.029 (0.001) 0.452 (0.020) 0.018 (0.001)

SHB 172.3 (7.0) 4622.3 (7.0) 0.311 (0.028) 0.027 (0.001) 0.426 (0.023) 0.017 (0.002)

LIMMA 209.0 (5.1) 4659.0 (5.1) 0.164 (0.021) 0.019 (0.001) 0.303 (0.017) 0.009 (0.001)

EBarray 209.6 (5.3) 4659.6 (5.3) 0.162 (0.021) 0.019 (0.001) 0.301 (0.018) 0.009 (0.001)

for g = 1, . . . , 125; x1gj ∼ N(µg − 0.5, 0.32) and x2gj ∼ N(µg + 0.5, 1.22) for

g = 126, . . . , 250; x1gj, x2gj ∼ N(µg, 0.7
2) for g = 251, . . . , 5, 000; and µg ∼

Unif(5, 11) for all g. The model in Example 2 was used to compute the Bayes

factors, except that the variances of the intensities from different conditions under

H0g (EE) on each gene g satisfies σ2
1g = σ2

2g = σ2
g . The prior parameters were

specified as follows: x̄01g = x̄02g = 0, and s01g = s02g = 0.5 or 6 for every 50

genes alternatively. Both a01g and a02g were set to be a0gn0g, where n0g = ng

and a0g = 0.05 when gene index g was a multiple of 8, and 0.005 otherwise.

Table 1 summarizes the average number of correctly claimed DE genes, the

average number of correctly claimed EE genes, false negative, false positive,

cFDR, and FNDR, with associated simulation standard errors (SE) given in

parentheses. The results from Table 1 clearly show that the adjusted calibra-

tion method outperforms all six other methods based on all aspects. Among the

six methods, LIMMA and EBarray performed much better than the other four.

QVALUE did poorly because the q-values are calculated based on the p-values

from independent two-sample t tests. Compared to the adjusted calibration

method, a worse performance of the ordering of BF may be partially due to the

fact that the exchangeability of the distribution of Bayes factors across genes

does not hold and a relatively vague prior was specified. As expected, SHB does
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not perform well because SHB assumes a constant CV (coefficient of variation)

within each biological condition. A potential reason why SAM does not perform

well is the setting of different variances for log-intensities from different biological

conditions. Compared to the other methods, the proposed adjusted calibration

method also has the smallest simulation standard errors.

We also considered some other choices for a0g. For example, a0g was set to

be 0.1 when the gene index g is a multiple of 8, and 0.005 otherwise. Then, the

average numbers of correctly claimed DE genes (SE) and the average numbers

of correctly claimed EE genes (SE) are 206.5 (4.2) and 4706.5 (4.2) for Cal. BF,

and 150.1 (6.9) and 4650.1 (6.9) for BF if 250 genes were selected to be DE. The

results based on this choice of prior for Cal. BF are very similar to those given

in Table 1, while the ordering method is quite sensitive to the prior. We also

observed that when the same, but small, a0g is specified for all genes, Cal. BF

and ordering methods work equally well. In practice, we recommend choosing a

value of a0g which leads to a moderately informative prior or a relatively vague

prior. Although Cal. BF is quite robust to the choice of a0g in this simulation,

we recommend doing a sensitivity analysis for several values of a0g.

Simulation II. We again set n1g = n2g = ng = 10. We then independently

generated exp(x1gj) ∼ G(γ1g, exp(µg +0.5)/γ1g) and exp(x2gj) ∼ G(γ2g, exp(µg −
0.5)/γ2g) for g = 1, . . . , 125; exp(x1gj)∼G(γ1g, exp(µg−0.5)/γ1g) and exp(x2gj) ∼
G(γ2g, exp(µg + 0.5)/γ2g) for g = 126, . . . , 250; exp(x1gj), exp(x2gj) ∼ G(γg,

exp(µg)/γg) for g = 251, . . . , 5, 000; and µg ∼ Unif(5, 11), γ1g ∼ Unif(0.3, 1.1),

γ2g ∼ Unif(2.2, 6.2), and γg ∼ Unif(1.2, 3.2) for all g. The same model and

prior as in Simulation I were used to compute the Bayes factors. We conducted

this simulation to examine the robustness of the log-normal distribution for all

seven methods.

The results are summarized in Table 2. From Tables 1 and 2, we can see that

all methods performed worse in Simulation II than in Simulation I. SHB is most

robust among all methods, which may be partially due to the fact that gamma

distributions are assumed for the intensities on raw scale in SHB. Compared

to SAM, QVALUE, LIMMA, and EBarrays, the Bayes factor-based methods

are much more robust to the specification of log-normal distributions. Despite a

fitted model different from the generation model, the adjusted calibration method

still outperforms the six other methods.

Simulation III. We set n1g = n2g = ng. We generated ng randomly between

5 and 40. Then, given ng, we independently generated x1gj ∼ N(µg + 0.5, 0.62)

and x2gj ∼ N(µg − 0.5, 1.02) for g = 1, . . . , 125; x1gj ∼ N(µg − 0.5, 0.62) and

x2gj ∼ N(µg + 0.5, 1.02) for g = 126, . . . , 250; and x1gj , x2gj ∼ N(µg, 0.8
2) for

j = 1, . . . , ng and g = 251, . . . , 5, 000. We took µg ∼ Unif(5, 11) for all g. The

same model as in Simulation I was used to compute the Bayes factors. The prior
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Table 2. Sensitivity Analysis

Claimed

DE
Method

Correctly

Claimed DE

Correctly

Claimed EE
False Neg. False Pos. cFDR FNDR

200 Cal. BF 166.8 (4.6) 4716.8 (4.6) 0.333 (0.018) 0.007 (0.001) 0.166 (0.023) 0.017 (0.001)

BF 165.4 (4.9) 4665.4 (4.9) 0.338 (0.020) 0.018 (0.001) 0.173 (0.025) 0.028 (0.001)

SAM 123.9 (4.1) 4673.9 (4.1) 0.504 (0.016) 0.016 (0.001) 0.380 (0.021) 0.026 (0.001)

QVALUE 109.9 (5.1) 4659.9 (5.1) 0.560 (0.020) 0.019 (0.001) 0.450 (0.026) 0.029 (0.001)

SHB 148.7 (5.8) 4698.7 (5.8) 0.405 (0.023) 0.011 (0.001) 0.256 (0.029) 0.021 (0.001)

LIMMA 127.7 (4.7) 4677.7 (4.7) 0.489 (0.019) 0.015 (0.001) 0.362 (0.023) 0.025 (0.001)

EBarray 140.0 (4.5) 4690.0 (4.5) 0.440 (0.018) 0.013 (0.001) 0.300 (0.022) 0.023 (0.001)

250 Cal. BF 185.0 (5.2) 4685.0 (5.2) 0.260 (0.021) 0.014 (0.001) 0.260 (0.021) 0.014 (0.001)

BF 177.1 (5.7) 4677.1 (5.7) 0.292 (0.023) 0.015 (0.001) 0.292 (0.023) 0.015 (0.001)

SAM 129.7 (4.3) 4629.7 (4.3) 0.481 (0.017) 0.025 (0.001) 0.481 (0.017) 0.025 (0.001)

QVALUE 119.6 (4.9) 4619.6 (4.9) 0.522 (0.020) 0.027 (0.001) 0.521 (0.020) 0.027 (0.001)

SHB 162.6 (6.3) 4662.6 (6.3) 0.350 (0.025) 0.018 (0.001) 0.350 (0.025) 0.018 (0.001)

LIMMA 135.8 (4.7) 4635.8 (4.7) 0.457 (0.019) 0.024 (0.001) 0.457 (0.019) 0.024 (0.001)

EBarray 148.7 (4.9) 4648.7 (4.9) 0.405 (0.019) 0.021 (0.001) 0.405 (0.019) 0.021 (0.001)

300 Cal. BF 196.6 (5.3) 4646.6 (5.3) 0.214 (0.021) 0.022 (0.001) 0.345 (0.018) 0.011 (0.001)

BF 183.3 (6.0) 4683.3 (6.0) 0.267 (0.024) 0.014 (0.001) 0.389 (0.020) 0.004 (0.001)

SAM 134.2 (4.8) 4584.2 (4.8) 0.463 (0.019) 0.035 (0.001) 0.553 (0.016) 0.025 (0.001)

QVALUE 126.9 (5.0) 4576.9 (5.0) 0.492 (0.020) 0.036 (0.001) 0.577 (0.017) 0.026 (0.001)

SHB 171.9 (6.4) 4621.9 (6.4) 0.312 (0.026) 0.027 (0.001) 0.427 (0.021) 0.017 (0.001)

LIMMA 142.0 (4.9) 4592.0 (4.9) 0.432 (0.020) 0.033 (0.001) 0.527 (0.016) 0.023 (0.001)

EBarray 155.0 (4.9) 4605.0 (4.9) 0.380 (0.020) 0.031 (0.001) 0.483 (0.016) 0.020 (0.001)

parameters were specified as follows: x̄01g = x̄02g = 0, s01g = s02g = 0.5 a01g =

a02g = a0n0g, where n0g = ng and a0 = 0.4 for every gene. Under this simulation

setting, although the prior is exchangeable across genes, the distribution of Bayes

factors is still not exchangeable due to the different sample sizes. We conducted

this simulation to study the effect of sample size on the performance of the

adjusted calibration method and the ordering of BF.

For this simulation, we report only the average number of correctly claimed

DE genes (SE) and the average number of correctly claimed EE genes (SE), for

brevity. These numbers are 160.9 (4.1) and 4710.9 (4.1) for Cal. BF, and 140.7

(4.2) and 4690.7 (4.2) for BF if 200 genes were selected to be DE; 176.9 (5.2) and

4676.9 (5.2) for Cal. BF, and 146.9 (4.3) and 4646.9 (4.3) for BF if 250 genes

were selected to be DE; and 187.7 (5.5) and 4637.7 (5.5) for Cal. BF, and 151.4

(4.2) and 4601.4 (4.2) for BF if 300 genes were selected to be DE. Again, the

adjusted calibration method performs much better than the ordering of BF.

The Guide Value. Under the setting of Simulation I, we also investigated

performance of the two proposed methods for producing a guide value of p. Using

Method 1, the average numbers of claimed DE genes and the average numbers

of correctly claimed DE genes by Cal. BF were 93.55 and 93.20 for the type I
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error α = 0.01, and 127.65 and 126.65 for α = 0.02, respectively. Using Method

2, with a control of FDR at γ = 0.05, the average number of DE genes claimed

by the SAM was 82.75, and the average numbers of correctly identified DE genes

were 79.55 and 82.45 by SAM and Cal. BF, respectively. For γ = 0.10, the

average number of DE genes claimed by SAM was 119.35 and, in this case, SAM

and Cal. BF correctly identified 108.45 and 118.55 DE genes, respectively. Thus,

both proposed methods worked quite well.

5. Analysis of Microarray Data

We consider a data set from Kalajzic et al. (2005), where mouse calvarial

cultures at day 7 and 17 underwent Affymetrix microarray analyses to under-

stand the gene expression profile of osteoblast lineage at defined stages of dif-

ferentiation. They demonstrated the feasibility of generating more homogeneous

populations of cells at distinct stages of osteoprogenitor maturation by utiliz-

ing collα1 promoter-GFP transgenic mouse lines. They also argued the needs

for doing this cell separation for valid microarray interpretations. Two statisti-

cal methods: SAM (Tusher et al. (2001)) and SHB (Newton et al. (2004)) were

applied to several data sets corresponding to different stages of bone cells differ-

entiation to select differentially expressed genes. We use only one of the data sets

for illustration and comparison. We focus on detecting genes that are regulated

at mature osteoblast, that is, day 17 cultures between cells with 2.3GFPpos and

cells with 2.3GFPneg.

Note that SAM uses the pooled estimate of equal variances from two condi-

tions in modified t-statistics. SHB fits the raw intensities by gamma distributions

with a fixed shape parameter. Therefore it assumes that the data have equal co-

efficients of variation for each condition across genes. We can explore several

models for the adjusted calibration method. Table 3 lists the summary statis-

tics for the ratios of the sample standard deviations across two conditions for

all genes. We see that the median of the ratios is 2.844, and the largest ratio

value is 1.289e+05. Therefore, unequal variances of intensities between the two

conditions seems evident. We adopt the model in Example 2 to derive the Bayes

factor and the adjusted calibration method to select DE genes. The values of

a01g and a02g were chosen to be a0ng, where a0 = 0.5 and ng = 3 and, in the

initial prior π0(σ
2
1g, σ

2
2g), we set α1g = α2g = 1.0 and β1g = β2g = 1.0. Thus, a

moderately informative prior was used in the analysis.

Table 3. Summary statistics of the ratios between the two sample standard
deviations across genes.

Min Q1 Median Mean Q3 Max

1.000 1.608 2.844 42.39 6.773 1.289e+05
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Figure 3. Number of DE genes selected by the adjusted calibration, SAM
and SHB methods.

We matched the number of the selected DE genes by calibration and SHB to

that of SAM. This was 253 genes, controlling the median of the false discovery

rates at 5% as determined by SAM. Figure 3 shows the Venn diagram of these

selected genes by the three methods. The results show 325 of 5,977 genes selected

by one of the three methods, with 179 genes picked by all three. There were 255

genes picked by at least two methods, among which, 223 genes were picked by

both calibration and SAM; 194 genes were picked by both calibration and SHB;

196 genes were picked by both SAM and the SHB method.

The 15 genes selected by calibration, missed by SAM or SHB, deserve our at-

tention. Among them, activated leukocyte cell adhesion molecule (Alcam) plays

a critical role in the differentiation of mesenchymal tissues in multiple species

(Bruder et al. (1998)), the function of chemokine c-c motif receptor 5 (Ccr5) in

osteoblasts was investigated in Yano et al. (2005), and the expression of very

low density lipoprotein receptor (Vldlr) was supported by different human os-

teoblast cell lines (Niemeier et al. (2005)). This example illustrates the potential

advantages of the adjusted calibration method in screening for expressed genes

in data.

We conducted a sensitivity analysis on the choice of the scale parameter a0

in a01g and a02g. Instead of a0 = 0.5, we considered a0 = 0.3 and a0 = 0.7. There

are 230 and 220 genes selected by both SAM and the calibration method with
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these choices. Of them, there are 215 DE genes in common between a0 = 0.3 and

a0 = 0.5, and 217 DE genes in common between a0 = 0.7 and a0 = 0.5. That is,

there are 96.41% and 97.31% genes selected in common, respectively.

Finally, we mention that if we set the type I error α = 0.01 to determine the

guide value discussed in Section 3.3.3, the calibration method selected 292 DE

genes, of which 242 genes overlapped with the DE genes selected by SAM with

a control of FDR at 0.05.

6. Discussion

Although only normal distributions or gamma distributions were used in our

illustrative examples, the proposed calibration method can easily be extended

to other types of distributions, such as a mixture of two or three normals. The

theory and the gene selection algorithm discussed in Section 3 remain valid.

The only complication for such extension is that the Bayes factor may become

analytically intractable. Due to the recent advance in Bayesian computation,

there are many efficient Monte Carlo methods available for computing Bayes

factors. A hybrid of the computational algorithm discussed in Subsection 3.3.4

and the Monte Carlo methods given in Chen, Shao and Ibrahim (2000) can be

developed for computing p∗g in (3.2).
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