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Abstract: This paper discusses two classes of minimum distance estimators of the

underlying parameters and their robust variants in unilateral autoregressive lat-
tice models. The paper also contains an asymptotically distribution free test for

symmetry of the error distribution and a goodness-of-fit test for fitting an error

distribution. A lack-of-fit test for the hypothesis that the given process is doubly

geometric based on the least absolute deviation residuals is also briefly analyzed.

A simulation study that investigates some small sample properties of the proposed

estimators and their robustness is included. It shows that some of the proposed

estimators are more efficient than the least squares estimator at non-normal error

distributions. We also study the empirical level and power of the test of a doubly

geometric process at various error distributions. The proposed methodology is then

applied to a data set of yields from an agricultural experiment.

Key words and phrases: Doubly geometric process, efficiency, non-Gaussian spa-

tial model, Pickard process, quadrant autoregressive process, robustness, weighted
empirical processes.

1. Introduction

A unilateral autoregressive process in the plane consists of the observations

Xi,j satisfying

Xi,j = α10Xi−1,j + α01Xi,j−1 + α11Xi−1,j−1 + εi,j, i, j = 0,±1,±2, . . . . (1.1)

Here the errors εi,j are assumed to be i.i.d. according to a distribution function

(d.f.) F having zero mean and finite and positive variance σ2. Moreover, for

each i, j, εi,j is assumed to be independent of the past random variables (r.v.’s)

{Xr,s; r ≤ i, s ≤ j, (r, s) 6= (i, j)}. The process (1.1) is sometimes also referred

to as a first-order quadrant autoregressive (QAR(1,1)) process (Tjøstheim (1978,

1983)) or a Pickard process (Pickard (1980) and Tory and Pickard (1992)). From

now on we write QAR for the QAR(1,1) process of the form (1.1). When α11 = 0,

it is called a nearest neighbor (NN) process (Bartlett (1968, 1971) and Martin

(1979, 1996, 1997)). The QAR process with α11 = −α10α01 is called a doubly

geometric (DG) process (Martin (1979)). It is the product of two autoregressive

time series processes of order 1.
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Tory and Pickard (1992) showed that the QAR process is stationary if

|α10 + α01| < 1 − α11, |α10 − α01| < 1 + α11. (1.2)

These conditions reduce to |α10| + |α01| < 1 for the NN process. The process

(1.1) also has an infinite moving average representation (Martin (1997)) given by

Xi,j =

∞∑

r=0

∞∑

s=0

βrsεi−r,j−s, βrs =

min(r,s)∑

k=0

(r + s − k)!

(r−k)!(s−k)!k!
αr−k

10 αs−k
01 αk

11. (1.3)

Unilateral autoregressive processes (1.1) are important for two main reasons.

First, they are useful for practical modeling because they include a fairly flexi-

ble range of spatial correlation structures (see, e.g., Besag (1972) and Basu and

Reinsel (1993)), while having some very attractive inferential properties due to

their unilateral structure. Indeed, QAR processes are a natural generalization

of autoregressive time series from R to R
d, d ≥ 2. In the plane, i.e., when

d = 2, these processes are of particular interest for agricultural and environmen-

tal applications, as well as digital filtering in image analysis. They are especially

appropriate when there is evidence of a spatial movement over the plane in one

direction, such as with environmental pollutants transported by winds or ocean

currents, or with the spread of a disease. Moreover, they are simple alternatives

to more complicated simultaneous autoregressive (SAR) and conditional autore-

gressive (CAR) models, see, e.g., Whittle (1954), Bartlett (1971) and Besag

(1974). Secondly, QAR processes are the building blocks for inference in SAR

models because they can be used as auxiliary models in an indirect inferen-

tial procedure, see de Luna and Genton (2002), as well as Genton and Ronchetti

(2003). Therefore, it is important to construct good inferential procedures for

QAR processes.

Some inference procedures based on the least squares (LS) methodology

and/or maximum likelihood (ML) methodology under the additional assump-

tion of normality of the errors εi,j in the QAR model (1.1) are available in the

literature, see, e.g., Guo and Billard (1998) and Basu and Reinsel (1993). But,

as is well known, these inference procedures are non-robust to outliers in the er-

rors. The development of inference for this model with non-Gaussian continuous

error distributions seems to have lagged behind.

Here, we describe two classes of minimum distance estimators (M.D.E.’s)

and their robust variants for the parameter vector α := (α10, α01, α11)
′, based

on the observations {Xi,j}, i, j = 0, 1, . . . , n on a regular square lattice, without

assuming the knowledge of the error d.f. F . Extensions to n1 × n2 rectangular

lattices are straightforward. Some members of these classes are asymptotically
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more efficient than the classical LSE at non-Gaussian errors, while also being
robust against outliers in the innovations.

This paper is organized as follows. In Section 2.1 we describe M.D.E.’s and
their robust modification for QAR processes that do not require the specification
of the error distribution. Their asymptotic normality is stated in Propositions
2.1 and 2.2. An asymptotically distribution free test of the symmetry of the
error distribution and a goodness-of-fit test pertaining to the error d.f. F is
given in Section 2.2. A lack-of-fit test for fitting a DG process, i.e., for testing
H0 : α11 = −α10α01, based on the least absolute deviation (LAD) residuals,
appears in Section 2.3. In Section 3, we investigate numerically the small sample
properties of the proposed estimators and their robustness, showing that they
are more efficient than the LSE at non-normal error distributions. We also study
the empirical level and power of the LAD test for the above H0 at various error
distributions. In Section 4, the proposed methodology is illustrated on a data
set of yields from an agricultural experiment.

2. Main Results

This section contains some new estimation procedures for QAR processes
based on minimum distance and their asymptotic normality, an asymptotically
distribution free test for testing the symmetry of the errors, a goodness-of-fit
test for fitting an error d.f. up to an unknown scale parameter, and a test of the
hypothesis H0 : α11 = −α10α01 based on the LAD residuals.

2.1. Minimum distance estimation

In this sub-section we introduce the two classes of M.D.E.’s of α. For one
of these classes, we need to assume the symmetry of the error d.f., while for the
other no such assumption is needed, but the corresponding estimator is based on
the residual ranks. To proceed further, define, for a t := (t1, t2, t3)

′ ∈ R
3,

Yi,j := (Xi−1,j ,Xi,j−1,Xi−1,j−1)
′, εi,j(t) := Xi,j − t′Yi,j. (2.1)

Now, suppose the error d.f. F is symmetric around zero. Then the r.v.’s
{εi,j(α); i, j = 1, . . . , n} and their reflections around the origin {−εi,j(α); i, j =
1, . . . , n} have the same distribution. This motivates us to define an estimator of
α as a value of t that minimizes some kind of a dispersion between {εi,j(t); i, j =
1, . . . , n} and {−εi,j(t); i, j = 1, . . . , n}. A class of useful dispersions is obtained
as follows. Let G be a nondecreasing right continuous function on R, and define

K(x, t) := n−1
n∑

i=1

n∑

j=1

Yi,j{I(εi,j(t) ≤ x)−I(−εi,j(t) ≤ x)}, x ∈ R,

M(t) :=

∫
‖K(x, t)‖2G(dx), t ∈ R

3.
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Because of the assumed symmetry of F , the conditional expectation of the (i, j)th

summand of K(x, α) given {Yr,s; r ≤ i, s ≤ j, (r, s) 6= (i, j)}, is zero for all x ∈ R,

and hence E(K(x, α)) ≡ 0. The dispersion M(t) is an analogue of the Cramér-

von Mises distance between the weighted empirical processes of {εi,j(t)} and

{−εi,j(t)}. We are thus motivated to define a class of M.D.E.’s of α, one for each

G, by the relation

α̂ := arginftM(t).

Write α̂I for α̂ when G(x) ≡ x. This estimator is an extension of the median of

pairwise means estimator to the current set up. The α̂ corresponding to the G

degenerate at zero gives the LAD estimator.

Now suppose F is not symmetric but still unknown. In this case we use

ranks of the residuals to estimate α as follows. Let L be a d.f. on the interval

[0, 1]. Define

Ri,j(t) :=

n∑

r=1

n∑

s=1

I(εr,s(t) ≤ εi,j(t)), 1 ≤ i, j ≤ n; Ȳ := n−2
n∑

i=1

n∑

j=1

Yi,j,

T (u, t) := n−1
n∑

i=1

n∑

j=1

(Yi,j − Ȳ )I(Ri,j(t) ≤ nu), 0 ≤ u ≤ 1,

R(t) :=

∫ 1

0
‖T (u, t)‖2dL(u), t ∈ R

3; α̃ := arginftR(t).

Write α̃I for α̃ when L(u) ≡ u.

As argued in Koul (1986, 2002), in connection with the single time index

autoregressive time series, the Pitman asymptotic relative efficiency (ARE) of α̂I

compared to the LSE is the same as that of the median of the pairwise means

relative to the sample mean at a large class of error distributions. The estimator

α̃I also has a very desirable ARE property. For example, with double exponential

errors its ARE, relative to the LSE and α̂I , is 1.67 and 1.11, respectively. It is thus

desirable to extend the applicability of these procedures to the current spatial

set-up.

We now state additional assumptions needed for the asymptotic normality

of the above M.D.E.’s. To keep their statements relatively transparent, assume

G is continuous and symmetric around zero and that F has a density f . The

symmetry of G is equivalent to

G(0) − G(−x) = G(x) − G(0), ∀ x > 0. (2.2)
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Furthermore, we need the following assumptions:
∫ ∞

0
(1 − F )dG < ∞; (2.3)

0 <

∫
f rdG < ∞, r = 1, 2; (2.4)

sup
|s|≤δ

∫
f r(x + s)G(dx) < ∞, for some δ > 0, r = 1, 2; (2.5)

∫
(f(x + s) − f(x))2G(dx) −→ 0, as |s| → 0. (2.6)

Now, let γ(h, k) := E(Xi,jXi−h,j−k), and

Γ := E(Yi,jY
′
i,j) =




γ(0, 0) γ(−1, 1) γ(0, 1)

γ(−1, 1) γ(0, 0) γ(1, 0)

γ(0, 1) γ(1, 0) γ(0, 0)


 .

By the results established in Tjøstheim (1983), we obtain that

n−2
n∑

i=1

n∑

j=1

Yi,jY
′
i,j = Γ + op(1).

Let ρ(x, y) := F (x ∧ y) − F (x)F (y), x, y ∈ R, and Σ := Γ − E(Ȳ Ȳ ′). Using the

general methodology of Chapter 5 in Koul (2002), as used in Chapter 7 there,

we obtain the following proposition.

Proposition 2.1. Suppose the QAR model (1.1) holds. In addition, assume

that Γ is positive definite, the error d.f. F is symmetric around zero, and has

density f such that (F,G) together satisfy the conditions (2.2)−(2.6), and for

any 0 < c < ∞,
∫

E
{
‖Y1,1‖

2
∣∣F (x + n−1/2c‖Y1,1‖) − F (x − n−1/2c‖Y1,1‖)

∣∣}dG(x) → 0. (2.7)

Then, n(α̂ − α) →d N3(0,Γ
−1τ2), where τ2 :=

∫ ∫
ρ(x, y)f(x)f(y)dG(x)dG(y)/

(
∫

f2dG)2.

We now briefly discuss the assumptions (2.3)−(2.6) and (2.7). Let ε be a

r.v. with d.f. F . The condition (2.3) is equivalent to requiring the finiteness of

E(|G(ε) − G(0)|). If G has a bounded Lebesgue density g, then E(|ε|) < ∞ and

(2.4) with r = 2 imply (2.3)−(2.6). To see this use the fact that (2.4) with r = 2

implies that f is shift continuous in mean square with respect to the measure

g(x)dx. In particular, in case G(x) ≡ x, E(|ε|) < ∞ and
∫

f2(x)dx < ∞ imply

these conditions.
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If G is a finite measure, then by the Dominated Convergence Theorem, the

continuity of F and E(‖Y1,1‖
2) < ∞ imply (2.7). In particular, if F is known and

one chooses G = F , then the latter two conditions imply (2.7). In case G(x) ≡ x

and F has a Lebesgue density then, by the Fubini Theorem, the left hand side of

(2.7) equals 2n−1/2cE(‖Y1,1‖
3). Thus in this case E(‖Y1,1‖

3) < ∞ implies (2.7).

These observations lead to the following result for the estimators α̂I and α̂F .

Corollary 2.1. Suppose the QAR model (1.1) holds, Γ is positive definite, the

error d.f. F is symmetric around zero and has density f . Then the following

hold.

(a) If E(‖Y1,1‖
3) < ∞ and

∫
f2(x)dx < ∞, then

n(α̂I − α) →d N3

(
0,

Γ−1

12
( ∫

f2(x)dx
)2

)
.

(b) If F is known and has a bounded density f , then

n(α̂F − α) →d N3(0,Γ
−1τ2

F ), τ2
F :=

2
∫ ∞
−∞

∫ y
−∞F (x)(1−F (y))f2(x)f2(y)dxdy

( ∫
f3(x)dx

)2 .

Next, we state an asymptotic normality result about the rank based estima-

tor α̃. Again, this is proved using the methods in Koul (2002).

Proposition 2.2. Suppose the QAR model (1.1) holds. In addition, assume

that Σ is positive definite, F is strictly increasing on R and has a uniformly

continuous density f . Then,

n(α̃ − α) →d N3(0,Σ
−1τ2

r ), τ2
r :=

∫ ∫
ρ(x, y)f(x)f(y)dL(F (x))dL(F (y))

( ∫
f2dL(F )

)2 .

We now discuss a robust variant of α̂. Because the weights in K are un-

bounded, unlike in the regression set-up, the corresponding M.D.E.’s are not

robust against innovative or additive outliers in autoregressive lattice processes.

One way to overcome this deficiency in α̂ is to use bounded weights that are con-

cordant or discordant with the Yi,j’s. A natural choice is to replace the weights

Yi,j in K by h(Yi,j), where

h(y) = yI(‖y‖ ≤ k) + k
y

‖y‖
I(‖y‖ > k), y ∈ R

3,
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with k > 0 a known constant. More precisely, let

Kh(x, t) := n−1
n∑

i=1

n∑

j=1

h(Yi,j){I(εi,j(t) ≤ x) − I(−εi,j(t) ≤ x)}, x ∈ R,

Mh(t) :=

∫
‖Kh(x, t)‖2G(dx), t ∈ R

3; Bn := n−2
n∑

i=1

n∑

j=1

h(Yi,j)Y
′
i,j .

Then âh := argmintMh(t) is a robust M.D.E.’s of α. Observe that by the

Ergodic Theorem, Bn → B := E(h(Y1,1)Y
′
1,1), a.s. Also, by the definition of h,

B is positive definite. Under the same conditions on (F,G) as in Proposition
2.1, we obtain n(âh − α) →d N3(0,B

−1ΓB−1τ2). A robust variant of α̃ can be

obtained similarly.

2.2. Tests of symmetry and goodness-of-fit

Consider the problem of testing Hs : F is symmetric around 0, against the
alternative that it is not. For t ∈ R

3, let Hn(y, t) :=
∑n

i=1

∑n
j=1 I(|εi,j(t)| ≤

y)/n2, Ĥn(y) := Hn(y, α̂),

Sn(y, t) := n−1
n∑

i=1

n∑

j=1

[
I(εi,j(t) ≤ y) + I(εi,j(t) ≤ −y) − 1

]
,

Ŝn(y) := Sn(y, α̂), y > 0,

Sn := sup
y>0

|Ŝn(y)|, Cn :=

∫ ∞

0
Ŝ2

n(y)dL(Ĥn(y)),

where α̂ is an estimator of α and L is a continuous d.f. on [0, 1], symmetric around

1/2. The statistics Sn and Cn are, respectively, the analogues of the Smirnov

(1947) and Cramér - von Mises tests for testing Hs in the current set-up. From

the general theory developed in Chapters 6 and 7 in Koul (2002), we obtain that if

E(‖Y1,1‖
2+ε2

1,1) < ∞, n‖α̂−α‖ = Op(1) under Hs, F has a uniformly continuous

density f and, if Hs holds, Sn →d sup0≤u≤1 |W (u)|, and Cn →d

∫ 1
0 W 2(u)dL(u),

where W is the standard Brownian motion. It is interesting to note that, unlike

in the regression model, the estimation of α has little effect on the asymptotic

null distribution of these statistics.

Next, we describe a test of goodness-of-fit of an error distribution. Let F0

be a known d.f. with mean zero and variance one. Consider the problem of test-

ing H̃0 : F (x) = F0(x/σ), for all x ∈ R and some σ > 0. Let σ̂ denote an

n-consistent estimator of σ and F̂n denote the empirical d.f. of the standardized

residuals ε̂i,j := εi,j(α̂)/σ̂. The proposed test of H̃0 is based on the process

Zn(x) := n[F̂n(x) − F0(x)]; x ∈ R. Arguing as in Koul (2002), one can ver-

ify that if F0 has a uniformly continuous density f0 with supx |xf0(x)| < ∞,
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if f0 has finite and positive Fisher information for a scale parameter, and if

σ̂ is an asymptotically efficient estimator of σ at F0, then under H̃0, Zn con-

verges weakly to a mean zero Gaussian process with the covariance function

F0(x)∧F0(y)−F0(x)F0(y)−b−1xyf0(x)f0(y), for x, y. Consequently, the asymp-

totic null distribution of supx |Zn(x)| is difficult to determine even when one

knows F0. One possible approach is to use the Khmaladze (1981) transforma-

tion whose asymptotic null distribution is the same as that of W (F0); see also

Khmaladze and Koul (2004). Alternatively, we propose the use of a parametric

bootstrap to construct the distribution of supx |Zn(x)| under H̃0. We note that

the case of a Gaussian F0 is of particular interest in practice.

2.3. LAD test of a doubly geometric process

Under the hypothesis H0 : α11 = −α10α01, the process (1.1) is known as a

doubly geometric (DG) process. In the case of normal errors, Guo and Billard

(1998) provide an asymptotic test of this hypothesis using the LS residuals; see

also Scaccia and Martin (2002, 2005). Here, we describe a test of H0 based on

the LAD residuals when the error d.f. F is not necessarily known but has a

continuous density f in an open neighborhood of 0 with f(0) > 0. To proceed

further, let

µi,j(s) := s1Xi−1,j + s2Xi,j−1 − s1s2Xi−1,j−1, s = (s1, s2)
′ ∈ R

2,

M0(s) :=

n∑

i=1

n∑

j=1

|Xi,j − µi,j(s)|, M(t) :=

n∑

i=1

n∑

j=1

|εi,j(t)|, t ∈ R
3.

The proposed test of H0 is based on the difference D := infs∈R2 M0(s)− inft∈R3

M(t). To state its asymptotic null distribution, let α0 = (α01, α10)
′,

µ̇i,j := (Xi−1,j − α10Xi−1,j−1, Xi,j−1 − α01Xi−1,j−1)
′, Γ0 := E0(µ̇1,1µ̇

′
1,1),

T0 := n−1
n∑

i=1

n∑

j=1

µ̇i,jsign(εi,j), T := n−1
n∑

i=1

n∑

j=1

Yi,jsign(εi,j).

Then, using the methods developed in Koul (2002, Chap. 5, Chap. 8), one

obtains that under H0,

D =
1

4f(0)
[T ′Γ−1T − T ′

0Γ
−1
0 T0] + op(1).

This in turn implies that 4f(0)D →d χ2
1, under H0. Thus to implement this

test, at least for large samples, one needs a consistent estimator of f(0). One

such estimator is f̂n := [Fn(hn) − Fn(−hn)]/(2hn), where hn is a sequence of

window widths such that hn → 0, nhn → ∞, and Fn is the empirical d.f. of the
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residuals Xi,j − µi,j(α̂0), with α̂0 being any n-consistent estimator of α0 under

H0. One may use the M.D.E. α̂0. Consequently, the LAD test that rejects H0

whenever D̂ := 4f̂nD exceeds a critical value obtained from the χ2
1 distribution

is asymptotically distribution free.

3. Simulations

In this section we present some finite sample simulation results. For compu-

tational purposes, we first describe an alternative expression for the dispersion

M. Using the continuity of G and arguing as in Koul (2002, (5.3.12)), one can

write

M(t)=
1

n2

n∑

i,j=1

n∑

k,l=1

Y ′
i,jYk,l

[
|G(εi,j(t))−G(−εk,l(t))|−|G(εi,j(t))−G(εk,l(t))|

]
.

The asymptotic distribution of α̂ corresponding to a given G is the same

as that of the estimator α̃ with L(F ) ≡ G. Also note that the α̂ with G the

empirical d.f. of {εi,j(t)} is equivalent to α̃I . Thus its asymptotic behavior will

be similar to that of α̂ with G = F , assuming F is known. For this reason, in

the simulations below, we only simulated α̂ for the two integrating measures G,

viz, G(x) ≡ x and G = F .

3.1. Nearest neighbor process

Consider the setting of an NN process, that is (1.1) with α11 = 0, and

further assume α10 = α01 = γ. The condition (1.2) for stationarity reduces

to |γ| < 1/2. The LSE of γ in this case is γ̂LS =
∑n

i=1

∑n
j=1 Xi,j(Xi−1,j +

Xi,j−1)
/ ∑n

i=1

∑n
j=1(Xi−1,j +Xi,j−1)

2, which is also asymptotically equivalent to

the MLE of γ when the error d.f. F is normal, see Ord (1975).

We investigate the M.D.E.’s of γ when G(x) = x (denoted by γ̂I) and G(x) =

F (x) (denoted by γ̂F ), and when F is a normal, logistic, Laplace, and Cauchy

distribution, respectively. We set n = 10, γ = 0.1 and σ2 = 1. We generate 500

simulation runs of this experiment using the fast and exact algorithm proposed

by Martin (1996, p.400) for general QAR processes. We observe that all the

estimators are approximately unbiased. The empirical variances of γ̂I and γ̂F are

slightly larger than the empirical variance of the LSE at the normal distribution,

but smaller at all other heavier tail error distributions considered here. Table 1

reports the relative efficiencies (RE’s) of γ̂I and γ̂F to γ̂LS .

Next, we briefly explore the robustness properties of γ̂I , its robust version

Rγ̂I with k = 2.5 defined above, and the LSE. The latter is well-known to have

a lack of robustness reflected through a breakdown-point of zero, as described

by Genton (2003) in the setting of QAR processes. Indeed, a single outlying
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Table 1. RE’s of γ̂I and γ̂F to γ̂LS .

Normal Logistic Laplace Cauchy

γ̂I 0.93 1.12 1.38 3.02

γ̂F 0.88 1.11 1.49 9.71
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Figure 1. Average effect over 200 replicates of letting X5,5 = x, x ∈
[−100, 100], on γ̂I (circles), Rγ̂I (stars) and γ̂LS (pluses) of γ in a NN process

on a grid with n = 10, γ = 0.1, and N(0, 1) errors.

observation becoming arbitrarily large pushes the estimator to zero. Note that

this effect is typical of time series and spatial problems where the estimator γ̂LS

is pushed toward the center of the parameter space rather than to the edge,

±1/2 in our particular setting of the NN process with α10 = α01 = γ. In the

setting described in the previous paragraph with a normal d.f. F , we consider

200 simulation runs and select X5,5 as an outlying value. Figure 1 depicts the

average effect of letting X5,5 = x, where x varies in the interval [−100, 100],

on the γ̂I (circles and dashed lines), the Rγ̂I (stars and solid lines), and γ̂LS

(pluses and dotted lines). All estimators are approximately unbiased when there

is no outlier. When the magnitude of the outlier increases, γ̂I and γ̂LS are

pushed toward zero, even faster so for γ̂LS , whereas Rγ̂I is robust to the outlier.

A smaller value of k produces more robustness of Rγ̂I . The choice k = 2.5,

suggested by Hampel, Ronchetti, Rousseeuw and Stahel (1986), offers a balance

between robustness and efficiency.
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3.2. Quadrant autoregressive process

We investigate the performance of the M.D.E. of a QAR process by means

of a simulation study similar to the one used by Basu and Reinsel (1993, p.641,

Table 1) for the normal ML estimator. Specifically, we simulate 500 realizations

of a QAR process with normal errors on a grid with n = 8. Three sets of

α values are considered: (i) α = (0.3, 0.2, 0.2)′ ; (ii) α = (0.5, 0.3, 0.1)′ ; (iii)

α = (0.8, 0.7,−0.6)′ .

Table 2 reports average values (mean) and standard deviations (sd) of the

QAR model parameter estimates over the 500 simulations. The average values

of the 500 estimated standard deviations (est. sd) based on asymptotics are also

provided. The estimation methods are ML (from Basu and Reinsel (1993)), and

α̂I and its asymptotic properties derived in Corollary 2.1. We see that the aver-

age values of the estimated standard deviations are in good agreement with the

standard deviations of the QAR model parameter estimates. The performances

of ML and α̂I are very similar in this setting of a normal error d.f., but the

efficiency of α̂I will be much better in the case of error d.f.’s with heavier tails,

as suggested by Table 1. ML estimators for QAR models with heavy tailed error

d.f.’s would also be very difficult to implement.

3.3. Doubly geometric process

Here our goal is to illustrate some finite sample properties of the LAD test

for testing H0 : α11 = −α10α01, i.e., (1.1) is a DG process. In this simulation we

chose α10 = α01 = 0.5, and n = 10. When the process is not DG, the condition

(1.2) for stationarity implies that −1 < α11 < 0, and we study the power of the

LAD test under the alternatives α11 = −0.9,−0.8, . . . ,−0.1. The error d.f. F

is taken to be normal, logistic, Laplace, and Cauchy. The nominal level is set

Table 2. Averages values (mean) and standard deviations (sd) of QAR model

parameter estimates and the average values of the estimated standard de-
viations (est. sd) over 500 simulations in the settings (i)-(iii): ML (from

Basu and Reinsel (1993)) and α̂I .

Estimator α10 α10 α10 α01 α01 α01 α11 α11 α11

and setting mean sd est. sd mean sd est. sd mean sd est. sd

ML (i) 0.285 0.127 0.118 0.187 0.123 0.122 0.184 0.145 0.137

ML (ii) 0.471 0.116 0.104 0.281 0.123 0.118 0.098 0.144 0.140

ML (iii) 0.774 0.084 0.069 0.672 0.095 0.088 −0.576 0.106 0.105

α̂I (i) 0.288 0.115 0.121 0.183 0.114 0.124 0.196 0.129 0.129

α̂I (ii) 0.471 0.104 0.108 0.278 0.120 0.120 0.114 0.139 0.131

α̂I (iii) 0.772 0.091 0.082 0.682 0.106 0.095 −0.570 0.132 0.108
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to 5%. The value f(0) is estimated by the slope of the linear regression of Fn, the

empirical d.f. of the residuals under H0, on the residuals with magnitude smaller

than 0.1.

Empirical values (in %) of significance level and power are calculated over

1,000 simulations, and reported in Table 3. We see that the empirical level of

our test is close to the 5% nominal level across the d.f.’s F considered in this

simulation, except for the Cauchy. The empirical power reveals that departures

from the null hypothesis of the order of 0.01-0.02 can be detected in this setting.

Note that the test developed by Guo and Billard (1998) is based on the assump-

tion of normal errors. In contrast, the LAD test does not assume the knowledge

of the error distribution and is seen to have higher power when the errors have

heavier tails than the Gaussian tails in this simulation study.

Table 3. Empirical values (in %) of significance level (in bold) and power for

the LAD test of a DG process at a 5% nominal level in the setting described

in Section 3.3.

error α11 = α11 = α11 = α11 = α11 = α11 = α11 = α11 = α11 = α11 =

d.f. F −0.1 −0.2 −0.25 −0.3 −0.4 −0.5 −0.6 −0.7 −0.8 −0.9

Normal 43.6 7.1 4.7 8.6 33.3 74.3 96.7 99.8 100.0 100.0

Logistic 50.1 7.6 4.2 9.1 41.1 84.3 97.9 99.7 100.0 100.0

Laplace 72.5 10.6 5.4 12.1 62.5 95.4 99.7 100.0 100.0 100.0

Cauchy 99.6 83.2 6.8 84.5 99.2 99.8 99.8 99.8 99.3 100.0

4. Application to an Agricultural Experiment

We consider a data set on a 7 × 28 regular grid of the yield of barley (in

kg) from an agricultural experiment in the UK. The data were first analyzed

by Kempton and Howes (1981), and then by Basu and Reinsel (1993, Sec. 5) in

the context of unilateral spatial models. They argued that a model of the form

Wi,j = β0 +Xi,j , where Wi,j denotes the yield of barley at location (i, j) and Xi,j

follows a QAR model (1.1), possibly doubly geometric, would be appropriate.

We apply our M.D.E.’s to this data set.

Table 4 summarizes the estimates of the QAR and DG models fitted to the

yield of barley data by ML assuming a normal error d.f. (values from Basu and

Reinsel (1993)) and by the M.D. method when G(x) = x, assuming only the

symmetry of the errors. The constant β0 is estimated iteratively by the sample

mean of Wi,j−α̂′Yi,j, where α̂ is either MLE or α̂I . The MLE and α̂I for the QAR

model parameters are observed to be rather similar. The test of symmetry of the

error d.f. F described in Section 2.2 yields Sn = 0.864 which, compared to the

asymptotic 5% critical value of 2.245, suggests that the null hypothesis of F being

symmetric around zero cannot be rejected. When we applied the test of normality
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Table 4. QAR and DG models fitted to the yield of barley data: by ML
(values from Basu and Reinsel (1993)) and by M.D.

Model Estimator β̂0 α̂10 α̂01 α̂11 σ̂2

QAR MLE 2.663 0.240 0.796 −0.108 0.032
QAR α̂I 2.739 0.247 0.783 −0.090 0.031

DG MLE 2.627 0.241 0.812 — 0.032

DG α̂I 2.658 0.453 0.820 — 0.034

of the error d.f. F described in Section 2.2, we found supx |Zn(x)| = 9.778 and an

associated p-value of 0.39 based on 100 parametric bootstrap samples. Therefore,

the null hypothesis of the error d.f. F being normal cannot be rejected.

The MLE and α̂I of the DG model are somewhat different. Basu and Reinsel

(1993) argued that a DG model provided an adequate fit because α̂11 ≈ −α̂10α̂01 =

−0.191 for the ML estimates of the QAR model. However, they did not perform a

statistical test. We investigate the claim of Basu and Reinsel (1993) by means of

the LAD test of H0 : α11 = −α10α01 described in Section 2.3. We find D = 0.390

and estimate f(0) by the slope of the linear regression of Fn on the residuals with

magnitude smaller than 0.1, yielding f̂n = 2.391 and thus D̂ = 3.730. Because

D̂ < χ2
1(95%) = 3.841, the null hypothesis of a DG process cannot be rejected at

the 5% level, although this is not strong evidence. For the DG model, tests on

the error d.f. F reject neither symmetry nor normality.
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