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Abstract: We introduce a family of sequential selection and recruitment procedures

for the subset identification problem in binomial populations. We demonstrate the

general validity of a simple formula providing a lower bound for the probability of

correct identification in a version of the family without sequential elimination or

recruitment. A new application of the non-central hypergeometric distribution is

revealed. A similar theorem is conjectured to hold for the more efficient version

which employs sequential elimination or recruitment.
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1. Introduction

Procedures to identify the best of several populations or subsets of best

populations have a large literature. The textbooks by Gibbons, Olkin and Sobel

(1977), Büringer, Martin and Schriever (1980) and Bechhofer, Santner and Golds-

man (1995), and the references contained therein, give a good summary of the

known theoretical and numerical properties of these procedures. The identifi-

cation and ranking paradigm itself has wide-ranging applications in early phase

clinical trials and industrial product testing, to mention only two areas of interest.

The monograph of Bechhofer, Kiefer and Sobel (1968) on sequential procedures

for identification and ranking is widely cited, although these authors do not dis-

cuss how to adapt their procedures for the general subset selection problem to

allow for sequential elimination of inferior populations, nor are we aware of other

candidate procedures.

In this paper we propose a procedure to solve the general subset selection

problem for binomial populations that allows for sequential elimination of inferior

populations. Easy to use, our procedure generalizes that of Hoel and Mazumdar

(1968) and Levin and Robbins (1981) for selecting the single best binomial pop-

ulation. An important result in the latter paper and subsequent work by

Leu and Levin (1999a,b) is a simple but useful lower bound formula for the prob-

ability of correct selection that is used to design the elimination criterion (see
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below), and which materially strengthens the Hoel and Mazumdar (1968) result.

We refer to the combined technique of using the Hoel and Mazumdar elimination

rule together with the lower bound formula to provide the strengthened elimi-

nation criterion as the Levin-Robbins procedure. Our object here is to establish

some theoretical properties of the proposed method with or without elimination.

Without elimination, we establish the validity of the lower bound formula for

the probability of correctly selecting the best subset. With elimination, we have

proven some partial results and conjecture the general validity of the formula. In

addition, sequential elimination of inferior populations opens a new perspective

on the class of such procedures, allowing us to distinguish between sequential

selection versus recruitment.

We conclude this section by introducing notation and reviewing previous re-

sults for the Levin-Robbins procedure with and without elimination. In Section

2 we introduce the notion of sequential selection versus recruitment and discuss

some theoretical relations between them. In particular we provide lower bound

formulas conjectured to hold for both types of procedures. Section 3 provides a

rigorous proof of the lower bound formula for the general subset selection pro-

cedure without elimination. We end in Section 4 with a novel application of the

non-central hypergeometric distribution to provide a bound on the distribution of

the number of “good” binomial populations selected from a collection of “good”

and “poor” populations.

Suppose we have c ≥ 2 coins, with labels in the set C = {1, . . . , c}. For coin

i (i ∈ C), let pi be the probability of heads on a single toss. For a given integer

b (1 ≤ b < c), our goal is to identify a subset of b coins with the highest such

probabilities, which we shall call a subset of b best coins. To accomplish this

goal, consider the following method, which generalizes the sequential selection

procedure of Levin and Robbins (1981). Toss the coins vector-at-a-time. For

n = 1, 2, · · · , let X(n) = (X
(n)
1 ,X

(n)
2 , . . . ,X

(n)
c ) be the vector that reports the

cumulative number of heads observed for each coin after n tosses, and let X[n] =

(X
[n]
1 ,X

[n]
2 , . . . ,X

[n]
c ) be the ordered X(n) vector with X

[n]
1 ≥ X

[n]
2 ≥ · · · ≥ X

[n]
c .

Let r be a positive integer chosen in advance of all tosses. Define the stopping

time M = M
∗(b,C)
r to be the first time that the bth largest tally exceeds the

(b + 1)st largest tally by r; that is to say,

M = M∗(b,C)
r = inf{n ≥ 1 : X

[n]
b − X

[n]
b+1 = r}.

If M = n, we stop after n tosses of the set of coins and select those b coins

with X
[n]
b heads or more. There may be several coins tied for bth best or for

(b + 1)st best, but the subset of b coins in the lead at M = n is unique. We

will also call these coins a subset of “b best coins” — the context will make clear

whether these are truly best or only apparently best in the experiment.



THE LEVIN-ROBBINS PROCEDURE 205

M
∗(b,C)
r is a stopping time, i.e., P [M

∗(b,C)
r < ∞] = 1; we omit the proof as

it is essentially the same as for Wald’s original SPRT. If S is any subset of C of

size b (S ⊂ C, |S| = b), let P ∗
r [S] denote the probability of selecting S with this

procedure. Thus P ∗
r [S] = P [X

(M)
i ≥ X

(M)
j + r for all pairs (i, j) with i ∈ S and

j 6∈ S]. If i1, . . . , ib are integers satisfying 1 ≤ i1 < · · · < ib ≤ c, for notational

convenience we write the subset {i1, . . . , ib} as [i1 · · · ib], without commas, and

P ∗
r [{i1, . . . , ib}] as P ∗

r [i1 · · · ib].

Theorem 1. For any set C of c coins with probabilities {p1, . . . , pc}, let wi =

pi/(1−pi), and suppose, without loss of generality, that p1 ≥ p2 ≥ · · · ≥ pc. Then

for any two subsets of integers {i1, . . . , ib} ⊂ C and {j1, . . . , jb} ⊂ C satisfying

ik ≤ jk for all k = 1, . . . , b, and for any positive integer r in procedure M
∗(b,C)
r ,

we have

P ∗
r [i1 · · · ib]

P ∗
r [j1 · · · jb]

≥
b

∏

k=1

(wik

wjk

)r

.

The proof of Theorem 1 will be given in Section 3. Notice that a simple lower

bound formula for the probability of correct selection P [CS] = P ∗
r [1 · · · b] follows

immediately from Theorem 1 because P ∗
r [1· · ·b] ≥

b
∏

k=1

(wk/wjk
)r · P ∗

r [j1· · ·jb] for

all 1 ≤ j1 < · · · < jb ≤ c, so that summing over all subsets of size b not equal to

[1 · · · b], we have

P ∗
r [1 · · · b] = 1−

∑

[j1,...,jb] 6=[1···b]

P ∗
r [j1 · · · jb] ≥ 1−

∑

[j1···jb] 6=[1···b]

b
∏

k=1

( wk

wjk

)−r

·P ∗
r [1 · · · b].

This yields the following

Corollary 1. P [CS] = P ∗
r [1 · · · b] ≥ (w1 · · ·wb)

r/
∑

[i1···ib]
(wi1 · · ·wib)

r, where the

summation is over all subsets [i1 · · · ib] such that 1 ≤ i1 < i2 < · · · < ib ≤ c.

We refer to the expression on the right hand side of the inequality as a

lower bound formula for the probability of correct selection of a subset of b best

coins, and denote it by L+(b, c) = L+(b, c|w1, . . . , wc), although it clearly depends

homogeneously on w1, . . . , wc only through their ratios. For example, for b = 2

and c = 4, L+(2, 4) = (w1w2)
r/{(w1w2)

r + (w1w3)
r + (w1w4)

r + (w2w3)
r +

(w2w4)
r + (w3w4)

r} = 1/(1 + w−r
23 + w−r

24 + w−r
13 + w−r

14 + w−r
13 w−r

24 ), where the

wij = wi/wj are odds ratios.

To see how the corollary is applied in practice, suppose we wish to guarantee

P [CS] ≥ 0.95 for selecting the best b = 2 out of c = 4 coins with odds w1, w2,

w3, w4, such that w2/w3 ≥ 2. Using the above expression for L+(2, 4), we find
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P [CS] ≥ L+(2, 4) ≥ 1/(1 + 4 · 2−r + 2−2r) which exceeds 0.95 for r ≥ 7. In fact
P [CS] ≥ 1/(1 + 4 · 2−7 + 2−14) ∼= 0.97 for any such set of coins.

Now consider a modification of the procedure in which we eliminate “inferior”

coins as soon as they fall behind the bth best coin or coins by r heads. Let N
(b,C)
r

be the time of first elimination in a c-coin game with coins C,

N (b,C)
r = inf{n ≥ 1 : X

[n]
b − X [n]

c = r}.

Strictly speaking we should retain b in the notation; where b is fixed in the

discussion, however, we will simply write N
(C)
r . If N

(C)
r = N

(b,C)
r = n, we drop

from further consideration after toss n any and all coins i satisfying X
(n)
i = X

[n]
c ,

i.e., we eliminate all coins that have fallen r heads behind the bth best. If more

than b coins remain, the procedure continues, starting from the current tallies

of the remaining subset of coins C ′ ⊂ C, and iterates with N
(C′)
r , replacing c

by c′ = |C ′|, and so on, until c − b coins have been eliminated. Thereupon we

declare the remaining coins as the b best. Let P
(C)
r [i1 · · · ib] be the probability

that coins i1, . . . , ib are identified as the b best by this procedure with sequential
elimination.

Are Theorem 1 and/or Corollary 1 true for the elimination procedure, with

P
(C)
r [i1 · · · ib] replacing P ∗

r [i1 · · · ib]? Leu and Levin (1999a) proved that for the
sequential elimination procedure, Corollary 1 remains true for any c and any r

in the special case b = 1 although, surprisingly, the stronger Theorem 1 does not

hold true for all p1 ≥ · · · ≥ pc, even in the special case b = 1; for a counterexam-

ple, see Zybert and Levin (1987). Thus, while Theorem 1 is a “natural” reason
for the truth of Corollary 1 in the procedure without elimination, if Corollary 1

does remain true for b > 1 in the procedure with elimination it must be estab-
lished by other means, as it was in Leu and Levin (1999a) for b = 1. Even for

the case r = 1 for c = 4 coins, where an exact expression for P [CS] is available,
it is quite complex and not at all obvious that it satisfies the lower bound (see

Levin and Leu (2004)). A rigorous proof of Corollary 1 for the case b = 2 with
c = 3 coins is already contained in the results of Leu and Levin (1999a) and,

more generally, the case b = c − 1 follows from the results for the procedure

without elimination, as explained below in Section 2. We now conjecture that
Corollary 1 holds for any c, any p1 ≥ · · · ≥ pc, any r, and for any 1 ≤ b < c. We

prove the conjecture in the first non-trivial special case of b = 2 and c = 4; see
Leu and Levin (2004). A rigorous proof of the conjecture in general for b > 1

and c > 4 is still an open problem, although extensive numerical experiments do
support the conjecture.

We assume the truth of the general conjecture in the next section, where we
point out that the family of sequential procedures with elimination offers a useful

connection between identification by selection or by recruitment.
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2. Selection vs Recruitment

By a selection procedure we mean a method wherein the identified subset of

coins becomes known precisely when the procedure terminates. The procedure

to identify the best b out of c coins with elimination of inferior coins is a selection

procedure because the final choice of b best coins becomes apparent only at the

end, after c−b coins have been eliminated. By a recruitment procedure we mean a

method wherein the identified coins become available sequentially, allowing early

utilization of the recruited units. In an industrial testing context, for example,

it would generally be desirable to bring the better units “on-line” as soon as

they qualify as belonging to the required subset of b best, rather than waiting

for testing to be complete. Similarly, for early phase II screening of c potential

medical therapies or behavioral interventions, one would generally prefer early

recruitment of superior modalities for further definitive testing. This contrasts

with the conventional paradigm for late phase II or phase III testing in a clinical

trials context, wherein a decision concerning the b best treatments is generally

deferred until the end of the trial, while for ethical reasons we prefer to eliminate

inferior treatments as soon as we can.

It may be apparent to the reader that the selection procedure with sequential

elimination of inferior coins is already a recruitment procedure for the c−b worst

coins. This is nearly a tautology, capitalizing on the obvious assertion that any

procedure for which the probability of identifying the best b out of c coins is

bounded from below by L+(b, c) is, at the same time, a procedure for which the

probability of identifying the complementary subset of the worst c− b coins is at

least L+(b, c). For example, if in some context it were desired to recruit the c− b

coins with the smallest probability of heads, we would simply apply the selection

procedure for the b best coins with sequential elimination (i.e., recruitment) of

the c − b worst coins.

We make more progress by introducing the parity transformation in which

heads become tails and tails become heads and, similarly, adjectives like “best”

or “highest” become “worst” or “lowest”, and vice versa. By this device we arrive

directly at a selection procedure for the b worst coins. Let Y
[n]
j = n − X

[n]
c−j+1

be the ordered tallies of tails, with Y
[n]
1 ≥ Y

[n]
2 ≥ · · · ≥ Y

[n]
c , which is also

the ordered tallies of “heads” after the parity transformation. We restate the

time of first elimination N
(b,C)
r as applied to the transformed tallies in original,

untransformed notation as follows:

inf{n ≥ 1 : Y
[n]
b − Y [n]

c = r} = inf{n ≥ 1 : X
[n]
1 − X

[n]
c−b+1 = r}

at which time we eliminate any coins with transformed tallies Y
[n]
c , i.e., we recruit

any coins with original tallies (of heads) equal to X
[n]
1 .



208 CHENG-SHIUN LEU AND BRUCE LEVIN

Note that the original assumed ordering of odds w1 ≥ · · · ≥ wc reverses
after transformation to w−1

c ≥ · · · ≥ w−1
1 . Thus the lower bound formula for

the probability of correct selection of b “best” coins transforms invariantly into
the following lower bound formula for the probability of correct selection of the
b worst coins, which we write as L−(b, c) :

L−(b, c|w1, . . . , wc) = L+(b, c|w−1
c , . . . , w−1

1 )

=
(wc · · ·wc−b+1)

−r

∑

[i1···ib]

(wi1 · · ·wib)
−r

=
(w1 · · ·wc−b)

r

∑

[i1···ic−b]

(wi1 · · ·wic−b
)r

= L+(c − b, c|w1, . . . , wc).

The penultimate equality follows by multiplying numerator and denominator by
(w1 · · ·wb)

r and noting that the sum in the denominator enumerating all
(

c
b

)

subsets of b indices also enumerates all
(

c
c−b

)

subsets of c − b indices.
Finally, we observe that the equivalence noted above, between selection of

best coins and recruitment of worst coins after parity reversal, yields the following
procedure for recruiting the c − b best coins: at time

N †(c−b,C)
r = inf{n ≥ 1 : X

[n]
1 − X

[n]
c−b+1 ≥ r},

recruit any coins with tallies of heads equal to the best, X
[n]
1 . If fewer than c− b

coins have been recruited, continue with the remaining subset of coins C ′ ⊂ C

at their current tallies, and iterate with N
†(c′−b,C′)
r , c′ = |C ′|, and so on, until

c − b coins have been recruited. Note that in the notation for the recruitment
times, b remains fixed while c changes as the procedure is iterated. Our general
conjecture implies that the probability of correct recruitment for this procedure
is bounded from below by the formula L+(c − b, c|w1, . . . , wc).

We conclude this section with some observations.

(i) In the procedure to select the b best coins with sequential elimination of
inferior coins, there is no claim that the first coin to be eliminated is the
truly worst coin among the c coins. Rather we assert only that at the time
of first elimination, the evidence is sufficiently strong to place the eliminated
coin among the subset of c − b worst coins with joint probability of correct
assertion at least L+(b, c). Similarly, in recruiting the best c − b coins, we
make no claim that the first coin to be recruited is the truly best coin. We
merely assert that at each time of recruitment, the evidence is sufficiently
strong to place the recruited coins among the subset of c− b best coins, with
joint probability of correct assertions at least L+(c − b, c).

(ii) In the special case of recruiting the best coin using N
†(1,C)
r , the procedure

involves no iteration, because in the case c − b = 1 one terminates at the
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time of first (and only) recruitment N
†(1,C)
r = inf{n ≥ 1 : X

[n]
1 − X

[n]
2 ≥

r}. We recognize this rule as the original Levin-Robbins procedure without

elimination for selecting the best coin, M
∗(1,C)
r . It is interesting to find this

rule as a member of our family of sequential identification procedures after
all, as an extreme case of recruitment. Note that, because of this identity,
the strong theorem of Levin and Robbins (1981) already demonstrates the
validity of the lower bound formula L+(1, c) for the recruitment procedure

N
†(1,C)
r . Furthermore, recruiting the one best coin is equivalent to selecting

the c − 1 worst coins. Thus by the parity transformation, we also have the
validity of the lower bound L+(c − 1, c) = L−(1, c) for selecting the best

b = c− 1 coins using N
∗(c−1,C)
r . This is the special case b = c− 1 of Theorem

1 referred to in the previous section.
(iii) In a selection procedure with elimination of inferior coins, as testing continues

we gain more and more experience with the apparently better coins (e.g.,
treatments); this is the essence of selection. The essence of recruitment is
that the best units are removed from testing and can be brought into action
as soon as they are identified, thus sparing possibly precious lifetime. These
and other differences are summarized in Figure 1.

(iv) A thorough evaluation of the operating characteristics of the family of se-
lection and recruitment procedures and comparisons with other sequential
selection procedures, notably that of Paulson (1994), lie beyond the scope
of this paper and will be presented elsewhere, see Levin and Leu (2007). In-
stead we point out some characteristic properties of the present procedures
through an example. Table 1 gives some simulation results for selection or
recruitment of the best b = 1, 2, or 3 coins out of c = 4 coins. All estimates
are based on 100,000 replications. The operating characteristics displayed
are:

(1) the actual probability of correct selection (labelled P [CS]);
(2) the expected number of rounds, i.e., vectors of coins tossed (labelled

E[N ]);
(3) the expected total number of tosses (labelled E[T ]); for a procedure

without elimination, E[T ] = 4E[N ]; and
(4) the expected total number of tails (labelled E[F ], for failures).

For each value of b, the probability vector p is on the boundary of a zone
of indifference: p = (0.2, 0.1, 0.1, 0.1) for b = 1; p = (0.2, 0.2, 0.1, 0.1) for
b = 2; and p = (0.2, 0.2, 0.2, 0.1) for b = 3. The value r = 5 was chosen to
give probability at least 0.95 of correct selection at these parameters. For
b = 1 or b = 3, the lower bound formula L+(b, c) ≥ 0.95, while for b = 2,
L+(2, 4) < 0.95 but P [CS] > 0.95 nevertheless. We chose the same value,
r = 5, in this case for straightforward comparison.
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BEST (HIGHEST PROB’s) WORST (LOWEST PROB’S)

• Identifies (selects) b best • Identifies (selects) b worst

• Waits until procedure ends • Waits unitil procedure ends

(the essence of selection) (the essence of selection)

• Eliminates inferior units seq’ly • Eliminates superior units seq’ly

• Tests more with better units • Tests more with worse units

• P[correct selection] ≥ L+(b, c) • P[correct selection] ≥ L−(b, c)

• Lowers E[T ], E[F ] (b < c/2) • Lowers E[T ], E[S] (b < c/2)

Lowers E[N ] (b > c/2) Lowers E[T ] (b > c/2)

• Identifies (selects) c − b best • Identifies (selects) c − b worst

• Brings units on line sequentially • Brings units on line sequentially

(the essence of recruitment) (the essence of recruitment)

• Continues testing inferior units • Continues testing superior units

• Spares testing of better units • Spares testing of worse units

• P[correct recruit’] ≥ L+(c − b, c) • P[correct recruit’] ≥ L−(c − b, c)

• Lowers E[T ], E[F ] (c − b < c/2) • Lowers E[T ], E[S] (c − b < c/2)
Lowers E[N ] (c − b > c/2) Lowers E[T ] (c − b > c/2)

S

E

L

E

C

T

I

O

N

P

E

C

R

U

I

T

M

E

N

T

Figure 1.

For selecting the best coin (b = 1) we find the selection procedure with

elimination of inferior coins has noticeably fewer total tosses and failures than the

recruitment procedure. As noted above, in this case there is no early recruitment

so that there are more tosses and failures than for selection, which can capitalize

on early elimination. The situation is reversed for the case b = 3. Now the

recruitment procedure can take advantage of early recruitment of coins while the

selection procedure must continue with no early elimination.

These relations do not depend on the particular parameter values of 0.2 and

0.1 chosen for the illustration. For example, if instead of p = (0.2, 0.1, 0.1, 0.1)
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we chose p = (0.9, 0.8, 0.8, 0.8) for b = 1, the selection procedure would be

equivalent to the recruitment procedure for identifying the best b = 3 coins with

p = (0.2, 0.2, 0.2, 0.1) by virtue of the parity transformation and, likewise, the

recruitment procedure for b = 1 with p = (0.9, 0.8, 0.8, 0.8) would be equivalent

to the selection procedure for b = 3 with p = (0.2, 0.2, 0.2, 0.1). Consulting the

bottom panel in Table 1 allows us to conclude that selection has smaller E[T ] and

E[F ] for p = (0.9, 0.8, 0.8, 0.8). By similar reasoning, recruitment has smaller

E[T ] and E[F ] for p = (0.9, 0.9, 0.9, 0.8) than does selection in the case b = 3 —

reverse parity, and consult the top panel for b = 1 with p = (0.2, 0.1, 0.1, 0.1).

The case b = 2 is a little more delicate. The table shows recruitment has

slightly fewer expected total tosses and tails than does selection for the given pa-

rameter p = (0.2, 0.2, 0.1, 0.1). At p = (0.9, 0.9, 0.8, 0.8), however, we would find

the opposite, because in that case recruitment would be equivalent to selection of

the b = 2 best coins with p = (0.2, 0.2, 0.1, 0.1) by the parity transformation and,

similarly, selection at p = (0.9, 0.9, 0.8, 0.8) would be equivalent to recruitment

at p = (0.2, 0.2, 0.1, 0.1).

Numerical evidence suggests the above remarks generalize to larger values

of c. For values of b < c/2, selection generally has smaller E[T ] and E[F ]

than recruitment for any p, while the reverse is true for b > c/2. For b = c/2,

recruitment has smaller E[T ] and E[F ] than selection for p1 < 0.5, while the

reverse is true for pc > 0.5.

Table 1. Identifying the best b out of c = 4 coins. (All simulation results

based on 100,000 replications. The ± entries are standard errors of the

estimate.)

b = 1 c = 4 r = 5 p= (0.2, 0.1, 0.1, 0.1) L+(1, 4) = 0.9505

Method P [CS] E[N ] E[T ] E[F ]
Selection 0.954 ± 0.0007 65.1 ± 0.14 205.3 ± 0.37 178.5 ± 0.32

Recruitment 0.972 ± 0.0005 65.6 ± 0.13 262.5 ± 0.51 229.7 ± 0.45

b = 2 c = 4 r = 5 p= (0.2, 0.2, 0.1, 0.1) L+(2, 4) = 0.9349

Method P [CS] E[N ] E[T ] E[F ]

Selection 0.956 ± 0.0006 76.6 ± 0.14 276.9 ± 0.45 234.0 ± 0.39

Recruitment 0.957 ± 0.0006 75.8 ± 0.13 266.2 ± 0.42 228.0 ± 0.37

b = 3 c = 4 r = 5 p= (0.2, 0.2, 0.2, 0.1) L+(3, 4) = 0.9505

Method P [CS] E[N ] E[T ] E[F ]

Selection 0.974 ± 0.0005 72.3 ± 0.12 289.1 ± 0.49 238.5 ± 0.41

Recruitment 0.957 ± 0.0006 70.4 ± 0.12 209.1 ± 0.31 174.2 ± 0.26
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Which procedure to choose in any application depends on the context. For

b < c/2, selection has the advantage of smaller E[T ] and E[F ] while, for b > c/2

the advantage goes to recruitment. In cases where a preference for selection or

recruitment would not enjoy this advantage (b > c/2 or b < c/2, respectively), one

would have to weigh the relative importance of selection or recruitment against

the larger values of E[T ] and E[F ] than would obtain with the other method.

(v) The reader may object that the actual values of P [CS] in Table 1 for se-

lection and recruitment are not exactly equal, and therefore the values of

E[T ] and E[F ] for the two methods are not directly comparable. One way

to remove this objection is to truncate the procedure with the higher P [CS]

so that it terminates at some maximum number of rounds, such that the

P [CS] of the truncated procedure agrees with the P [CS] of the other pro-

cedure. (If the procedure does not reach an early decision, at truncation

time the b coins in the lead are selected; if there are ties for bth best coins,

select at random. For recruitment, at truncation time coins not yet chosen

are recruited from those in the lead, with randomization to break ties if

necessary.) For example, for b = 1, we truncated the recruitment procedure

to Nmax = 125 rounds, resulting in a simulated P [CS] of 0.955± .0007. The

corresponding values of E[T ] and E[F ] were, respectively, 250.5 ± .41 and

219.3± 0.36, see Table 2. Note that these values are still greater than those

of the selection procedure. Thus our substantive conclusions comparing

selection with recruitment in comment (iv) do not change.

An interesting final comparison emerges with the proper calibration of P [CS]

via truncation. The expected number of rounds, E[N ] = 65.1 ± 0.14, for the

selection procedure with b = 1 is now slightly greater than the expected number

of rounds for the truncated recruitment procedure, E[N ] = 62.6 ± 0.10. The

reverse is true for b = 3. These differences are not large, but illustrate a general

inverse relation between superiority in terms of E[T ] and E[F ] on the one hand,

and E[N ] on the other.

3. Proof of Theorem 1

Returning to stopping time M = M
∗(b,C)
r and the procedure without elim-

ination, we use Wald’s change of measure argument to prove Theorem 1. Let

p = (p1, . . . , pc), with p1 ≥ · · · ≥ pc. Let α be any infinite sequence of c-

dimensional binary outcome vectors, and let X
(n)
i = X

(n)
i (α) denote the cumu-

lative number of heads with coin i after n tosses for sequence α. Let

f
(n)
p (α) =

c
∏

i=1

p
X

(n)
i

i (1 − pi)
n−X

(n)
i
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Table 2. Comparison of selection with recruitment with equalization of
P [CS] via truncation. (All simulation results based on 100,000 replications.

The ± entries are standard errors of the estimate.)

b = 1 c = 4 r = 5 p= (0.2, 0.1, 0.1, 0.1) L+(1, 4) = 0.9505

(Recruitment procedure is truncated at Nmax = 125.)

Method P [CS] E[N ] E[T ] E[F ]

Selection 0.954 ± 0.0007 65.1 ± 0.14 205.3 ± 0.37 178.5 ± 0.32

Recruitment 0.955 ± 0.0007 62.6 ± 0.10 250.5 ± 0.41 219.3 ± 0.36

b = 2 c = 4 r = 5 p= (0.2, 0.2, 0.1, 0.1) L+(2, 4) = 0.9349

Method P [CS] E[N ] E[T ] E[F ]
Selection 0.956 ± 0.0006 76.6 ± 0.14 276.9 ± 0.45 234.0 ± 0.39

Recruitment 0.957 ± 0.0006 75.8 ± 0.13 266.2 ± 0.42 228.0 ± 0.37

b = 3 c = 4 r = 5 p= (0.2, 0.2, 0.2, 0.1) L+(3, 4) = 0.9505
(Selection procedure is truncated at Nmax = 125.)

Method P [CS] E[N ] E[T ] E[F ]

Selection 0.956 ± 0.0006 68.8 ± 0.10 275.4 ± 0.39 227.2 ± 0.32

Recruitment 0.957 ± 0.0006 70.4 ± 0.12 209.1 ± 0.31 174.2 ± 0.26

be the probability function for the first n components of sequence α. For any

integer ν (1 ≤ ν ≤ b), and any two disjoint subsets of integers I = {i1, . . . , iν}

and J = {j1, . . . , jν} with 1 ≤ i1 < · · · < iν ≤ c and 1 ≤ j1 < · · · < jν ≤ c, such

that ik < jk for all k = 1, . . . , ν, let pIJ be the original p vector but with pik and

pjk
interchanged for all k. For example, if b = 2, c = 4, I = {1, 2}, and J = {3, 4},

then pIJ = (p3, p4, p1, p2); if I = {1, 3} and J = {2, 4} then pIJ = (p2, p1, p4, p3).

To take care of the case of overlapping subsets, we extend the notation as follows.

For arbitrary subsets I and J with b elements each and ik ≤ jk for all k = 1, . . . , b,

let I ′ = I\J = {i′1, . . . , i
′
ν}, and J ′ = J\I = {j′1, . . . , j

′
ν}, where ν = |I ′| = |J ′| =

b− |I ∩ J |. Then we write pI′J′ to indicate that only the non-overlapping indices

in I and J are to be transposed. For example if I = {1, 3} and J = {2, 3} then

pI′J′ = (p2, p1, p3, p4).

We claim that i′k < j′k for k = 1, . . . , ν. To see this, note that we can obtain

I ′ and J ′ by eliminating the elements in I ∩ J from I and J , respectively, using

the following iterative algorithm. Let l and m be the integers such that il = jm =

max{n : n ∈ I ∩ J}. Since jm = il ≤ jl, we have m ≤ l. We claim that when we

remove il from I and jm from J , i
(b−1)
k ≤ j

(b−1)
k for all i

(b−1)
k ∈ I(b−1) = I−{il} and

j
(b−1)
k ∈ J (b−1) = J −{jm}. This is true because il = jm is the largest element in

I∩J , so that for any k < m, i
(b−1)
k = ik ≤ jk = j

(b−1)
k ; for k such that m ≤ k < l,
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i
(b−1)
k = ik ≤ jk < jk+1 = j

(b−1)
k ; and for k ≥ l, i

(b−1)
k = ik+1 < jk+1 = j

(b−1)
k .

The removal of integers in I ∩ J may then be iterated with I(b−1) and J (b−1),

etc., until we remove all the elements in I ∩ J from I and J and end up with I ′

and J ′. It is then clear that the strict inequalities i′k < j′k are preserved, because

i′k ≤ j′k but I ′ ∩ J ′ is empty.

The proof of Theorem 1 proceeds by writing I =[i1 · · · ib], J =[j1 · · · jb], and

P ∗
r [i1 · · · ib] as

P ∗
r [i1 · · · ib|p] =

∞
∑

n=1

∑

[M = n, select I]

f
(n)
p (α),

where the second summation is over all α leading to the event of selection of coins

in I as the b best at time M = n, so that X
[n]
b −X

[n]
b+1 = r with X

(n)
i ≥ X

(n)
j +r for

all i ∈ I and j /∈ I. Then as noted above, i′1 < j′1, . . . , i
′
ν < j′ν and P ∗

r [i1 · · · ib|p]

equals

∞
∑

n=1

∑

[M = n, select I]

f
(n)
p (α)

=
∞
∑

n=1

∑

[M = n, select I]

c
∏

i=1

p
X

(n)
i (α)

i (1 − pi)
n−X

(n)
i (α)

=

∞
∑

n=1

∑

[M = n, select I]

c
∏

i=1

(1 − pi)
nw

X
(n)
i (α)

i

=
∞
∑

n=1

∑

[M = n, select I]

c
∏

i=1

(1 − pi)
n

∏

i∈I∩J

w
X

(n)
i (α)

i

ν
∏

k=1

w
X

(n)

i′
k

(α)

i′
k

w
X

(n)

j′
k

(α)

j′
k

.

Multiplying and dividing by the factor
∏ν

k=1 w
X

(n)

i′
k

(α)

j′
k

w
X

(n)

j′
k

(α)

i′
k

on the right side

of the above equation, we have

P ∗
r [i1 · · · ib|p]

=
∞
∑

n=1

∑

[M = n, select I]

c
∏

i=1

(1 − pi)
n

∏

i∈I∩J

w
X

(n)
i (α)

i

ν
∏

k=1

w
X

(n)

i′
k

(α)

j′
k

w
X

(n)

j′
k

(α)

i′
k

×
ν

∏

k=1

(wi′
k

wj′
k

)X
(n)

i′
k

(α)−X
(n)

j′
k

(α)

=
∞
∑

n=1

∑

[M = n, select I]

f
(n)
p
I′J′

(α)
ν

∏

k=1

(wi′
k

wj′
k

)X
(n)

i′
k

(α)−X
(n)

j′
k

(α)
.
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The last equation holds because the first three products comprise the prob-

ability of sequence α where the probabilities for coins in I ′ and J ′ are trans-

posed. Now, on the event that coins i1, . . . , ib are selected as the b best coins

at time M = n, we have X
(n)
i′
k

(α) − X
(n)
j′
k

(α) ≥ r for i′k ∈ I ′ and j′k ∈ J ′,

while each pair of matching coins in the overlap portion can be uniquely written

as ik = jl ∈ I ∩ J for some subscripts k and l with wik/wjl
= 1. Therefore

∏ν
k=1(wi′

k
/wj′

k
)
X

(n)

i′
k

(α)−X
(n)

j′
k

(α)
≥

∏ν
k=1(wi′

k
/wj′

k
)r =

∏b
k=1(wik/wjk

)r, so that,

P ∗
r [i1 · · · ib|p] ≥

∞
∑

n=1

∑

α∈[M = n, select I]

f
(n)
p
I′J′

(α)
b

∏

k=1

(wik

wjk

)r

=

∞
∑

n=1

∑

α′∈[M = n, select J]

f
(n)
p (α′)

b
∏

k=1

(wik

wjk

)r

= P ∗
r [j1 · · · jb|p]

b
∏

k=1

(wik

wjk

)r

.

The first equality holds because there exists a one-to-one correspondence

between sequences α ∈ [M = n and select I] and α′ ∈ [M = n and select J ]

which is established by interchanging binary outcomes in position i′k with those

in position j′k for k = 1, . . . , ν, such that f
(n)
p
I′J′

(α) = f
(n)
p (α′). This completes the

proof of Theorem 1.

4. An application

Theorem 1.1 leads to an interesting application of the noncentral hyper-

geometric distribution. Let a, b, c, and d be positive integers satisfying d ≤

a ≤ b < c, and suppose there are a “good” coins with probabilities p1 =

· · · = pa and c − a “poor” coins with probabilities pa+1 = · · · = pc, such that

{pa/(1 − pa)}/{pa+1/(1 − pa+1)} = ω > 1. Suppose we use procedure M
∗(b,c)
r

to select the “best” b coins. Let the random variable G denote the number of

“good” coins appearing among the b coins selected. We are interested in the

probability that G ≥ d for any integer d = 1, . . . , a. Let Y have the noncentral

hypergeometric distribution with indices a, b, c and parameter ωr, given by

P [Y = y] =

(

a

y

)(

c − a

b − y

)

ωry

/

∑

u

(

a

u

)(

c − a

b − u

)

ωru,

where the sum extends over integers u satisfying max(0, a + b − c) ≤ u ≤ a.

Then Theorem 1.1 implies that G is stochastically greater than Y , i.e., P ∗
r [G ≥

d] ≥ P [Y ≥ d] for all d. The distribution of Y corresponds to the fourfold
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table in Figure 2 with all margins fixed, and a preference for selecting good coins

corresponding to the amplified odds ratio ωr.

Good Poor

Selected Y b

Not
Selected c − b

a c − a c

Figure 2.

To demonstrate the inequality, we write

P ∗

r [G ≥ d] =

a
∑

y=d

∑

[iy1···iyb ]

P [iy1 · · · iyb],

where the inner summation is over all subsets of b integers with exactly y integers less

than or equal to a. Since we are assuming p1 = · · · = pa and pa+1 = · · · = pc, all terms

of the form P ∗

r [iy1 · · · iyb] are equal to P ∗

r [{1, . . . , y, a + 1, . . . , a + b − y}]. Thus we can
write

P ∗

r [G ≥ d] =

a
∑

y=d

(

a

y

)(

c − a

b − y

)

P ∗

r [{1, . . . , y, a + 1, . . . , a + b − y}]

or, in odds form,

P ∗

r [G ≥ d]

1 − P ∗

r [G ≥ d]
=

a
∑

y=d

(

a

y

)(

c − a

b − y

)

P ∗

r [{1, . . . , y, a + 1, . . . , a + b − y}]

d−1
∑

u=max(0,a+b−c)

(

a

u

)(

c − a

b − u

)

P ∗

r [{1, . . . , u, a + 1, . . . , a + b − u}]

.

Then by interchanging y − d good coins with poor coins and applying Theorem 1.1, we
have that the numerator is no less than

a
∑

y=d

(

a

y

)(

c − a

b − y

)

ωr(y−d)P ∗

r [{1, . . . , d, a + 1, . . . , a + b − d}]

and, by interchanging (d − 1) − u good coins with poor coins, the denominator is no
greater than

d−1
∑

u=max(0,a+b−c)

(

a

u

)(

c − a

b − u

)

ωr(u−d+1)P ∗

r [{1, . . . , d − 1, a + 1, . . . , a + b − d + 1}].
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This implies

P ∗

r [G ≥ d]

1 − P ∗

r [G ≥ d]
≥

a
∑

y=d

(

a

y

)(

c − a

b − y

)

ωr(y−d)

/ d−1
∑

u=max(0,a+b−c)

(

a

u

)(

c − a

b − u

)

ωr(u−d+1)

×
P ∗

r [{1, . . . , d, a + 1, . . . , a + b − d}]

P ∗

r [{1, . . . , d − 1, a + 1, . . . , a + b − d + 1}]

=

a
∑

y=d

(

a

y

)(

c − a

b − y

)

ωry

/ d−1
∑

u=max(0,a+b−c)

(

a

u

)(

c − a

b − u

)

ωru

×
P ∗

r [{1, . . . , d, a + 1, . . . , a + b − d}]

ωr · P ∗

r [{1, . . . , d − 1, a + 1, . . . , a + b − d + 1}]

≥
a

∑

y=d

(

a

y

)(

c − a

b − y

)

ωry

/ d−1
∑

u=max(0,a+b−c)

(

a

u

)(

c − a

b − u

)

ωru,

where the last inequality holds true because P ∗

r [{1, . . . , d, a + 1, . . . , a + b − d}]/

{ωr · P ∗

r [{1, . . . , d − 1, a + 1, . . . , a + b − d + 1}]} ≥ 1, again by Theorem 1.1. Therefore

P ∗

r [G ≥ d] ≥ P [Y ≥ d].

We conjecture the same result holds for the procedure N
(b,c)
r with elimination of

inferior coins.
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