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PARAMETER ESTIMATION OF CHIRP SIGNALS

IN PRESENCE OF STATIONARY NOISE
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Abstract: The problem of parameter estimation of the chirp signals in presence
of stationary noise has been addressed. We consider the least squares estimators
and observe that they are strongly consistent. The asymptotic distributions of
the least squares estimators are obtained. The multiple chirp signal model is also
considered and we obtain the asymptotic properties of the least squares estimators
of the unknown parameters. We perform some small sample simulations to observe
how the proposed estimators work.
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1. Introduction

In this paper we consider the estimation procedure of the parameters of the
following signal processing model:

y(n) = A0 cos(α0n + β0n2) + B0 sin(α0n + β0n2) + X(n); n = 1, . . . , N. (1)

Here y(n) is the real-valued signal observed at n = 1, . . . , N , A0 and B0 are
real-valued amplitudes, and α0 and β0 are the frequency and frequency rate,

respectively. The “chirp signal” model (1) does not have a constant frequency
like the sinusoidal frequency model and the initial frequency changes over time
at the rate β. The error {X(n)} is a sequence of random variables with mean

zero and finite fourth moment. The error random variable X(n) satisfies the
following.

Assumption 1. One can write

X(n) =
∞
∑

j=−∞
a(j)e(n − j), (2)

where {e(n)} is a sequence of independent and identically distributed (i.i.d.) ran-

dom variables with mean zero and finite fourth moment, and

∞
∑

j=−∞
|a(j)| < ∞. (3)



188 DEBASIS KUNDU AND SWAGATA NANDI

The signals as described in (1) are known as chirp signals in the statistical

signal processing literature (Djurić and Kay (1990)). They are quite common in

various areas of science and engineering, specifically in sonar, radar, communica-

tions, etc. Several authors have considered (1) when the X(n)’s are i.i.d. random

variables. See for example, the work of Abatzoglou (1986) Kumaresan and Verma

(1987), Djurić and Kay (1990), Gini, Montanari and Verrazzani (2000), Nandi

and Kundu (2004), etc. Different approaches to the estimation of chirp pa-

rameters in similar kinds of models are found in Giannakis and Zhou (1995),

Zhou, Giannakis and Swami (1996), Shamsunder, Giannakis and Friedlander

(1995), Swami (1996) and Zhou and Giannakis (1995). It is well known that

in most practical situations, the errors are not independent. We assume station-

arity through Assumption 1 to incorporate the dependence structure and make

the model more realistic.

Assumption 1 is a standard assumption for a stationary linear process, and

any finite dimensional stationary AR, MA or ARMA process can be represented

as at (2) when the a(j)’s satisfy (3).

In this paper, we discuss the problem of parameter estimation of the chirp

signal model in presence of stationary noise. We consider least squares estimators

(LSEs) and study their properties. It is known, see Kundu (1997), that the sum

of sinusoidal model does not satisfy the sufficient conditions of Jennrich (1969)

or Wu (1981) for the LSEs to be consistent. While the results of Wu or Jennrich

cannot be applied directly to establish strong consistency or asymptotic normality

of the LSEs, the structure of the model allows us to obtain these properties. It is

found that the asymptotic variances of the amplitudes, frequency and frequency

rate estimators are O(N−1), O(N−3) and O(N−5), respectively. Based on the

asymptotic distributions, asymptotic confidence intervals can be constructed.

The paper is organized as follows. In Section 2, we provide the asymptotic

properties of the LSEs. The multiple chirp model is discussed in Section 3. Some

numerical results are presented in Section 4 and we conclude the paper in Section

5. The proofs of the results of Section 2 are provided in the Appendix.

2. Asymptotic Properties of LSEs

Write θ = (A,B,α, β), θ0 = (A0, B0, α0, β0). Then the LSE of θ0, say θ̂ =

(Â, B̂, α̂, β̂), can be obtained by minimizing

Q(A,B,α, β) = Q(θ) =

N
∑

n=1

[

y(n) − A cos(αn + βn2) − B sin(αn + βn2)
]2

, (4)

with respect to A, B, α and β. In the following, we state the consistency property

of θ0.
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Theorem 1. Let the true parameter vector θ0 = (A0, B0, α0, β0) be an interior

point of the parameter space Θ = (−∞,∞) × (−∞,∞) × (0, π) × (0, π) and

A02

+ B02

> 0. If the error random variables X(n) satisfy Assumption 1, then θ̂

is a strongly consistent estimator of θ0.

In this section we compute the asymptotic joint distribution of the LSEs of

the unknown parameters. We use Q′(θ) and Q′′(θ) to denote the 1× 4 vector of

first derivatives of Q(θ) and the 4 × 4 second derivative matrix of Q(θ), respec-

tively. Expanding Q′(θ̂) around the true parameter value θ0 in a Taylor series,

we obtain

Q′(θ̂) − Q′(θ0) = (θ̂ − θ0)Q′′(θ̄), (5)

where θ̄ is a point on the line joining the points θ̂ and θ0. Suppose D is the

4 × 4 diagonal matrix D = diag{N−1/2, N−1/2, N−3/2, N−5/2}. Since Q′(θ̂) = 0,

(5) can be written as

(θ̂ − θ0)D−1 = −[Q′(θ0)D][DQ′′(θ̄)D]−1, (6)

as [DQ′′(θ̄)D] is an invertible matrix a.e. for large N . Using Theorem 1, it follows

that θ̂ converges a.e. to θ0 and, since each element of Q′′(θ) is a continuous

function of θ, limN→∞[DQ′′(θ̄)D] = limN→∞[DQ′′(θ0)D] = 2Σ(θ0), say, where

Σ(θ) = (σjk(θ)).

We write

lim
N→∞

1

Np+1

N
∑

n=1

np cosk(αn + βn2) = δk(p, α, β), (7)

lim
N→∞

1

Np+1

N
∑

n=1

np sink(αn + βn2) = γk(p, α, β), (8)

where k takes values 1 and 2. We compute the elements of Σ(θ) in this notation.

The 4 × 1 random vector [Q′(θ0)D] is





















− 2√
N

∑N
n=1 X(n) cos(α0n + β0n2)

− 2√
N

∑N
n=1 X(n) sin(α0n + β0n2)

2

N
3
2

∑N
n=1 nX(n)[A0 sin(α0n + β0n2) − B0 cos(α0n + β0n2)]

2

N
5
2

∑N
n=1 n2X(n)[A0 sin(α0n + β0n2) − B0 cos(α0n + β0n2)]





















.

Using a central limit theorem (see Fuller (1976, p. 251)), it follows that

[Q′(θ0)D]
d

−→ N4(0,G(θ0)), (9)
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where the matrix G(θ0) is the asymptotic dispersion matrix of [Q′(θ0)D]. If

G(θ) = ((gjk(θ))) then, for k ≥ j,

g11(θ) = lim
N→∞

4

N
E[S1]

2, g12(θ) = lim
N→∞

4

N
E[S1S2], (10)

g13(θ) = lim
N→∞

4

N2
E[S1S3], g14(θ) = lim

N→∞
4

N3
E[S1S4], (11)

g22(θ) = lim
N→∞

4

N
E[S2]

2, g23(θ) = lim
N→∞

4

N2
E[S2S3], (12)

g24(θ) = lim
N→∞

4

N3
E[S2S4], g33(θ) = lim

N→∞
4

N3
E[S3]

2, (13)

g34(θ) = lim
N→∞

4

N4
E[S3S4], g44(θ) = lim

N→∞
4

N5
E[S4]

2, (14)

where

S1 = −
N

∑

n=1

X(n) cos(αn + βn2), S2 = −
N

∑

n=1

X(n) sin(αn + βn2),

S3 =
N

∑

n=1

nX(n)[A sin(αn + βn2) − B cos(αn + βn2)],

S4 =

N
∑

n=1

n2X(n)[A sin(αn + βn2) − B cos(αn + βn2)].

For k < j, gjk(θ) = gkj(θ). The limits given in (10) to (14) exist for fixed value

of θ because of (7) and (8). Therefore, from (6) the following theorem holds.

Theorem 2. Under the same assumptions as in Theorem 1,

(θ̂ − θ0)D−1 d
−→ N4

[

0,
1

4
Σ−1(θ0)G(θ0)Σ−1(θ0)

]

. (15)

Remark 1. When the X(n)’s are i.i.d. random variables, the covariance matrix

takes the simplified form Σ−1(θ0)G(θ0)Σ−1(θ0) = σ2Σ−1(θ0).

Remark 2. Although we cannot prove it, it has been observed in extensive nu-

merical computations that the limits at (7) and (8) for k = 1, 2, do not depend on

α. If we assume that these quantities are independent of their second argument,

we can write them as δk(p;β) = δk(p, α, β), γk(p;β) = γk(p, α, β).

If we write

cc =

∞
∑

k=−∞
a(k) cos(α0k + β0k2), cs =

∞
∑

k=−∞
a(k) sin(α0k + β0k2),
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cc and cs are functions of α0 and β0. They are not made explicit here to keep

the notation simple.

Now if the δ’s and γ’s are independent of α, we can explicitly compute

the elements of G(θ) matrix for a given θ. For different entries of the ma-

trix G(θ) in terms of δ’s and γ’s, see http://www.isid.ac.in/∼statmath/eprints/

(isid/ms/2005/08).

Obtaining the explicit expression of different entries of the variance-covariance

matrix (1/4)Σ−1(θ0)G(θ0)Σ−1(θ0) of (θ̂ − θ0)D−1 is possible by inverting the

matrix Σ(θ) at θ0 . These are not provided here due to the complex (notational)

structure of matrices Σ(θ) and G(θ). If the true value of β is zero (i.e., fre-

quency does not change over time) and if this information is used in the model,

then (1) is nothing but the usual sinusoidal model. In that case, the asymptotic

distribution can be obtained in compact form and the amplitude is asymptoti-

cally independent of the frequency. This has not been observed in the case of the

chirp signal model.

3. Multiple Chirp Signal

In this section, we introduce the multiple chirp signal model in stationary

noise. The complex-valued single chirp model was generalized to a superimposed

chirp model by Saha and Kay (2002). The following is a similar generalization

of model (1). We assume

y(n) =

p
∑

k=1

[A0
k cos(α0

kn + β0
kn2) + B0

k sin(α0
kn + β0

kn2)] + X(n); n = 1, . . . , N.

(16)

As with the single chirp model, the parameters α0
k, β

0
k ∈ (0, π) are the frequency

and frequency rate, respectively; the A0
k’s and B0

k’s are real-valued amplitudes.

Again our aim is to estimate the parameters and study their properties. We

assume that the number of components, p, is known and that the X(n)’s satisfy

Assumption 1. Estimation of p is an important problem and will be addressed

elsewhere. Now take θk = (Ak, Bk, αk, βk) and ν = (θ1, . . . ,θp). The LSE of the

parameters are obtained by minimizing the objective function, say R(ν) (defined

as was Q(θ); see (4)). Let ν̂ and ν0 denote the LSE and the true value of ν. The

consistency of ν̂ follows as did the consistency of θ̂, considering the parameter

vector as ν. We state the asymptotic distribution of ν̂ here. The proof involves

routine calculations and use of the multiple Taylor series expansion and a central

limit theorem.

For the asymptotic distribution of ν̂, writeψN
k = (θ̂k−θ

0
k)D

−1 = (N1/2(Âk−
A0

k), N
1/2(B̂k −B0

k), N
3/2(α̂k −α0

k), N
5/2(β̂k −β0

k)) and let ck
c and ck

s be obtained

from cc and cs by replacing α0 and β0 by α0
k and β0

k, respectively. Let βj + βk =
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β+
jk, βj − βk = β−

jk, d1 = c1
cc

2
c + c1

sc
2
s, d2 = c1

cc
2
s + c1

sc
2
c , d3 = c1

cc
2
c − c1

sc
2
s and

d4 = c1
cc

2
s − c1

sc
2
c . Then

(ψN
1 , . . . ,ψN

p )
d

−→ N4p(0, 2σ2Λ−1(ν0)H(ν0)Λ−1(ν0)), (17)

Λ(ν) =











Λ11 Λ12 · · · Λ1p

Λ21 Λ22 · · · Λ2p
...

...
...

...

Λp1 Λp2 · · · Λpp











, H(ν) =











H11 H12 · · · H1p

H21 H22 · · · H2p
...

...
...

...

Hp1 Hp2 · · · Hpp











. (18)

The sub-matrices Λjk and Hjk are square matrices of order four and Λjk ≡
Λjk(θj ,θk), Hjk ≡ Hjk(θj,θk). Λjj and Hjj can be obtained from Σ(θ) and

G(θ) by putting θ = θj . As in the case of G(θ), entries of the off-diagonal sub-
matrices Λjk = ((λrs)) and Hjk = ((hrs)) are available at http://www.isid.ac.in/
∼statmath/eprints/ (isid/ms/2005/08). The elements of the matrices Λjk and

Hjk are non-zero, the parameters corresponding to different components, ψN
j

and ψN
k for j 6= k, are not asymptotically independent. If the frequencies do

not change over time, i.e., the β’s vanish, then (16) is equivalent to the multiple
frequency model, in which case the off-diagonal matrices in H and Λ are zero

matrices and the estimators of the unknown parameters in different components
are independent.

4. Numerical Experiments

In this section, we present the results of the numerical experiments. Consider
a single chirp model with A = 2.93, B = 1.91, α = 2.5 and β = 0.10. We use the

sample sizes N = 50 and 100. Though α, β ∈ (0, π), we take the value of β to
be much less than the initial frequency α, as the frequency rate is comparatively
small in general. We consider different stationary processes as the error random

variables for our simulations. Errors are generated from (a) X(t) = ρe(t+1)+e(t),
(b) X(t) = ρ1e(t − 1) + ρ2e(t − 2) + e(t), and (c) X(t) = ρX(t − 1) + e(t). The
random variables {e(t)} are distributed as N (0, σ2). The processes (a), (b) and

(c) are stationary MA(1), MA(2) and AR(1) processes. For simulation purposes,
ρ = 0.5, ρ1 = 0.5, and ρ2 = −0.4 have been used. We consider different values of
σ2, and accordingly the variance of X(t) differs depending on the error process

model and the associated parameter values. We generate the data using (1) and
the parameters as mentioned above. The LSEs of the parameters are obtained by
minimizing the residual sum of squares. The starting estimates of the frequency

and the frequency rate are obtained by maximizing the periodogram-like function

I(ω1, ω2) =
1

N

∣

∣

∣

N
∑

t=1

y(t)e−i(ω1t+ω2t2)
∣

∣

∣

2
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over a fine two-dimensional grid of (0, π) × (0, π). The linear parameters, A and

B are expressible in terms of α and β. The minimization of Q(θ) with respect to
θ involves a 2-d search; once the non-linear parameters α and β are estimated, A

and B are estimated using linear regression. We replicate this procedure of data

generation and estimation 1,000 times, then we calculate the average estimate

(AVEEST), the bias (BIAS) and the mean squared error (MSE) of each parame-
ter. We summarize results when the errors are of type (c) in Table 1 (N = 50) and

Table 2 (N = 100). We do not report results with errors of types (a) and (b); they

are available at http://www.isid.ac.in/∼statmath/eprints/ (isid/ms/2005/08). In

Section 2, we obtained approximate confidence intervals for the unknown param-
eters based on fixed finite length data, using Theorem 2. Due to the complexity

involved in the distributions, these are hard to implement in practice. In the nu-

merical experiments, the convergence of sequences of δ’s and γ’s depends on the

parameters and, in many cases, we need a very large value to stabilize the conver-
gence. For this reason, we have used the percentile bootstrap method for interval

estimation of the different parameters, as suggested by Nandi, Iyer and Kundu

(2002). In each replication of our experiment, we generate 1,000 bootstrap resam-
ples using the estimated parameters and then the bootstrap confidence intervals

using the bootstrap quantiles at the 95% nominal level. Then we have 1,000

intervals for each parameter from the replicated experiment. We estimate the

95% bootstrap coverage probability by calculating the proportion covering the
true parameter value. We report them as B-COVP in Tables 1 and 2. We also

report the average length of the bootstrap confidence interval as B-AVEL. So,

in each table, we report the average estimate, its bias and mean squared error,

and the 95% bootstrap coverage probability and average length. We have seen in
simulations, that the maximizer of the periodogram-like function defined above

over a fine grid provides reasonably good initial estimates of α and β in most of

the cases.

In these experiments, we collected the LSEs of all parameters estimated in
all replications with N = 50, type (c) error, and σ2 = 0.1. The type (c) error,

being an AR(1) process, has variance σ2/(1−ρ2) = 0.13. We plot the histograms

of the LSEs of A and B in Figure 1 and the histograms of the LSEs of α and β

in Figure 2. To see how the fitted signal looks, we generated a realization using
the same type of error and σ2 = 0.1. The fitted signal is plotted in Figure 3,

along with the original one.

We observe that average estimates are quite good, which is reflected in the

fact that the biases are quite small in absolute value. The MSEs are reasonably
small and we observe that they are in decreasing order of (A,B), α and β.

Findings are similar in case of the average bootstrap confidence lengths: the

average lengths decrease with (A,B), α, β. The asymptotic distribution suggests

rates of convergence of N−1/2, N−3/2, N−5/2, respectively. These are reflected
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Table 1. Average estimates, biases, MSEs, coverage probabilities and average

lengths using bootstrap technique when errors are of type (c) and sample

size N = 50.

Parameters

σ2 A B α β

0.1 AVEEST 2.92884326 1.91418457 2.50015926 0.0999963731

BIAS -1.15680695e-3 4.18460369e-3 1.59263611e-4 -3.62843275e-6

MSE 8.06691125e-3 1.39705129e-2 2.45984756e-5 1.25075923e-8

B-COVP 0.976 0.973 0.897 0.848

B-AVEL 0.435647398 0.585830092 1.85300075e-2 3.61990707e-4

0.5 AVEEST 2.92720795 1.91918254 2.50034285 0.0999920592

BIAS -2.79211998e-3 9.18257236e-3 3.42845917e-4 -7.94231892e-6

MSE 4.05863188e-2 6.96346015e-2 1.23846767e-4 6.29799075e-8

B-COVP 0.977 0.971 0.895 0.849

B-AVEL 0.965029001 1.29620469 4.16616127e-2 8.12350831e-4

1.0 AVEEST 2.92532682 1.92366946 2.50049949 0.0999882892

BIAS -4.67324257e-3 1.36694908e-2 4.99486923e-4 -1.17123127e-5

MSE 8.10585618e-2 0.138886198 2.47357559e-4 1.25821842e-7

B-COVP 0.977 0.972 0.894 0.852

B-AVEL 1.36005151 1.81864798 5.9380278e-2 1.15502137e-3

Table 2. Average estimates, biases, MSEs, coverage probabilities and average

lengths using bootstrap technique when errors are of type (c) and sample size

N = 100.

Parameters

σ2 A B α β

0.1 AVEEST 2.92976546 1.91153288 2.50007677 0.0999990776

BIAS -2.34603882e-4 1.53291225e-3 7.67707825e-5 -9.23871994e-7

MSE 5.03146602e-3 1.00822281e-2 2.46111904e-6 2.25312574e-10

B-COVP 0.946 0.955 0.962 0.960

B-AVEL 0.309637368 0.458883166 7.0124059e-3 6.7486304e-5

0.5 AVEEST 2.92800331 1.91039991 2.50014496 0.0999983251

BIAS -1.9967556e-3 3.99947166e-4 1.44958496e-4 -1.67638063e-6

MSE 2.51741707e-2 5.0748501e-2 1.23751706e-5 1.13128373e-9

B-COVP 0.946 0.957 0.962 0.959

B-AVEL 0.686493933 1.01766443 1.56924874e-2 1.51613291e-4

1.0 AVEEST 2.92434359 1.90953135 2.50021315 0.0999974459

BIAS -5.65648079e-3 -4.68611717e-4 2.1314621e-4 -2.55554914e-6

MSE 5.05070463e-2 0.101672225 2.4809211e-5 2.26738139e-9

B-COVP 0.943 0.957 0.965 0.961

B-AVEL 0.967028975 1.42990315 2.22291183e-2 2.15437249e-4

in the bootstrap intervals to some extent. Moreover, the order of the MSEs

approximately match the order given in the asymptotic distribution of the LSEs

as expected for finite samples of moderate size. For each type of error, the average

lengths of intervals, biases and MSEs increase as the error variance increases for
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all the parameters. By comparing the different types of errors and σ2, we see that
with N = 50 the coverage probabilities do not attain the nominal level, mainly
for the frequency rate β, except for type (b) error. However, when N = 100, the
bootstrap coverage probabilities are quite close to the nominal level. In some
cases, mainly for the linear parameters, the bootstrap method overestimates
the coverage probabilities. We understand that using the given sample size in
calculating the limiting δ’s and r’s may cause the overestimation.

We have plotted the histograms of the LSEs in Figures 1 and 2. It is clear
from the plots that the LSEs are distributed symmetrically around the true value
for all parameters, and the histograms gives a very good idea of the variability of
the estimates. In Figure 3, the fitted signal have been plotted with the observed
one for a particular case. We see that the fitted one matches reasonably well
with the observed one.
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Figure 1. Plot of the histograms of LSEs of A (left plot) and B (right plot).
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Figure 3. Plot of original signal (solid line) and estimated signals (dotted line).
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5. Conclusions

In this paper, we study the problem of estimation of the parameters of the
real single chirp signal model, as well as the multiple chirp signal model, in sta-
tionary noise. This is a generalization of the multiple frequency model, similar
to the way the complex-valued chirp signal is a generalization of the exponential
model. We propose LSEs of the unknown parameters and study their asymptotic
properties. As the joint asymptotic distribution of the LSEs is quite complicated
for practical purposes, we have used a parametric bootstrap method for inter-
val estimation. The results here are quite satisfactory. In simulations, initial
estimates of the frequency and the frequency rate are obtained by maximizing
a periodogram-like function. It will be interesting to explore the properties of
the estimators obtained by maximizing the periodogram like function defined in
Section 4. Also, generalization of some of the existing iterative and non-iterative
methods for the frequency model to the chirp signal model needs to be addressed,
as well as the estimation of the number of chirp components for the multiple chirp
model.

Appendix

We first state Lemmas 1 and 2, and then state and prove the lemmas A.1 to
A.6 prior to proving Lemma 2.

Lemma 1. Let SC,M = {θ;θ = (AR, AI , α, β), |θ − θ0| ≥ 4C, |AR| ≤ M, |AI | ≤
M}. If for any C > 0 and for some M < ∞, lim infN→∞ infθ∈SC,M

[Q(θ) −

Q(θ0)]/N > 0 a.s., then θ̂ is a strongly consistent estimator of θ0.

Proof of Lemma 1. The proof can be obtained by contradiction along the lines
of Lemma 1 of Wu (1981).

Lemma 2. As N → ∞, supα,β |
∑N

n=1 X(n)ei(αn+βn2)/N | → 0 a.s..

Lemma A.1. Let {e(n)} be a sequence of i.i.d. random variables with mean zero

and finite fourth moment. Then for k = 2, 3, . . . , N − 2,

E

∣

∣

∣

∣

N−2
∑

n=1

e(n)e(n + 1)2e(n + 2)

∣

∣

∣

∣

= O(N
1

2 ), (19)

E

∣

∣

∣

∣

N−k−1
∑

n=1

e(n)e(n + 1)e(n + k)e(n + k + 1)

∣

∣

∣

∣

= O(N
1

2 ). (20)

Proof of Lemma A.1. We prove (19) and then (20) follows similarly. Note
that

E

∣

∣

∣

∣

N−2
∑

n=1

e(n)e(n + 1)2e(n + 2)

∣

∣

∣

∣

≤

[

E
(

N−2
∑

n=1

e(n)e(n + 1)2e(n + 2)
)2

]
1

2

= O(N
1

2 ).
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Lemma A.2. For an arbitrary integer m, E supθ |
∑N

n=1 e(n)e(n + k)eimθn| =

O(N3/4).

Proof of Lemma A.2.

E sup
θ

∣

∣

∣

∣

N
∑

n=1

e(n)e(n + k)eimθn

∣

∣

∣

∣

≤

[

E sup
θ

∣

∣

∣

N
∑

n=1

e(n)e(n + k)eimθn
∣

∣

∣

2
]

1

2

=

[

E sup
θ

(

N
∑

n=1

e(n)e(n + k)eimθn
)(

N
∑

n=1

e(n)e(n + k)e−imθn
)

] 1

2

≤

[

E

N
∑

n=1

e(n)2e(n + k)2 + 2E
∣

∣

∣

N−1
∑

n=1

e(n)e(n + 1)e(n + k)e(n + k + 1)
∣

∣

∣ + . . .

+2E
∣

∣

∣e(1)e(1 + k)e(N)e(N + k)
∣

∣

∣

]
1

2

= O(N + N.N
1

2 )
1

2 (using Lemma A.1) = O(N
3

4 ).

Lemma A.3. E supα,β |
∑N

n=1 e(n)ei(αn+βn2)|2 = O(N7/4).

Proof of Lemma A.3.

E sup
α,β

∣

∣

∣

∣

N
∑

n=1

e(n)ei(αn+βn2)

∣

∣

∣

∣

2

= E sup
α,β

[ N
∑

n=1

e(n)ei(αn+βn2)

]

[

N
∑

n=1

e(n)e−i(αn+βn2)

]

≤ O(N + NN
3

4 ) (using Lemma A.2) = O(N
7

4 ).

Lemma A.4. E supα,β |
∑N

n=1 e(n)ei(αn+βn2)/N | ≤ O(N−1/8).

Proof of Lemma A.4.

E sup
αβ

∣

∣

∣

∣

1

N

N
∑

n=1

e(n)ei(αn+βn2)

∣

∣

∣

∣

≤

[

E sup
α,β

∣

∣

∣

1

N

N
∑

n=1

e(n)ei(αn+βn2)
∣

∣

∣

2
]

1

2

= O(N− 1

8 ) (using Lemma A-3).

Lemma A.5. E supαβ |
∑N

n=1 X(n)ei(αn+βn2)/N | ≤ O(N−1/8).

Proof of Lemma A.5.

E sup
α,β

∣

∣

∣

∣

1

N

N
∑

n=1

X(n)ei(αn+βn2)

∣

∣

∣

∣

= E sup
α,β

∣

∣

∣

∣

1

N

N
∑

n=1

∞
∑

k=−∞
a(k)e(n − k)ei(αn+βn2)

∣

∣

∣

∣

≤
∞
∑

k=−∞
|a(k)|

[

E sup
α,β

1

N

∣

∣

∣

N
∑

n=1

e(n−k)ei(αn+βn2)
∣

∣

∣

]

.
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Note that E supα,β |
∑N

n=1 e(n − k)ei(αn+βn2)|/N is independent of k, and there-

fore the result follows using Lemma A.4.

Lemma A.6.

sup
α,β

∣

∣

∣

∣

1

N

N
∑

n=1

X(n)ei(αn+βn2)

∣

∣

∣

∣

−→ 0, a.s..

Proof of Lemma A.6.. Consider the sequence N9. Using Lemma A.5 we

obtain

E sup
α,β

1

N9

∣

∣

∣

∣

N9

∑

n=1

X(n)ei(αn+βn2)

∣

∣

∣

∣

≤ O(N− 9

8 ).

Therefore, using the Borel Cantelli Lemma, it follows that

sup
α,β

1

N9

∣

∣

∣

∣

N9

∑

n=1

X(n)ei(αn+βn2)

∣

∣

∣

∣

−→ 0, a.s..

Now for J , N9 < J ≤ (N + 1)9,

sup
α,β

sup
N9<J≤(N+1)9

∣

∣

∣

∣

1

N9

N9

∑

n=1

X(n)ei(αn+βn2) −
1

J

J
∑

n=1

X(n)ei(αn+βn2)

∣

∣

∣

∣

= sup
α,β

sup
N9<J≤(N+1)9

∣

∣

∣

∣

1

N9

N9

∑

n=1

X(n)ei(αn+βn2) −
1

N9

J
∑

n=1

X(n)ei(αn+βn2)

+
1

N9

J
∑

n=1

X(n)ei(αn+βn2) −
1

J

J
∑

n=1

X(n)ei(αn+βn2)

∣

∣

∣

∣

≤
1

N9

(N+1)9
∑

n=N9+1

|X(n)| +

(N+1)9
∑

n=1

|X(n)|
( 1

N9
−

1

(N + 1)9

)

.

Note that the mean squared error of the first term is of the order O(N−18 ×

((N + 1)9 − N9)2) = O(N−2). Similarly, the mean squared error of the second

term is of the order O(N18 × [((N + 1)9 − N9)/N18]2) = O(N−2). Therefore,

both terms converge to zero almost surely, and that proves the Lemma.

Proof of Theorem 1. In this proof, we write θ̂ as θ̂N = (ÂN , B̂N , α̂N , β̂N ) to

emphasize that θ̂ depends on the sample size. If θ̂N is not consistent for θ0, then

there exits a sub-sequence {Nk} of {N} such that θ̂Nk
does not converge to θ0.

Case I. Suppose |ÂNk
| + |B̂Nk

| is not bounded, at least one of |ÂNk
| or |B̂Nk

|

tends to ∞. This implies Q(θ̂Nk
)/Nk → ∞. Since lim Q(θ0)/Nk < ∞, [Q(θ̂Nk

)−
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Q(θ0)]/Nk → ∞. But, as θ̂Nk
is the LSE of θ0, Q(θ̂Nk

)−Q(θ0) < 0, which leads

to a contradiction.

Case II. Suppose |ÂNk
| + |B̂Nk

| is bounded. Then there exists a set SC,M (as

defined in Lemma 1) such that θ̂Nk
∈ SC,M for some C > 0 and 0 < M < ∞.

Write [Q(θ) − Q(θ0)]/N = f1(θ) + f2(θ), where

f1(θ) =
1

N

N
∑

n=1

[

A0 cos(α0n + β0n2) − A cos(αn + βn2)

+B0 sin(α0n + β0n2) − B sin(αn + βn2)
]2

,

f2(θ) =
2

N

N
∑

n=1

X(n)
[

A0 cos(α0n + β0n2) − A cos(αn + βn2)

+B0 sin(α0n + β0n2) − B sin(αn + βn2)
]

.

Using Lemma 2, it follows that

lim
N→∞

sup
θ∈SC,M

f2(θ) = 0 a.s.. (21)

Consider the following sets:

SC,M,1 = {θ : θ = (A,B,α, β), |A − A0| ≥ C, |A| ≤ M, |B| ≤ M},

SC,M,2 = {θ : θ = (A,B,α, β), |B − B0| ≥ C, |A| ≤ M, |B| ≤ M},

SC,M,3 = {θ : θ = (A,B,α, β), |α − α0| ≥ C, |A| ≤ M, |B| ≤ M},

SC,M,4 = {θ : θ = (A,B,α, β), |β − β0| ≥ C, |A| ≤ M, |B| ≤ M}.

Note that SC,M ⊂ SC,M,1 ∪ SC,M,2 ∪ SC,M,3 ∪ SC,M,4 = S (say). Therefore,

lim inf
θ∈SC,M

1

N
[Q(θ) − Q(θ0)] ≥ lim inf

θ∈S

1

N
[Q(θ) − Q(θ0)]. (22)

First we show that

lim inf
θ∈SC,M,j

1

N
[Q(θ) − Q(θ0)] > 0 a.s., (23)

for j = 1, . . . , 4, and then, because of (22), one has lim infθ∈SC,M
[Q(θ) − Q(θ0)]

/N > 0 a.s.. Because of Lemma 1, Theorem 1 is proved provided we can show

(23). First consider j = 1. Using (21), it follows that

lim inf
θ∈SC,M,1

1

N
[Q(θ) − Q(θ0)] = lim inf

θ∈SC,M,1

f1(θ)
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= lim inf
|A−A0|≥C

1

N

N
∑

n=1

[A0 cos(α0n + β0n2) − A cos(αn + βn2)

+B0 sin(α0n + β0n2) − B sin(αn + βn2)]2

= lim
N→∞

inf
|A−A0|≥C

1

N

N
∑

n=1

cos2(α0n + β0n2)(A − A0)2

≥ C2 lim
N→∞

1

N

N
∑

n=1

cos2(α0n + β0n2) > 0.

For other j one proceeds along the same lines and that proves Theorem 1.
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