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ORTHOGONAL-MAXIMIN LATIN HYPERCUBE DESIGNS

V. Roshan Joseph and Ying Hung

Georgia Institute of Technology

Abstract: A randomly generated Latin hypercube design (LHD) can be quite struc-
tured: the variables may be highly correlated or the design may not have good

space-filling properties. There are procedures for finding good LHDs by minimizing
the pairwise correlations or by maximizing the inter-site distances. In this article

we show that these two criteria need not be in close agreement. We propose a
multi-objective optimization approach to find good LHDs by combining correlation

and distance performance measures. We also propose a new exchange algorithm
for efficiently generating such designs. Several examples are presented to show that

the new algorithm is fast, and that the optimal designs are good in terms of both

the correlation and distance criteria.

Key words and phrases: Computer experiments, Kriging, multi-objective optimiza-
tion, simulated annealing.

1. Introduction

Computer experiments are widely used for the design and development of

products (for examples, see Fang, Li and Sudjianto (2006)). In computer exper-

iments, instead of physically doing an experiment on the product, mathematical

models describing the performance of the product are developed using engineer-

ing/physics laws and solved on computers through numerical methods such as

the finite element method. Because deterministic models are used for experi-

ments, the output of a computer experiment is not subject to random variations,

which makes the design of computer experiments different from that of physical

experiments (see Sacks et al. (1989)). For example, replication is not required.

In fact, it is desirable to avoid replicates when projecting the design onto a subset

of factors. This is because relatively few factors in the system usually dominate

the performance of the product (this is known as effect sparsity). Thus a good

model can be fitted using only these few important factors, and when we project

the design onto these factors, replication is not required. This is acknowledged by

Latin Hypercube Designs (LHD) (McKay, Beckman and Conover (1979)). Since

a LHD has the property that by projecting an n-point design onto any factor,

one gets n different levels for that factor.

Suppose the n levels of a factor are denoted by 1, . . . , n. Figure 1a shows a

LHD with two factors in six points. In general, a n-run LHD can be generated
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using a random permutation of {1, . . . , n} for each factor. Each permutation

leads to a different LHD. For k factors, we can thus obtain (n!)k LHDs. Figure

1b shows a LHD that is clearly not a good design. It is poor for two reasons.

First, the two factors are perfectly correlated; we are not able to distinguish

between the effects of the two factors based on this experiment. Second, there

is a large area in the experimental region that is not explored; if we use such a

design to develop a prediction model, then the prediction cannot be expected to

do well in these areas.
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Figure 1. LHDs.

There has been some work in the literature to avoid the above problems and

obtain a “good” LHD. The idea is to find the “best” design by optimizing a

criterion that describes a “desirable” property. Iman and Conover (1982), Owen

(1994) and Tang (1998) proposed to find designs minimizing the correlations

among factors. Figure 1c shows the optimal LHD found by the procedure in

Tang (1998), one that is clearly much better than those in Figure 1a and 1b. As

discussed before, apart from the correlations we are also interested in spreading

the points out across the experimental region. This is the idea behind space-

filling designs. Morris and Mitchell (1995) proposed to find the best LHD by

maximizing the minimum distance between the points. The optimal LHD under

this criterion is shown in Figure 1d. Other approaches to find good LHDs are

given by Owen (1994), Tang (1993), Park (1994), Ye (1998), Ye, Li and Sudjianto

(2000) and Jin, Chen and Sudjianto (2005).

The minimum pairwise correlation between the factors and the maximum

distance between the points are both good criteria for finding optimal LHDs.

Intuitively, minimizing correlation should spread out the points and maximizing
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Figure 2. Maximin rank vs correlation in n = 6, k = 2 case.
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Figure 3. LHDs with n = 6 and k = 2. (a) correlation=0.714, maximin

rank=11. (b) correlation=0.086, maximin rank=80.

the distance between the points should reduce the correlation. But in reality,

there is no one-to-one relationship between the two, and designs obtained by

these two criteria can be quite different. To illustrate this, consider again a

LHD with six points and two factors. There are a total of (6!)2 = 518, 400

LHDs. The designs can be ranked based on the maximin distance criterion

(Morris and Mitchell (1995)), where rank 1 is assigned to the best design. These

are plotted in Figure 2 against absolute values of correlations (there are a total of

113 different combinations of correlations and maximin ranks in this example).

We can see that the points are highly scattered showing that the minimization of

one criterion may not lead to the minimization of the other criterion (see Figure

3 for an example.) The problem becomes more serious as the number of points

or the number of factors is increased. This motivates us to develop a multi-

objective criterion that minimizes the pairwise correlations as well as maximizes

the inter-site distances.

Because of the huge combinatorial nature of the problem, finding the opti-

mal LHD is a very difficult task. Several algorithms such as simulated anneal-



174 V. ROSHAN JOSEPH AND YING HUNG

ing (Morris and Mitchell (1995)), columnwise-pairwise algorithms Ye, Li, and

Sudjianto (2000)), enhanced stochastic evolutionary algorithms (Jin, Chen, and

Sudjianto (2005)), etc., are proposed in the literature for finding the optimal

LHD. Most of the algorithms use an exchange method for searching in the design

space. For example, in the algorithm proposed by Morris and Mitchell, a column

in the design is randomly selected and two randomly chosen elements within that

column are exchanged to find a new design. We note that the columns in the de-

sign matrix correspond to the experimental factors and thus we can choose them

deterministically to reduce the pairwise correlations. Similarly, the rows in the

design matrix correspond to the points in the experimental region and thus the

elements can be chosen to maximize the inter-site distances. These observations

lead to a new algorithm, which is highly suitable for finding the optimum based

on our multi-objective criterion.

The article is organized as follows. In Section 2, performance measures for

evaluating the goodness of an LHD with respect to pairwise correlations and

inter-site distances are described. In Section 3, we propose a multi-objective

criterion combining the two performance measures. In Section 4, we propose a

new algorithm for generating optimal designs. Several examples are presented in

Section 5, and a statistical justification for the new criterion is given in Section 6.

2. Performance Measures

Iman and Conover (1982), Owen (1994) and Tang (1998) proposed to choose

designs by minimizing correlations among factors within the class of LHDs. We

use the performance measure proposed by Owen for evaluating the goodness of

the LHD with respect to pairwise correlations. It is defined as

ρ2 =

∑k
i=2

∑i−1
j=1 ρ

2
ij

k(k − 1)2−1
, (1)

where ρij is the linear correlation between columns i and j.

Now we discuss a performance measure based on the inter-site distances. Let

X be the design, which is an n×kmatrix. Let s and t be any two design points (or

sites). Consider the distance measure d(s, t) = {
∑k

j=1 |sj − tj|
p}1/p, in which p =

1 and p = 2 correspond to the rectangular and Euclidean distances respectively.

Johnson, Moore and Ylvisaker (1990) proposed the maximin distance criterion,

which maximizes the minimum inter-site distance. Morris and Mitchell (1995)

applied this criterion to the class of LHDs to find the optimal LHD. Because there

are many designs that maximize the minimum inter-site distance, they proposed

an extended definition of the maximin criterion. For a given LHD, define a

distance list (D1, . . . ,Dm) in which the elements are the distinct values of inter-

site distances, sorted from the smallest to the largest. Hence m ≤ (n2 ). Let Ji be
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the number of pairs of sites in the design separated by Di. Then a design X is

called a maximin design if it sequentially maximizes Di’s and minimizes Ji’s in

the following order: D1, J1,D2, J2, . . . ,Dm, Jm. Morris and Mitchell (1995) then

proposed a scalar-valued function which can be used to rank competing designs

in such a way that the maximin design received the highest ranking. The family

of functions indexed by p is given by

φp =
( m∑

i=1

JiD
−p
i

) 1
p
, (2)

where p is a positive integer. Then for large enough p, the design that minimizes

φp will be a maximin design. In the next section we propose a new criterion

which combines the performance measures in (1) and (2).

3. Multi-Objective Criterion

Our objective is to find an LHD that minimizes both ρ2 and φp. A common

approach in multi-objective optimization is to optimize a weighted average of all

the objective functions. Therefore consider the objective function

w1ρ
2 + w2φp,

where w1 and w2 are some pre-specified positive weights. Because the two objec-

tives are very different, it is not easy to choose appropriate weights. Moreover, the

two objectives have different scales. The objective function ρ2 ∈ [0, 1], whereas

the objective function φp can be larger than 1. If we scale φp to [0, 1], then we

might be able to assign some reasonable weights. In order to do this, we need to

find an upper and lower bound for φp.

Consider a LHD with n points and k factors, denoted by LHD(n, k). Sup-

pose each factor takes values in {1, . . . , n}. Let d1, d2, . . . , d(n
2 ) be the inter-

site distances among the n points based on the rectangular distance measure

d(s, t) =
∑k

j=1 |sj − tj |. We use the following two results for deriving bounds for

φp. All proofs are given in the Appendix.

Lemma 1. For a LHD(n, k), the average inter-site distance (rectangular measure)

is d = (n+ 1)k/3.

Lemma 2. Consider a set of positive values {dj1, dj2, . . . , djm} and write dj(1) ≤

dj(2) ≤ · · · ≤ dj(m) for j = 1, . . . , k. Then

m∑

i=1

1
∑k

j=1 dji

≤
m∑

i=1

1
∑k

j=1 dj(i)

.
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As an interesting consequence of Lemma 1, note that the last step in the

definition of maximin criterion cannot be applied to a LHD, because Dm is de-

termined by D1, . . . ,Dm−1. Therefore, one could define the objective function

for the distances as (
∑m−1

i=1 JiD
−p
i )1/p. We choose to use (2) because it has a

computationally simpler form (Jin, Chen and Sudjianto (2005)). In particular,

φp =
( (n

2 )∑

i=1

1

dp
i

) 1
p
,

which can be easily calculated without ordering the di’s.

Let

φp,L =
{

(n2 )
(⌈d̄⌉ − d̄

⌊d̄⌋p
+
d̄− ⌊d̄⌋

⌈d̄⌉p

)} 1
p

and φp,U =
{ n−1∑

i=1

(n − i)

(ik)p

} 1
p
,

where ⌊x⌋ is the largest integer ≤ x and ⌈x⌉ is the smallest integer > x.

Proposition 1. For a LHD(n, k), φp,L ≤ φp ≤ φp,U .

It is easy to see that the upper bound is achieved when all of the factors are

equal. Thus the worst design in terms of φp is the same as the worst design in

terms of ρ. However, there may not exist a design that achieves the lower bound.

Adjusting for range, our new criterion is to minimize

ψp = wρ2 + (1 − w)
φp − φp,L

φp,U − φp,L
,

where w ∈ (0, 1). We call a design that minimizes ψp as an orthogonal-maximin

Latin hypercube design (OMLHD). In the next section we propose a new algo-

rithm for finding an OMLHD.

4. A New Algorithm

Morris and Mitchell (1995) proposed a version of the simulated annealing

algorithm for optimizing φp. We call their algorithm MMA. In MMA, the search

begins with a randomly chosen LHD, and proceeds through the examination of

a sequence of designs, each generated as a perturbation of the preceding one. A

perturbation X try of a design X is generated by interchanging two randomly

chosen elements within a randomly chosen column in X . The perturbation Xtry

replaces X if it leads to an improvement. Otherwise, it will replace X with

probability π = exp{−[φp(Xtry) − φp(X)]/t}, where t is a preset parameter

known as “temperature”.
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We propose a modification of the above algorithm. Instead of randomly

choosing a column and two elements within that column, we choose them judi-

ciously in order to achieve improvement in our multi-objective function. Sup-

pose at some stage of the iterations, a column is almost orthogonal to the other

columns. Then clearly, we will not gain much in perturbing this column and it

is better to choose a column that is highly correlated with the other columns,

because a perturbation here may reduce the correlation, thereby improving our

objective function. Similarly, if a point is far from the other points, there is no

need to perturb the elements in that row. Instead, we can choose a point that is

close to the other points and perturb the elements in the chosen column. This

may increase the distance of the point from the others, thereby improving our

objective function. For doing this, at each step, compute measures of correlation

and distance as

ρ2
l =

1

k − 1

∑

j 6=l

ρ2
lj , (3)

for each column l = 1, . . . , k and

φpi =
(∑

j 6=i

1

dp
ij

) 1
p
, (4)

for each row i = 1, . . . , n, where ρlj is the correlation between columns l and j;

and dij is the distance between the rows i and j. For exchanging the elements,

we choose a column with high probability that is highly correlated with the other

columns. Similarly, we choose a row with high probability that is closest to the

other rows. Specifically, choose column

l∗ = l with probability P (l) =
ρα

l∑k
l=1 ρ

α
l

,

and row

i∗ = i with probability P (i) =
φα

pi∑n
i=1 φ

α
pi

,

with α ∈ [1,∞). Now exchange xi∗l∗ with a randomly chosen element xi′ l∗ . This

gives us the new design Xtry. If ψp(Xtry) < ψp(X), then we replace X by Xtry,

otherwise we replace it with probability π = exp{−[ψp(X try) − ψp(X)]/t}.

All the parameters in the new algorithm are set the same as that used

in a standard simulated annealing algorithm for which the convergence is al-

ready established (Lundy and Mees (1986)). Therefore the new algorithm will

also converge to the global optimum. A limiting case of the algorithm is in-

teresting. When α → ∞, the exchange rule becomes deterministic, given by



178 V. ROSHAN JOSEPH AND YING HUNG

l∗ = argmaxl ρ
2
l and i∗ = argmaxi φpi. Under this rule, the transition prob-

ability matrix for moving from one design to another design can be reducible,

violating one of the conditions required for convergence. But our simulations,
given in the next section, show that the convergence is faster with the above

modification. Therefore, we recommend it for use in practice.

Because the objective function is evaluated at each iteration of the algorithm,

it is important to have a computationally efficient implementation of the objective

function (see Jin, Chen and Sudjianto (2005)). Instead of calculating ρ2
l and φpi

using (3) and (4), we can use the following iterative formulas. Let (ρ2
l )

(s) and

φ
(s)
p denote the values of ρ2

l and φp at the iteration step s. Then at step (s + 1)

φ
(s+1)
pi =





(∑

j 6=i

1

(d
(s+1)
ij )p

) 1
p
, i = i

′

, i∗,

(
(φ

(s)
pi )p−(d

(s)
i∗i)

−p−(d
(s)

i′ i
)−p+(d

(s+1)
i∗i )−p+(d

(s+1)

i′ i
)−p

) 1
p
, i 6= i

′

, i∗.

For all j 6= i∗, i
′

we have d
(s+1)
i∗j = d

(s)
i∗j − t(i∗, i

′

, j, l∗), and d
(s+1)

i′ j
= d

(s)

i′ j
+

t(i∗, i
′

, j, l∗), where t(i1, i2, u, v) = |xi1v − xuv| − |xi2v − xuv|. Also note that

the distance matrix (dij) is symmetric. For ρ2
l at step (s+ 1), we obtain

(ρ2
l )

(s+1) =





1

k − 1

∑

j 6=l

(ρ2
jl)

(s+1), l = l∗,

(ρ2
l )

(s) +
(ρ2

ll∗
)(s+1)−(ρ2

ll∗
)(s)

k−1 , l 6= l∗.

Thus

φ(s+1)
p =

(1

2

n∑

i=1

(φ
(s+1)
pi )p

) 1
p

and (ρ2)(s+1) = (ρ2)(s) +
2(ρ2

l∗)
(s+1) − 2(ρ2

l∗)
(s)

k
.

We should point out that the proposed exchange procedure can also be im-
plemented with any of the other stochastic optimization algorithms such as the

columnwise-pairwise algorithm (Li and Wu (1997)), and Ye, Li and Sudjianto

(2000), the threshold accepting heuristic (Winker and Fang (1998)), and the

stochastic evolutionary algorithm (Jin, Chen and Sudjianto (2005)).

5. Examples

In this section, we compare our proposed method with some of the existing
methods. For a fair comparison, we choose all the parameters in the simulated

annealing algorithm equal to the recommended values in Morris and Mitchell

(1995). In the following examples, we let p = 15 and w = 0.5. In all exam-

ples, we started the iteration by using a randomly generated symmetric LHD

(Ye, Li and Sudjianto (2000)).
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Example 1 (OMLHD vs MLHD). Consider an LHD(5, 3). In this case it is

feasible to enumerate all the LHDs. We found that there are 142 different designs

according to the maximin criterion (Morris and Mitchell (1995)). The maximin

Latin hypercube design (MLHD) and the proposed OMLHD are given in Table 1.

We see that for OMLHD, the maximum pairwise correlation is only 0.1 compared

to the 0.4 of MLHD. The minimum inter-site distances of the two designs are the

same (D1 = 5), although the number of sites separated by this distance is one

less in MLHD.

Table 1. Example 1, MLHD vs OMLHD for n = 5 and k = 3.

MLHD OMLHD

1 1 2 1 2 3

optimal 2 5 3 2 4 5
design 3 2 5 3 5 1

matrix 4 3 1 4 1 2

5 4 4 5 3 4

φp 0.2170 0.2201

D1(J1) 5(3) 5(4)

ρ 0.265 0.081

pairwise correlations (0.4,0.2,0.1) (-0.1,-0.1,0)

Example 2 (OMLHD vs OLHD). Ye (1998) proposed the orthogonal Latin hy-

percube designs (OLHD), in which all the columns are orthogonal (correlation

= 0) to each other. Table 2 compares the OLHD with the proposed OMLHD

for the case of n = 9 and k = 4. For comparison, the MLHD is also given in

the table. We can see that the OMLHD is a compromise between the MLHD

and OLHD. OLHD exists only for certain n and k, whereas MLHD and OMLHD

exist for all n and k. In this sense MLHD and OMLHD are more general.

Example 3 (OMLHD vs OA-based LHD). Owen (1994) and Tang (1993) pro-

posed using orthogonal arrays for constructing good LHDs. Tang called such

designs OA-based LHDs. Figure 4 shows an OA-based LHD and the OMLHD

for the case of n = 9 and k = 2. Clearly the OMLHD is superior to this particu-

lar OA-based LHD. Interestingly, in this case, the OMLHD is also an OA-based

LHD, but a good one in terms of both correlation and space-filling. However, in

general, an OMLHD need not be an OA-based LHD.

Example 4 (OMLHD vs ULHD). Another popular space-filling design is the

unform design. It can be obtained by minimizing the centered L2-discrepancy

criterion (CL2)(see Fang, Ma and Winker (2002)). Denote the optimal LHD

under this criterion by ULHD. The ULHD for n = 9 and k = 4 is given in Table

2. We can see that the OMLHD is slightly worse than the ULHD under this
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criterion, but is better in terms of both φp and ρ. Interestingly, the OMLHD

performs much better than MLHD and OLHD in terms of CL2.

Table 2. Examples 2 and 4, OMLHD vs OLHD, MLHD and ULHD for n = 9
and k = 4.

MLHD OMLHD OLHD ULHD

1 3 3 4 1 5 3 3 1 2 6 3 4 1 7 5

2 5 8 8 2 2 5 8 2 9 7 6 1 3 4 3

optimal 3 8 6 2 3 9 7 5 3 4 2 9 9 9 5 4

4 7 1 6 4 3 8 1 4 7 1 2 6 6 6 9

design 5 2 9 3 5 7 1 7 5 5 5 5 5 7 2 1
6 9 5 9 6 6 9 9 6 3 9 8 2 8 8 7

matrix 7 1 4 7 7 1 2 4 7 6 8 1 3 5 1 6

8 4 2 1 8 8 4 2 8 1 3 4 8 2 3 8

9 6 7 5 9 4 6 6 9 8 4 7 7 4 9 2

φp 0.1049 0.1049 0.1154 0.1127

D1(J1) 11(3) 11(4) 10(8) 10(5)

ρ 0.108 0.063 0 0.076

maximum pairwise correlation 0.217 0.117 0 0.15

CL2 0.1415 0.1386 0.1457 0.1374

factor 1

fa
ct

or
 2
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 2
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Figure 4. Example 3, (a) OA-based LHD (φp = 0.5380, D1(J1) = 2(3),
ρ = −0.067) (b)OMLHD (φp = 0.2879, D1(J1) = 4(8), ρ = 0).

We have also studied the performance of the proposed exchange algorithm.

Figure 5 shows how φp and ρ2 are reduced with each iteration for the case of

LHD(25, 4). The same starting design is used for both MMA and the new

algorithm. We can see that the new algorithm converges more quickly than the

MMA. We repeated this 200 times. The values of ψp at the 50th iteration are
plotted in Figure 6. We can see that they are much smaller for the new algorithm

compared to the MMA. Thus, for a fixed number of iterations, the new algorithm

produces LHDs with smaller pairwise correlations and larger inter-site distances.

The simulations are repeated for LHD(50, 4), LHD(10, 10), and LHD(100, 10).

The number of iterations for each of these cases was fixed at 100, 200, and 500
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respectively. The results are shown in Figure 6. We can see that remarkable

improvements are obtained by using the new algorithm compared to the MMA.
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Figure 6. Plot of ψp values from the new algorithm against that of the MMA.
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6. A Statistical Justification

Because of the absence of random errors, interpolating methods such as krig-

ing are widely used for modeling and analysis in computer experiments. Consider

a function y(x), where x = (x1, . . . , xk)
′. The ordinary kriging model is given by

Y (x) = µ+ Z(x), (5)

where Z(x) is a weakly stationary stochastic process with mean 0 and covariance

function σ2R. A popular choice for the correlation function is the exponential:

R(h) = e−θ
Pk

i=1 |hi|
γ

, (6)

with θ ∈ (0,∞) and γ ∈ (0, 2]. Suppose we evaluated the function at n points

{x1, . . . ,xn} and let y = (y1, . . . , yn)′ be the corresponding function values.

Then, the best linear unbiased predictor (BLUP) is given by ŷ(x) = µ̂+r(x)′R−1(y−

µ̂1), where 1 is a column of 1’s having length n, r(x)′ = (R(x − x1), . . . , R(x −

xn)), R is an n×n matrix with elements R(xi −xj), and µ̂ = 1′R−1y/1′R−11.

Note that the model in (5) assumes a constant mean, and the predictor does

not perform well when there are some trends (see Joseph (2006)). If the trends

are known, then universal kriging can be used instead of ordinary kriging. The

universal kriging model with linear trends is given by

Y (x) = β0 +

k∑

i=1

βixi + Z(x), (7)

where β0, β1, . . . , βk are some unknown constants. Simulations carried out by

Martin and Simpson (2005) show that universal kriging can improve the predic-

tion over ordinary kriging. See Qian et al. (2006) for an application of universal

kriging with linear trends.

Johnson, Moore and Ylvisaker (1990) have shown that the maximin design

with minimum J1 is asymptotically D-optimum under the ordinary kriging model

(as correlation becomes weak). Thus the objective of a maximin design can

be thought of as finding a design to improve prediction through the stochastic

part Z(x), whereas minimizing the correlation among the variables will help

in estimating the deterministic mean part β0 +
∑k

i=1 βixi efficiently. For the

universal kriging predictor to perform well, both parts need to be estimated

precisely. Thus the orthogonal-maximin LHD can be considered suitable for the

efficient estimation of the universal kriging model with linear trends.

More specifically, consider the following hierarchical Bayesian model:

y|β ∼ N(Fβ, σ2R), β ∼ N(µ, τ2I),
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where F = [1,X ] is the model matrix corresponding to β = (β0, . . . , βk)′ and I is
an identity matrix. The maximum entropy design (Shewry and Wynn (1987)))
is obtained by maximizing the determinant of the variance-covariance matrix
of y. Thus we need to maximize det(σ2R + τ2FF ′), which is equal to (see
Santner, Williams and Notz (2003, p.167))

det(σ2R) det(τ2/σ2F ′R−1F + I).

Johnson, Moore and Ylvisaker (1990) have shown that as θ → ∞ in (6), a max-
imin design maximizes the first term det(σ2R). As θ → ∞, τ2/σ2F ′R−1F +I →
τ2/σ2F ′F + I, whose determinant is maximized when F is orthogonal. Thus an
orthogonal design maximizes the second term. A design will be asymptotically
(θ → ∞) optimum with respect to the maximum entropy criterion if both terms
are maximized. Therefore, an OMLHD, which possesses good maximin and or-
thogonality properties, can be expected to perform well in terms of the maximum
entropy criterion for the model in (7) among all LHDs.
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Appendix. Proofs

Proof of Lemma 1. Since each column in the LHD(n, k) is a permutation of
{1, . . . , n}, we have

(n
2 )∑

i=1

di =
n∑

i=2

i−1∑

j=1

d(si, sj) =
k∑

l=1

n∑

i=2

i−1∑

j=1

|sil − sjl| = k
n∑

i=2

i−1∑

j=1

|si1 − sj1|.

Without loss of generality, take the first column as (1, . . . , n)′. Therefore,

(n
2 )∑

i=1

di = k

n∑

i=2

i−1∑

j=1

|i− j| = k

n∑

i=2

i(i − 1)

2
=
kn(n2 − 1)

6
,

d =
kn(n2 − 1)6−1

(n2 )
=

(n+ 1)k

3
.

Proof of Lemma 2. For m = 2,

1
∑k

j=1 dj1

+
1

∑k
j=1(cj − dj1)

=

∑k
j=1 cj∑k

j=1 dj1 ×
∑k

j=1(cj − dj1)
,
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where cj = dj1 + dj2, for all j = 1, . . . , k. Since
∑k

j=1 cj is a constant, it is easy

to see that the right side is a maximum when
∑k

j=1 dj1 =
∑k

j=1 dj(1). Therefore,

2∑

i=1

1
∑k

j=1 dji

≤

2∑

i=1

1
∑k

j=1 dj(i)

.

Thus, the result holds for m = 2. Assume the upper bound is achieved by the

ordered sequence for m = M . When m = M + 1, suppose the upper bound is

achieved by some unordered sequence {dj1∗ , . . . , djM+1∗}, so the upper bound is∑M+1
i=1 (

∑k
j=1 dji∗)

−1. Without loss of generality, assume that at least the first

sequence does not follow the order. Because of this, there always exists an M -

element subset {d11∗ , . . . , d̂1t∗ . . . , d1M+1∗} that does not follow the order, where

the notation d̂1t∗ means that the sequence is without d1t∗ . But since the upper

bound holds for m = M , we have

1
∑k

j=1 dj1∗
+ · · · +

1̂
∑k

j=1 djt∗
· · · +

1
∑k

j=1 djM+1∗

≤
1

∑k
j=1 dj(1)

+ · · · +
1̂

∑k
j=1 djt∗

· · · +
1

∑k
j=1 dj(M+1)

.

This is a contradiction, because by adding 1/
∑k

j=1 djt∗ to both sides we obtain

M+1∑

i=1

1
∑k

j=1 dji∗
≤

1
∑k

j=1 dj(1)

+ · · · +
1

∑k
j=1 djt∗

· · · +
1

∑k
j=1 dj(M+1)

,

which is a better upper bound. By mathematical induction, we can prove that

the function achieves the upper bound when all k sequences are in increasing

order.

Proof of Proposition 1. To find a lower bound for φp, consider the following

minimization problem with respect to d1, . . . , d(n
2 ).

minφp =
( (n

2 )∑

i=1

1

dp
i

) 1
p

subject to

(n
2 )∑

i=1

di = (n2 )d̄,

where d̄ = (n + 1)k/3. Using Lagrange multipliers, it is easy to show that the

optimal solution is given by d1 = d2 = · · · = d(n
2 ) = d̄. Therefore, (n2 )1/p/d̄ is a

lower bound for φp. But since we know the di’s in a LHD are integers, a better

lower bound can be obtained by adding this constraint to the above optimization

problem. To find the optimal solution under the integer restriction, consider the
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following two groups: I = {i : di ≤ d̄} and II = {i : di > d̄}. Since the sum of

the di’s is a constant, if we increase a di for an i ∈ I, then we should decrease

a di, i ∈ II, by the same amount . It is easy to show that such a change will

decrease φp. Therefore, the minimum of φp can be achieved by

d1 = · · · = dN = ⌊d̄⌋ ; dN+1 = · · · = d(n
2 ) = ⌈d̄⌉,

provided such an N exists. We must have N⌊d̄⌋ + {(n2 ) − N}⌈d̄⌉ = (n2 )d̄, which

gives N = (n2 )(⌈d̄⌉− d̄). This is a feasible solution, because (n2 )d̄ = (n+ 1)k is an

integer. Thus

φp ≥

(
N

⌊d̄⌋p
+

(n2 ) −N

⌈d̄⌉p

) 1
p

= φp,L.

Now consider the upper bound. All the k factors have the same inter-site

distances {dj,1, . . . , dj,(n
2 )}, where j = 1, . . . , k. For example, if n = 5, the inter-

site distances for each factor is {1, 1, 1, 1, 2, 2, 2, 3, 3, 4}. In general, (n− 1) of the

dj,i’s are 1, (n − 2) of the dj,i’s are 2, · · · , and one is (n − 1). Different LHDs

have different combinations of the inter-site distances of each factor. Therefore

di =
∑k

j=1 dj,i, where i = 1, . . . , (n2 ). By Lemma 2,

φp =

( (n
2 )∑

i=1

1

dp
i

) 1
p

≤

( (n
2 )∑

i=1

1
∑k

j=1 d
p
j,i

) 1
p

≤

( (n
2 )∑

i=1

1
∑k

j=1 d
p
j,(i)

) 1
p

.

Note that the inter-site distances of each of the k factors is ordered in the

same way. Therefore, (n− 1) of the di’s are k, (n− 2) of the di’s are 2k, · · · , and

one is (n− 1)k, and

φp ≤

( (n
2 )∑

i=1

1
∑k

j=1 d
p
j,i

) 1
p

=

{ n−1∑

i=1

(n− i)

(ik)p

} 1
p

= φp,U .
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