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Abstract: Based on clustered data with informative cluster size, two efficient estima-

tion methods are proposed for marginal models. In our procedures, the information

of within-cluster correlation and minimum cluster size is fully used; this is not the

case with the within-cluster re-sampling (WCR) and cluster-weighted generalized

estimating equation (CWGEE) methods. When the correlation model is valid and

the minimum cluster size is greater than one, the proposed estimatiors further

improve the efficiency of the WCR and CWGEE estimators. As with the WCR

estimation procedure, our first estimation method is computationally intensive. To

overcome this problem, a second estimation method is developed in which the es-

timator is asymptotically equivalent to the first one. Asymptotic properties of the

estimators are derived. The finite sample properties of the second estimator are

investigated through a Monte Carlo simulation; a comparison with the CWGEE

estimator is made in the numerical study.

Key words and phrases: Cluster-weighted generalized estimating equation, efficient

estimation, informative cluster size, within-cluster re-sampling.

1. Introduction

We consider clustered data of the form {((Xi1, Yi1), . . . , (Ximi
, Yimi

)) : i =

1, . . . , n}, where Yij and Xij are, respectively, the response and the covariate vec-

tor of the jth individual within the ith cluster, and mi denotes the random cluster

size. This type of data occurs in many biomedical and epidemiological studies in

which the sampling units (clusters) include a number of individuals or repeated

measurements. An appropriate parametric model, E[Yij |xij ] = µ(xij;β), where

µ(·;β) is a known function and β is the parameter vector, is used to model the

relationship between the response Y and the covariates X of each individual.

Under the validity of the model, an independent cluster size − for exam-

ple in generalizes E[Yij |xij ,mi] = E[Yij |xij ] for all i, j − is usually assumed

in estimation procedures, estimating equations (GEE). This assumption is im-

practical in some applications, evidenced by the periodontal study conducted by

Gansky, Weinstraub and Multi-Pied Investigators (1998, 1999). From explora-

tory data analysis there, it was observed that people with poor dental health
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tend to possess fewer teeth. Since the cluster size is not predetermined and

might be correlated with the measurements, two different analyses used in ap-

plications were studied. One of the estimation procedures used all individuals

of the randomly selected clusters in the GEE. Another one used a randomly

selected individual from each cluster in the GEE. When cluster size is informa-

tive, E[Yij|xij ,mi] 6= E[Yij |xij ] for some i, j, it can be verified that the first

method results in an inconsistent estimator of β because of over-sampling. For

example, in the periodontal study, people with higher dental health will tend

to be over-sampled. Based on this biased sample, each tooth response is inap-

propriately given an equal weight in the traditional GEE. For informative clus-

ter size data, Hoffman, Sen and Weinberg (2001) proposed the within-cluster re-

sampling (WCR) method for the estimation of β. The proposed estimator takes

the average of the estimators computed based on each possible sub-sample, in

which one individual is independently drawn from each cluster. Generally, the

WCR estimation procedure is computationally intensive. To overcome this prob-

lem, Williamson, Datta and Satten (2003) suggested the cluster-weighted gener-

alized estimating equation (CWGEE) method. The authors used the averages

of all individual score functions within each cluster in the GEE, and showed the

estimators from the CWGEE and WCR methods to be asymptotically equivalent.

When cluster size is independent, the estimators from WCR and CWGEE

are relatively inefficient compared with those from GEE with appropriate speci-

fication for the working matrices. However, if the cluster size is correlated with

the measurements, estimators of the traditional GEE method will result in incon-

sistent estimators. As can be seen, the information of within-cluster correlation

is not fully used in the WCR and CWGEE methods, although an estimation

of correlation function was considered in the work of Williamson et al. (2003).

In many empirical examples, the minimum cluster size m = min{m1, · · · ,mn}
of n randomly selected clusters is often greater than one. When an appropri-

ate correlation model, Cov(Yij1, Yij2 |xij1, xij2) = h(xij1 , xij2 ;α), i = 1, . . . , n;

j1, j2 = 1, . . . ,mi, is specified, we propose two efficient estimation methods for β.

The first (MWCR) is a modification of the WCR method, and uses m randomly

selected individuals from each cluster and the corresponding estimated variance

matrix of Williamson et al. (2003) in the estimating equations. As with the

WCR procedure, MWCR is computationally intensive. To save computational

cost, a second estimation method is proposed, in which the asymptotic expression

of the MWCR estimator is used as the estimating equation. Thus, the estimator

can be shown to be asymptotically equivalent to that computed by the MWCR

method.

The contents of this paper are organized as follows. In Section 2, two efficient

estimation methods for β, and a consistent estimator for the variance matrix of
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the estimators, are proposed. The asymptotic properties of the estimators are

derived in Section 3. In Section 4, a Monte Carlo simulation is implemented to

investigate the finite sample properties of the second estimator. A comparison

with the CWGEE estimator is also made in this section. Finally, a brief discussion

is provided in Section 5.

2. Estimation Methods

Let Xi = (Xi1, . . . ,Ximi
)T , Yi = (Yi1, . . . , Yimi

)T , µi = (µi1, . . . , µimi
)T , and

Vi = (vij1j2), with µij = µ(xij ;β) and vij1j2 = h(xij1 , xij2 ;α), i = 1, . . . , n; j,

j1, j2 = 1, . . . ,mi. The minimum cluster size of {m1, . . . ,mn} is denoted by

m. To take account of within-cluster correlation structure, estimated variance-

covariance matrices of any m individuals within each cluster are considered in

our estimating equations.

In our first procedure (MWCR), m individuals are randomly selected from

each cluster. Let {(X1q(m)
, Y1q(m)

), . . . , (Xnq(m)
, Ynq(m)

)} be the qth sub-sample

of all Qm =
∏n

i=1 Cmi
m sub-samples of {(X1, Y1), . . . , (Xn, Yn)}, where Xiq(m)

=

(Xi1q, . . . ,Ximq)
T and Yiq(m)

= (Yi1q, . . . , Yimq)
T , i = 1, . . . , n. Based on the qth

sub-sample, the estimator β̂q(m)
of β is defined to be the solution of the estimating

equation

S
(m)
1q (β) =

n∑

i=1

(∂µiq(m)

∂β

)
V̂ −1

iq(m)
(Yiq(m)

− µiq(m)
) = 0, (1)

where µiq(m)
= (µi1q, · · · , µimq)

T , and V̂iq(m)
is an estimator of Viq(m)

= (h(xij1q,

xij2q;α)) with the estimator α̂ of Williamson et al. (2003) being substituted for

α, i = 1, . . . , n. Note that α̂ is obtained from an unbiased estimating equa-

tion in which β is substituted by the CWGEE estimator. By taking the aver-

age of the Qm estimators {β̂1(m)
, . . . , β̂Qm(m)

}, the proposed MWCR estimator

β̂1m = Q−1
m

∑Qm

q=1 β̂q(m)
is obtained. Since Qm is extremely large in practice,

a reasonable number of re-samplings is implemented. Parallelling the proof of

Hoffman, Sen and Weinberg (2001) and Theorem 3.1 in the next section, the

asymptotic equivalence between the estimators can be derived. When indepen-

dent working matrices are used in the estimation procedure of MWCR, the pro-

posed estimator β̂1m is shown to have the same asymptotic distribution as that

of the WCR estimator β̂wcr. Similarly if k individuals are drawn in the MWCR

approach with independent working matrices, 2 ≤ k ≤ m, the same asymptotic

risks can be derived, as is shown in the next section.

Use of the MWCR procedure comes at great computational cost. The second
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estimation method is to be preferred. It is mainly motivated by writing β̂1m as

β̂1m =β+
1

n
H−1

m (β)
n∑

i=1

1

Cmi
m

∑

{j(m)∈Ω
(m)
i }

(∂µij(m)

∂β

)
V −1

ij(m)
(Yij(m)

−µij(m)
)+op

( 1√
n

)
,

(2)

where Ω
(m)
i = {(j1, . . . , jm) : 1 ≤ j1 < · · · < jm ≤ mi}, Hm(β) = E[(∂µij(m)

/∂β)

V −1
ij(m)

(∂µij(m)
/∂β)T ]. Then β̂2m is obtained from the following estimating equa-

tion:

S
(m)
2 (β) =

n∑

i=1

1

Cmi
m

∑

{j(m)∈Ω
(m)
i }

(∂µij(m)

∂β

)
V̂ −1

ij(m)
(Yij(m)

− µij(m)
) = 0. (3)

For the estimation of the variance-covariance matrix Σm of β̂2m, an easily com-

puted sandwich estimator Σ̂m = Ĥ−1
m V̂mĤ−1

m is suggested, where

Ĥm =
1

n

n∑

i=1

1

Cmi
m

∑

{jm∈Ω
(m)
i }

(∂µij(m)

∂β

)
V̂ −1

ij(m)

(∂µij(m)

∂β

)T
∣∣∣∣
β=bβ2m

,

V̂m =
1

Cmi
m

∑

{j(m)∈Ω
(m)
i }

(∂µij(m)

∂β

)
V̂ −1

ij(m)
(Yij(m)

−µij(m)
)(Yij(m)

−µij(m)
)T

×V̂ −1
ij(m)

(∂µij(m)

∂β

)T
∣∣∣∣
β=bβ2m

.

By using the asymptotic normality of β̂2m and a consistent estimator Σ̂m of Σm,

a 100(1 − α)% confidence interval for βj , 0 < α < 1, can be constructed as

β̂2mj
± z(1−α

2
)σ̂jm, j = 1, . . . , p, (4)

where σ̂jm is the jth diagonal element of Σ̂m and z(1−(α/2)) is the (1 − α/2)th

percentile of a standard normal distribution.

Note that the WCR estimator β̂wcr and the CWGEE estimator β̂cw might be

fully efficient in some cases even when informative cluster size data are considered.

Under the validity of a generalized linear model with a canonical link function

or a variance stabilizing function, Mancl and Leroux (1996) detected that, in the

setting of independent and equal cluster size, the efficiency of an estimator from

the estimating equation with an independent working matrix (IEE) relies on the

distribution of covariates. When xij = zi or x̄1 = · · · = x̄n with x̄i =
∑m

j=1 xij/m,

i = 1, · · · , n; j = 1, · · · ,m, the authors found that the estimator from the IEE

has the same asymptotic variance as that from the GEE with the optimal working
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matrix. For example, under the validity of a linear model µij = xT
ijβ with xij = zi

and Vi = ρIm + (1 − ρ)1m1T
m, the score function Sgee(β) for β is

Sgee(β) =

n∑

i=1

(zi1
T
m)V −1

i (Yi − µi)

=
1

(1−ρ)(1+(m−1)ρ)

n∑

i=1

(zi1
T
m)
(
(1 + (m − 1)ρ)Im − ρ1m1T

m

)
(Yi − µi)

=
1

(1 + (m − 1)ρ)

n∑

i=1

(zi1
T
m)(Yi − µi). (5)

This implies that Sgee(β) = (1 + (m − 1)ρ)−1
∑n

i=1(zi1
T
m)(Yi − µi) in (5) is the

score function of the IEE for β. Thus, the estimator computed from the GEE is

the same as that from the IEE.

3. Asymptotic Properties

In this section, the asymptotic properties of the proposed estimators are

derived. The conditions for the main theorems are as follows.

(A1) H1(β0) = E[(∂µij/∂β)v−1
ijj (∂µij/∂β)T ]|β=β0 exists for β0 in B(δ) = {β0 ∈

Rp : ‖β0−β‖ < δ} for some positive value δ, and H1(β) is a positive definite

matrix.

(A2) (1/n)E[vijjtr(Gij(β)GT
ij(β))]→0 as n→∞, where Gij(β)=(∂/∂β)((∂µij/∂β)

v−1
ijj ).

(A3) E[supβ0∈B(δ) ‖(∂µij/∂β)v−1
ijj (∂µij/∂β)T |β=β0 −(∂µij/∂β)v−1

ijj (∂µij/∂β)T ‖∞]

→ 0, E[supβ0∈B(δ) ‖Gij(β0)−Gij(β)‖∞] → 0, and E[supβ0∈B(δ) |Yij|‖Gij(β0)

−Gij(β)‖∞] → 0 as δ → 0, where ‖A‖∞ is the maximum eigenvalue of

matrix A.

When independent working matrices are used in the estimation procedure of

MWCR, the proposed estimator β̂1m will be shown to have the same asymp-

totic distribution as those of β̂wcr and β̂cw in the following theorem. Sim-

ilarly, if k individuals are drawn in the MWCR approach with independent

working matrices, 2 ≤ k ≤ m, the same asymptotic equivalence can be de-

rived. Let β̂0k = Q−1
k

∑Qk

q=1 β̂0q(k) denote the corresponding estimator, where

Qk =
∏n

i=1 Cmi

k and the qth estimator β̂0q(k) is the root of the estimating equa-

tion S
(k)
10q(β) =

∑n
i=1(∂µiq(k)

/∂β)(Yiq(k)
− µiq(k)

) = 0.
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Theorem 3.1. Suppose (A1)−(A3) are satisfied. Then

β̂0k = β̄wcr + op(
1√
n

), 2 ≤ k ≤ m. (6)

Proof. From (A1)−(A3), β̂0k can be written as

β̂0k = β +
1

n
H−1

1 (β)

Qk∑

q=1

1

kQk
S

(k)
10q(β) + op

( 1√
n

)
. (7)

Using the equality

1

kQk

Qk∑

q=1

S
(k)
10q(β) =

n∑

i=1

1

kQk

Qk∑

q=1

(∂µiq(k)

∂β

)
(Yiq(k)

− µiq(k)
)

=

n∑

i=1

1

Qk

Qk∑

q=1

1

k

k∑

j=1

(∂µijq(k)

∂β

)
(Yijq(k)

− µijq(k)
)

=
n∑

i=1

1

kQk

( n∏

l 6=i

Cml

k

) (Cmi

k × k)

mi

mi∑

j=1

(∂µij

∂β

)
(Yij − µij)

=
n∑

i=1

1

mi

mi∑

j=1

(∂µij

∂β

)
(Yij − µij) = Scw(β), (8)

where Scw(β) is the estimating equation of the CWGEE estimation procedure.

Thus, β̂0k and β̂cw are asymptotically equivalent. Finally, using the asymptotic

equivalence of β̂wcr and β̂cw, derived by Williamson et al. (2003), (6) is obtained.

Since the estimators β̂1m and β̂0m can be expressed asymptotically as lin-

ear combinations of the responses, the Gauss-Markov Theorem for linear models

can be used to show that the estimator bT β̂1m is asymptotically more efficient

than the estimator bT β̂0m for all b. In addition, when k individuals are ran-

domly selected from each cluster in the MWCR procedure, 2 ≤ k ≤ m − 1, one

can show that bT β̂1m is asymptotically more efficient than bT β̂1k. The asymp-

totic normalities of β̂1m and β̂1k’s are derived first. Some natural extensions

of assumptions (A1)−(A3) are also made below. Let (A1′)−(A3′) correspond

to (A1)−(A3) with Hk(β) = E[(∂µij(k)
/∂β)V −1

ij(k)
(∂µij(k)

/∂β)T ] and Gij(k) =

(∂/∂β)((∂µij(k)
/∂β)v−1

ij(k)) substituting separately for H1(β) and Gij(β), where

Vij(k)
= Var (Yij(k)

| xij(k)
) and µij(k)

= E[Yij(k)
|xij(k)

].

Theorem 3.2. Suppose (A1′) − (A3′) are satisfied. Then

√
n(β̂1k − β)

d−→ Np(0,H
−1
k (β)), 2 ≤ k ≤ m. (9)
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Proof. By using a Taylor expansion and the consistency of V̂iq(k)
, one has

S
(k)
1q (β̂q(k)) = S

(k)
1q (β) +

∂S
(k)
1q (β)

∂β

∣∣∣
β=β∗

(β̂q(k) − β)(1 + op(1)), (10)

where β∗ lies along the line segment joining β̂q(k) and β. From (A1′)−(A3′), and

by the Law of Large Numbers, it can be seen that

1

n

∂S
(k)
1q (β)

∂β

∣∣∣
β=β∗

p−→ Hk(β) as n → ∞. (11)

Thus, β̂q(k) can be expressed as

β̂q(k) = β + H−1
k (β)S

(k)
1q (β) + op(

1√
n

). (12)

From (12) and β̂1k = Q−1
k

∑Qk

q=1 β̂q(k), we get

β̂1k = β +
1

n
H−1

k (β)
1

Qk

Qk∑

q=1

n∑

i=1

(∂µiq(k)

∂β

)
V −1

iq(k)
(Yiq(k)

− µiq(k)
) + op(

1√
n

)

= β +
1

n
H−1

k (β)
n∑

i=1

U
(k)
i (β) + op(

1√
n

), (13)

where U
(k)
i (β) = (Cmi

k )−1
∑

{j(k)∈Ω
(k)
i }

(∂µij(k)
/∂β)V −1

ij(k)
(Yij(k)

−µij(k)
) with Ω

(k)
i =

{(j1, . . . , jk) : 1 ≤ j1 < · · · < jk ≤ mi}. Since the U
(k)
i (β)′s are independent and

identically distributed with zero mean and variance Hk(β), by the Central Limit

Theorem,

1√
n

n∑

i=1

U
(k)
i (β)

d−→ Np(0,Hk(β)). (14)

Finally, (9) is obtained from (13) and (14).

Theorem 3.3. Suppose (A1′)−(A3′) are satisfied. Then (a) Var (β̂0k)−Var (β̂1k),

and (b) Var (β̂1k) − Var (β̂1m) are at least positive semi-definite for 2 ≤ k ≤ m.

Proof. Using the Gauss-Markov Theorem, it is straightforward to derive that

Var (β̂0k) − Var (β̂1k) is at least positive semi-definite. From (13), β̂1k is shown

to be asymptotically equivalent to β̃1m, which is computed from the estimation

procedure of MWCR with the weighting matrix

Wij(m)
=

(
V −1

ij(k)
0

0 0

)
. (15)
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Since V −1
ij(m)

is the optimal weighting matrix, β̂1m is asymptotically more efficient

than β̂1k hence (b) is obtained.

4. Monte Carlo Simulations

In this section, a Monte Carlo simulation examines the finite sample proper-

ties of the proposed estimator β̂2m and the estimated variance matrix Σ̂m. A com-

parison with the CWGEE estimator β̂cw is also made. The informative clustered

data are generated from n independent clusters {(Xij , Yij) : i = 1, · · · , n; j =

1, · · · ,mi} with a sample size at 25, 50, 100, and 200, respectively. Here, the

cluster sizes m1, . . . ,mn are designed to be a random sample from a discrete uni-

form distribution with the support {m, . . . ,m+10}. The minimum cluster size is

set separately to be 2, 5, and 10. The random numbers U1, · · · , Un are first gener-

ated from a Uniform(4, 12). Given each random number Ui, the covariates Xij =

(Xij1,Xij2)
T ’s are designed with Xij1 = 1 and the Xij2’s being independently

drawn from a Uniform(Ui − 4, Ui + 4). As for the response vectors Y1, . . . , Yn,

conditioning on (mi, xi1, . . . , ximi
), Yi is generated from a multivariate normal

distribution with mean µi and variance matrix Vi, where µij = 1.5xij + 0.5mi

and vij1j2 = (1.25ρ−0.25)·Var (mi)1(j1 6=j2)+(1.25−1.25ρ)·Var (mi)1(j1=j2), with

ρ = Cor(Yij, Yik|xij , xik) is 0.2, 0.5, or 0.8 for all i, j. Obviously then, cluster

size is informative.

The informative cluster size data are repeatedly generated 1,000 times. For

each simulated data set, the estimates β̂cw, β̂2m, and Σ̂m are computed. More-

over, the equi-correlation working matrix is chosen in the estimation of β̂2m and

Σ̂m. It is found in Tables 4.1 (a)−(b) that the averages of 1,000 estimates β̂cw and

β̂2m are very close to the true values (β0, β1) = (0.5E(mi), 1.5) under different

sample sizes, correlation values, and minimum cluster sizes. As for the relative

efficiencies of β̂cwi versus β̂2mi, say, REi = σ2(β̂2mi)/σ
2(β̃cwi), i = 0, 1 , the vari-

ances of both estimators are computed based on 1,000 estimates. From Figures

4.1 through 4.2, we can see that REi’s decrease as the minimum cluster size and

the correlation coefficient increase. However, the influence of the sample size is

not apparent when the minimum cluster size and the correlation value are fixed.

Moreover, one sees from Tables 4.2 (a)−(b) that the averages of 1,000 variance

estimates (σ̂2
1m, σ̂2

2m) approach the variances of 1,000 estimates (β̂2m0, β̂2m1) as

the sample size increases. The minimum cluster size and the correlation value

are not dominant factors in the accuracy of the variance estimates. Finally, the

empirical coverage probabilities of β0 and β1 based on 1,000 95% confidence in-

tervals in (4) are provided in Table 4.3. It is seen in this table that the empirical

coverage probabilities are close to the 0.95 nominal level when the sample size is

large enough. As for the influence of correlation and minimum cluster size, no

apparent difference is found in the coverage probabilities.
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Table 4.1(a). Averages on 1,000 estimates of β̃cw0
and β̂2m0

.

ρ = 0.2 ρ = 0.5 ρ = 0.8

true Ave.(eβcw0
) Ave.(bβ2m0

) Ave.(eβcw0
) Ave.(bβ2m0

) Ave.(eβcw0
) Ave.(bβ2m0

)

n = 25

m = 2 3.25 3.34 3.34 3.28 3.28 3.27 3.23

5 4.75 4.75 4.74 4.76 4.79 4.78 4.78

10 7.25 7.28 7.27 7.25 7.25 7.26 7.26

n = 50

m = 2 3.25 3.25 3.25 3.24 3.24 3.27 3.27

5 4.75 4.72 4.72 4.77 4.78 4.73 4.74

10 7.25 7.27 7.26 7.25 7.26 7.29 7.26

n = 100

m = 2 3.25 3.25 3.25 3.24 3.25 3.25 3.26

5 4.75 4.73 4.73 4.74 4.75 4.74 4.74

10 7.25 7.24 7.25 7.27 7.25 7.27 7.25

n = 200

m = 2 3.25 3.24 3.24 3.26 3.25 3.23 3.24

5 4.75 4.75 4.75 4.74 4.74 4.74 4.75

10 7.25 7.24 7.24 7.25 7.25 7.26 7.26

bβ2m0
and eβcw0

= the estimates of bβ2m and eβcw for β0.
Ave. = the average of 1,000 simulated data sets.

Table 4.1(b). Averages on 1,000 estimates of β̃cw1
and β̂2m1

.

ρ = 0.2 ρ = 0.5 ρ = 0.8

true Ave.(eβcw1
) Ave.(bβ2m1

) Ave.(eβcw1
) Ave.(bβ2m1

) Ave.(eβcw1
) Ave.(bβ2m1

)

n = 25

m = 2 1.5 1.48 1.49 1.49 1.49 1.49 1.50

5 1.5 1.50 1.50 1.49 1.49 1.49 1.49

10 1.5 1.49 1.49 1.50 1.50 1.49 1.49

n = 50

m = 2 1.5 1.49 1.49 1.49 1.50 1.50 1.50

5 1.5 1.50 1.50 1.49 1.49 1.50 1.50

10 1.5 1.49 1.49 1.49 1.49 1.49 1.49

n = 100

m = 2 1.5 1.49 1.49 1.50 1.50 1.49 1.49

5 1.5 1.50 1.50 1.50 1.50 1.50 1.50

10 1.5 1.49 1.49 1.49 1.50 1.49 1.49

n = 200

m = 2 1.5 1.50 1.50 1.49 1.49 1.50 1.50

5 1.5 1.49 1.49 1.50 1.50 1.49 1.50

10 1.5 1.50 1.50 1.49 1.49 1.50 1.50

bβ2m1
and eβcw1

= the estimates of bβ2m and eβcw for β1.
Ave. = the average of 1,000 simulated data sets.
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Figure 1. The O, △, and × represent the estimated relative efficiency of
β̃cw0

versus β̂2m0
for ρ =0.2, 0.5 and 0.8, respectively.
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Figure 2. The O, △, and × represent the estimated relative efficiency of

β̃cw1
versus β̂2m1

for ρ =0.2, 0.5 and 0.8, respectively.
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Table 4.2(a). he variances of 1,000 estimates β̂2m0
and the averages of 1,000

variance estimates σ̂2
1m

.

ρ = 0.2 ρ = 0.5 ρ = 0.8

Var (β̂2m0
) Ave.(σ̂2

1m
) Var (β̂2m0

) Ave.(σ̂2
1m

) Var (β̂2m0
) Ave.(σ̂2

1m
)

n = 25
m = 2 0.8154 0.7312 0.9044 0.8021 0.7448 0.6742

5 0.4858 0.4684 0.5625 0.5131 0.5170 0.4620
10 0.3540 0.3349 0.3758 0.3880 0.4045 0.3978

n = 50
m = 2 0.4083 0.3856 0.4489 0.4221 0.3516 0.3452

5 0.2694 0.2489 0.2777 0.2633 0.2421 0.2351
10 0.1731 0.1732 0.1936 0.1991 0.2209 0.2027

n = 100
m = 2 0.1962 0.1961 0.2237 0.2132 0.1697 0.1679

5 0.1310 0.1257 0.1289 0.1333 0.1183 0.1171
10 0.083 0.0869 0.0930 0.0990 0.1043 0.1020

n = 200
m = 2 0.1018 0.0989 0.1096 0.1095 0.0858 0.0838

5 0.0640 0.0635 0.0645 0.0671 0.0640 0.0589
10 0.0433 0.0441 0.0497 0.0501 0.0548 0.0513

Table 4.2(b). The variances of 1,000 estimates β̂2m1
and the averages of

1,000 variance estimates σ̂2
2m

.

ρ = 0.2 ρ = 0.5 ρ = 0.8

Var (β̂2m1
) Ave.(σ̂2

2m
) Var (β̂2m1

) Ave.(σ̂2
2m

) Var (β̂2m1
) Ave.(σ̂2

2m
)

n = 25
m = 2 0.0098 0.0092 0.0102 0.0090 0.0064 0.0053

5 0.0058 0.0055 0.0052 0.0046 0.0024 0.0021
10 0.0038 0.0036 0.0029 0.0027 0.0013 0.0011

n = 50
m = 2 0.0052 0.0048 0.0049 0.0047 0.0027 0.0026

5 0.0031 0.0029 0.0026 0.0023 0.0010 0.0010
10 0.0020 0.0018 0.0014 0.0013 0.0006 0.0005

n = 100
m = 2 0.0025 0.0024 0.0025 0.0024 0.0013 0.0012

5 0.0016 0.0014 0.0012 0.0011 0.0005 0.0005
10 0.0010 0.0009 0.0006 0.0006 0.0003 0.0002

n = 200
m = 2 0.0012 0.0012 0.0012 0.0012 0.0006 0.0006

5 0.0007 0.0007 0.0006 0.0005 0.0003 0.0002
10 0.0005 0.0004 0.0003 0.0003 0.0001 0.0001



132 CHIN-TSANG CHIANG AND KUANG-YAO LEE

Table 4.3. he empirical coverage probabilities of β0 and β1 at 0.95 nominal level.

β0 β1

ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 25

m = 2 0.925 0.929 0.927 m = 2 0.938 0.922 0.904

5 0.932 0.92 0.924 5 0.937 0.911 0.913

10 0.932 0.934 0.936 10 0.933 0.924 0.92

n = 50

m = 2 0.943 0.939 0.936 m = 2 0.937 0.933 0.948

5 0.93 0.933 0.942 5 0.936 0.925 0.939
10 0.945 0.959 0.941 10 0.931 0.947 0.943

n = 100

m = 2 0.94 0.94 0.945 m = 2 0.937 0.938 0.939
5 0.942 0.953 0.943 5 0.929 0.946 0.941

10 0.952 0.950 0.942 10 0.943 0.956 0.935

n = 200
m = 2 0.949 0.941 0.945 m = 2 0.953 0.951 0.934

5 0.946 0.954 0.938 5 0.948 0.946 0.943

10 0.946 0.952 0.934 10 0.951 0.958 0.944

5. Discussion

In this study we show that, with informative cluster size data, our estima-
tors β̂1m and β̂2m are asymptotically more efficient than β̄wcr and β̃cw when the
covariance matrix is available and the minimum cluster size is greater than one.
However, β̂1m and β̂2m are not fully efficient under independent cluster size data.
Since our estimators rely on appropriate specification for the covariance matri-
ces, there are limitations and difficulties in some clustered data with complicated
correlation structure. Generally, our proposed methods will be very useful for a
homogeneous correlation function within each cluster.

Longitudinal data, frequently encountered in biomedical and epidemiological
studies, is one type of clustered data. Here, the variables of each subject (cluster)
are repeatedly measured at different time points (individuals), and the number of
repeated measurements is treated as the cluster size. However, the measurements
might depend not only on the number of repeated measurements but also on the
counting process of occurring times. The extension of our proposed estimation
methods to this data setting is an important issue.
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