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Abstract: Strength three two-level orthogonal arrays with the number of runs (N)

equaling twice the number of factors (k) are second-order saturated (SOS) designs.

That is, for such designs one can construct a saturated model with an intercept,

k (= N/2) main effects, and N/2 − 1 two-factor interactions. Projections of this

design onto subsets of factors provide no more degrees of freedom for two-factor

interactions. This article explores the construction of other second-order saturated

strength three arrays that allocate more than N/2 degrees of freedom for two-factor

interactions. These new orthogonal arrays are constructed using two methods, one

based on a foldover technique that reverses the signs of a subset of the columns of

the strength three orthogonal array with k = N/2, and the second based on the

Kronecker product of an SOS design and a Hadamard matrix. We compare these

new designs with respect to their generalized word length and alias length patterns.

Key words and phrases: Alias length pattern, complex aliasing, confounding fre-

quency vector, doubling, foldover, nonregular design, resolution IV, two-factor in-
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1. Introduction

It is well known that strength three two-level orthogonal arrays exist for k fac-

tors in 2k runs for k any multiple of 4 - assuming the existence of Hadamard ma-

trices of all orders that are multiples of 4. We denote these arrays as OA(N, 2k, 3)

with N = 2k. These orthogonal arrays, whether the regular fractional facto-

rials, such as 24−1
IV and 28−4

IV or the nonregular designs, such as discussed by

Miller and Sitter (2001), are all obtained by folding over a k × k Hadamard ma-

trix Hk (Hedayat, Sloane and Stufken (1999, p.148)). That is, these k-factor

designs are given by
[

Hk

−Hk

]

. (1)

If the objective is to maximize the number of factors in a strength three orthog-

onal array with N runs, the foldover design (1) is optimal. For this reason, these
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designs are known as minimal strength three designs (Margolin (1969)) since they

minimize the number of runs for strength three orthogonal arrays.

For a two-level design D written as an N×k matrix of 1’s and -1’s, define X1

to be the first-order model matrix where a column of 1’s is appended to D, and

let X2 denote the N × [k(k−1)/2] matrix of two-factor interaction contrasts, i.e.,

X2 consists of all columns of the form a⊙b, where a and b are columns of D and

a ⊙ b is their component-wise product. Design D is “second-order saturated”

(SOS) if rank[X1 X2] = N (see Block and Mee (2003)). For strength-three

orthogonal arrays, rank[X1 X2] = 1 + k+rank[X2], since X ′
1X2 = 0. Thus a

strength three D is SOS if and only if rank[X2] = N−k−1. This is the case for

all regular and nonregular designs mentioned above with N = 2k.

Regular foldover designs of the form (1) are called “even” designs since all

the words of the defining contrast subgroup have even length. The concept of

even designs can be extended to the nonregular case. Suppose (Ag
1, . . . , A

g
k) is

the generalized wordlength pattern (gwlp) of a design as defined in Xu and Wu

(2001) or Ma and Fang (2001). Then the design is said to be even if Ag
i = 0 for

all odd i. We show in Appendix 1 that a two-level design is even if and only if it

is a “foldover design” (or “mirror-image pair design”), and for all even designs,

rank[X2] ≤ N/2 − 1, i.e., they allocate fewer than half of the available degrees

of freedom for two-factor interactions.

For N ≥ 32, there exist SOS resolution IV designs with rank[X2] > N/2.

These SOS designs provide more information for two-factor interactions than

foldover designs of the same size and number of factors. In Section 2, we summa-

rize results for regular resolution IV SOS designs and discuss two constructions

of SOS designs. Then in Section 3, we apply the same methods of construction

to strength three orthogonal arrays. New strength three orthogonal arrays are

obtained, many of which are SOS. The method of foldover is by far the most

popular method of constructing (even) orthogonal arrays of strength three. One

contribution of the present paper is the construction of strength three two-level

orthogonal arrays that are not even.

For regular fraction SOS designs, there necessarily exist an orthogonal set

of k main effect and N−1−k two-factor interactions contrasts. For non-regular

SOS designs, a set of such orthogonal contrasts is not guaranteed. In Section 3,

we identify certain situations where such orthogonal contrasts can be found.

In addition to word length pattern, resolution IV designs are usefully char-

acterized by their “alias length pattern” (Block and Mee (2003)), which sum-

marizes the lengths of the chains of aliased two-factor interactions; also see

Cheng, Steinberg and Sun (1999). For orthogonal arrays with partial aliasing,

the generalized word length pattern (Ma and Fang (2001) and Xu and Wu (2001))

is used to summarize the aberration of the design. However, for OA(N, 2k, 3),
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a more direct characterization of the aliasing among two-factor interactions is

needed. We propose such a measure of aliasing for nonregular designs of strength
three in Section 4. This measure, which we refer to as generalized alias length

pattern, reflects how different the extent of aliasing is among the two-factor in-

teractions. The final section discusses briefly the analysis of data obtained using

these designs, as well as the need for additional work comparing these new SOS

designs and their projections.

2. Regular Resolution IV SOS Designs

The smallest examples of SOS designs of resolution IV (or higher) for which

rank[X2] > N/2 are:

• 25−1
V , with rank[X2] = 10.

• The minimum aberration 210−5
IV design, with rank[X2] = 21.

• The 29−4
IV design with generators 6 = 1 · 2 · 3, 7 = 1 · 2 · 4, 8 = 1 · 3 · 4,

9 = 2 · 3 · 4 · 5, where the symbols 1−9 denote the nine factors. This design
has rank[X2] = 22, but it has seven length-four words, one more than the

minimum aberration design.

As mentioned above, regular 2k−p
IV SOS designs with k = N/2 are even designs

consisting of N/2 mirror image pairs of runs. Regular 2k−p
IV SOS designs with

k < N/2 are even/odd designs, meaning the defining contrast subgroup consists

of 2p words, half of which are even and half odd in length. Even/odd designs do
not contain any mirror image pairs.

Chen and Cheng (2006) pointed out that SOS designs of resolution IV or

higher are mathematically equivalent to maximal caps in a finite projective ge-

ometry, and reviewed some results on the construction of maximal caps (Davydov

and Tombak (1990), Bruen, Haddad and Wehlau (1998) and Bruen and Wehlau
(1999)). We mention two important types of regular SOS designs:

• Type 1: SOS designs obtained by partial foldover, with k = N/4 + 1.

• Type 2: SOS designs obtained by doubling (to be defined later).

The SOS designs already listed represent both types. We state the following

results from the above-mentioned papers without proof.

2.1. Construction of Type 1 resolution IV designs by partial foldover:

k = N/4 + 1

Let D denote a regular resolution IV design with N/2 runs and N/4 factors.

Partition D so that D = [B C], and create the N -run design

S1 =

[

1 B C

−1 −B C

]

; (2)
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that is, S1 is obtained by foldover of D, reversing the columns of B, but not

those of C, and appending an initial column to represent one more factor. (Note

that the usual foldover method reverses all columns.) Then S1 is of resolution

IV or higher. Such designs contain at least N/4 clear two-factor interactions. If

B contains an odd number of columns, then S1 is SOS. Otherwise, it may or

may not be SOS. We now provide three examples:

• Let D denote the 24−1
IV fraction and let B be any single column (or any three

of the four columns). Then S1 is the 25−1
V design.

• Let D denote the 28−4
IV fraction and let B be any single column of D. Then

S1 is the 29−4
IV SOS design mentioned earlier.

• Let D denote the 216−11
IV fraction. Depending on which columns are placed in

B, one may construct any one of the five non-isomorphic SOS 217−11
IV designs.

For details, see the beginning of Appendix 2.

2.2. Construction of Type 2 SOS designs: doubled designs

Suppose S is a resolution four-or-higher SOS design with N/2 runs and k/2

factors. Then the design

S2 =

[

S S

S −S

]

is a resolution IV SOS design with k factors in N runs. For instance, if S is the

25−1
V design, then S2 is the minimum aberration 210−5

IV SOS design mentioned

earlier; if S is the 29−4
IV SOS design, then S2 is the unique 218−12

IV SOS design.

Type 2 SOS designs have no clear two-factor interactions.

2.3. Additional SOS designs with k ≤ N/4 + 1

There exist regular SOS designs that cannot be constructed by partial

foldover or doubling. The smallest example is the 213−7
IV design with 36 clear

two-factor interactions (see Block and Mee (2003)). For N = 128, SOS designs

not of Type 1 or 2 exist for k = 21, 22, 24−29, 31 and 33 (see Block (2003)).

Most, but not all of these, have clear two-factor interactions.

3. SOS Strength Three Orthogonal Arrays

In this section we construct OA(N, 2k, 3) that do not include any mirror

image pairs, and yet are SOS. We construct these orthogonal arrays using two

methods − by partial foldover of SOS designs, and by a generalization of dou-

bling. For regular SOS designs, there exist N − 1 main effects and two-factor

interactions that are pairwise orthogonal. This is not guaranteed for SOS designs

with partial aliasing. Therefore, we find it helpful to distinguish the following

two cases:
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• If for an OA(N, 2k, 3), rank[X2] = N −k−1, then the array is second-order

saturated.

• If in addition, there exist a set of N−k−1 two-factor interactions that are pair-

wise orthogonal, then the array is orthogonal second-order saturated (OSOS).

3.1. Type 1 SOS OA(N, 2k, 3) with k = N/4 + 1

Let Hm denote a Hadamard matrix of order m = N/4 and let D denote the

even OA(2m, 2m, 3) obtained by foldover. Partition the design into two sets of

columns, which we denote as D = [B C], and construct S1 =

[

1 B C

−1 − B C

]

.

This extends to nonregular designs a construction described in Section 2.1, which

is translated from the geometric literature into design language. Usually the

geometric approach only works for regular designs, but once the construction is

expressed in the form of (2), it can readily be extended to nonregular designs,

and produces many new orthogonal arrays of strength three. Tang (2006), in

a study of clear two-factor interactions under nonregular designs, presented a

construction which is a special case of our method with B consisting of a single

column.

Lemma 1. S1 is an orthogonal array of strength three.

This lemma is quickly verified by noting that since D is strength three, so

is [−B C], and hence so is

[

B C

−B C

]

. Projecting

[

B C

−B C

]

into two or three

columns, and appending the final column also results in an equally replicated full

factorial.

In the regular case, S1 is SOS as long as B contains an odd number of

columns. We believe that this is also true for nonregular designs. The proof for

the regular case utilizes the fact that a regular SOS design of resolution four or

higher is equivalent to a maximal cap. There is no such equivalence result for

nonregular designs and so the proof does not carry over. But we do have the

following partial result:

Theorem 1. If B contains a single column of D, then S1 is SOS.

Proof. Since S1 is strength three, it may be verified that S1 is SOS by showing

that rank[X2] = N−k−1 = 3k−5. It is easily verified that all 2k−3 two-factor

interactions involving at least one of the first two columns of S1 are orthogonal

to one another and the remaining (k−2)(k−3)/2 interactions of pairs of columns

of

[

C

C

]

. Thus, that S1 is SOS follows from observing that the matrix of (k −

2)(k − 3)/2 aliased two-factor interactions among the columns of C has rank

k − 2. This can be proved as follows. Without loss of generality, we assume
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that B =

[

1m

−1m

]

, where 1m is the m × 1 vector of 1’s. Then C =

[

Y

−Y

]

,

where Y is a saturated strength two array of size m = k − 1. It suffices to show

that the matrix of two-factor interactions among the columns of Y has rank

k − 2. Let y1, . . . ,yk−2 be the columns of Y and, for i = 2, . . . , k − 2, let e1

be the two-factor contrast y1 ⊙ yi. Then y1, e2, . . . ,ek−2 are orthogonal to one

another and thus form an orthogonal basis of the linear space of contrasts. Let

f = y2⊙y3. Then f can be expressed as a linear combination of y1, e2, . . . ,ek−2,

say f = λy1 +
∑k−2

i=2 µiei. Since Y is a saturated orthogonal array of strength

two, without loss of generality, we may assume that the subarray [y1 y2 y3] is

not of strength three. Then the sum of the components of y1 ⊙ y2 ⊙ y3 is not

equal to zero. Therefore λ 6= 0. It follows that the k−2 columns f , e2, . . . ,ek−2,

all of which are two-factor interactions among the columns of Y , are linearly

independent. This proves Theorem 1.

From the above proof, it is clear that S1 is orthogonal SOS if there exist k−2

two-factor interactions among the columns of Y that are mutually orthogonal.

Now suppose Y has at least one word of length three, i.e., there are three columns,

say y1, y2, and y3, such that their component-wise product is the column of all

1’s or all -1’s. Then it can easily be verified that the k− 2 two-factor interaction

contrasts f , e2, . . . ,ek−2 in the proof of Theorem 1 are mutually orthogonal.

Thus we have proved the following result.

Theorem 2. In Theorem 1, if D is the foldover of a Hadamard matrix that has

at least one word of length three, then S1 is orthogonal SOS.

We now present an example. Construct the 12-run Plackett-Burman design

by cycling the row + + + − − − + − − + − and then appending the row + +

+ + + + + + + + +. Adding the first column of +1’s, we obtain H12; folding

over this 12×12 matrix we obtain the 24-run strength three array D. We obtain

different OA(48, 213, 3) designs by different choices for the columns of B. Let b

denote the number of columns of B. Various OA(48, 213, 3) designs and their

partial generalized word length patterns are listed below.

b rank(X2) SOS? Ag
4 Ag

5

1 34 yes 36.667 18.333

2 33 no 28.333 26.667

3 34 yes 26 29

4 34 yes 26.556 28.444

5 34 yes 27.778 27.222

6 32 or 34 some 28.333 26.667
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We need not consider b > 6 since the results would be the same as for reversing

12 − b columns. As conjectured, we do get SOS designs for all odd values of b.

Note that Ag
4 +Ag

5 = 55 for each design, which is the Ag
4 value for the even design

D. For a given value of b, we obtained the same Ag
4 and Ag

5 values for all sets of b

columns from D. Also, note how Ag
4 varies is a predictable manner as a function

of b. Two designs having the same gwlp does not guarantee that the designs are

isomorphic. Obviously, for b = 6, there are at least two non-isomorphic designs,

since some choices of six columns produce an SOS design, and others do not.

The best Type 1 SOS OA(N, 2N/4+1, 3) designs that may be generated in

this manner are summarized in Table 1 for N = 48, 64, 80 and 96. Appendix

3 gives additional details regarding the best choice of columns to reverse. The

case N = 64 is interesting in that Ag
4 = 60 matches the minimum number of

length four words for a regular 217−11
IV SOS design. Note, however, that of the

four nonregular OA(16, 215, 2) used to construct these OA(64, 217, 3), two did

not achieve the minimum Ag
4 of 60. For the OA(96, 225, 3), it appears that the

optimum is achieved at b = 8; Ag
4 = 245.56 is the best result to date. Finally,

since there are Hadamard matrices of order 16 that have words of length three,

new nonregular OSOS OA(64, 217, 3)’s can be constructed.

Table 1. Best Type 1 nonregular SOS designs.

N k k(k − 1)/2 rank(X2) Best Ag
4

Found Best b

48 13 78 34 26 3

64 17 136 46 60 6

80 21 210 58 136.52 8

96 25 300 70 245.56∗ ≥ 8
∗ Search was not exhaustive.

3.2. Type 2 SOS OA(N, 2k, 3)

As an extension of the doubling construction for regular SOS designs dis-

cussed in Chen and Cheng (2006), we present the following general theorem re-

garding the construction of Type 2 SOS designs.

Theorem 3. Suppose S is an OA(N, 2k, 3) and Hm is a Hadamard matrix of

order m. Then Hm ⊗ S is an OA(mN, 2km, 3). Furthermore, if S is SOS, then

Hm ⊗ S is SOS, and if S is OSOS, then Hm ⊗ S is OSOS.

Proof. Let D = Hm ⊗ S. That D is an orthogonal array of strength three

can easily be checked and so the details are omitted. Now suppose S is SOS.

To show that D is SOS, we need to show that rank[X2] = mN − mk − 1,
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where X2 is as defined in the Introduction. Let the m columns of Hm be

b1, . . . , bm. Fix an i ∈ {1, . . . ,m}, and for each j ∈ {1, . . . ,m} let Aj be the

mN × [k(k − 1)/2] matrix consisting of columns of the form (bi ⊗ x)⊙ (bj ⊗ y),

where x and y are different columns of S. Recall that (bi ⊗ x) ⊙ (bj ⊗ y) is a

two-factor interaction contrast of the array D. Furthermore, fix a column z of

S and let Z be the mN × (m− 1) matrix consisting of the two-factor interaction

contrasts (bi ⊗ z) ⊙ (bl ⊗ z), where l ∈ {1, . . . ,m} and l 6= i. Then it can be

verified that A′
jZ = 0 for all j, A′

j1Aj2 = 0 for all j1 6= j2, and the m − 1

columns of Z are also pairwise orthogonal. Thus rank[X2] ≥ rank[Z] +
∑m

j=1

rank[Aj ] and rank[Z] = m−1. Since S is SOS, rank[Aj ] = N −k−1. Therefore

rank[X2] ≥ m − 1 + m(N − k − 1) = mN − mk − 1. It follows that D is SOS.

Now suppose S is OSOS. Then there exist a set of N − k − 1 two-factor

interactions of columns of S that are pairwise orthogonal. For each of these

interaction contrasts, say x⊙ y, where x and y are columns of S, let (bi ⊗ x)⊙

(bj⊗y) be the corresponding columns of Aj . Then these N−k−1 columns of Aj

are pairwise orthogonal. Collecting the columns so constructed in each of the sets

A1, . . . ,Am and the m − 1 pairwise orthogonal columns of Z mentioned earlier,

we have identified a set of pairwise orthogonal two-factor interaction contrasts

that make the array D OSOS. This completes the proof of Theorem 3.

OA(192, 2k, 3) Examples:

Suppose m = 12 and S is the regular 25−1
V design. Then the Kronecker

product is an OA(192, 260 , 3). SOS designs with the same number of runs can

be obtained by doubling a Type 1 SOS OA(96, 225, 3), or by twice doubling an

OA(48, 213, 3). The resulting designs accommodate 50, 52 or 60 factors. The SOS

options with the minimum generalized aberration we have found are summarized

in Table 2. These designs and their projections will be considered further in the

next section.

Table 2. Alternative SOS OA(192, 2k, 3).

N k k(k − 1)/2 rank(X2) Ag
4

galp

192 50 1,225 141 2,264.4 f2 = 96; f7.56 = 4; f9.33 = 40;

f10.22 = 40; f11.11 = 100; f11.56 = 80;

f12 = 256; f12.89 = 260; f13.78 = 120;

f14.67 = 40; f15.11 = 160; f16.44 = 4;

f25 = 25

192 52 1,326 139 2,613 f4 = 192; f11.111 = 432; f14.667 = 576;

f20 = 48; f26 = 78

192 60 1,770 131 4,235 f12=1440; f30 = 330
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4. Generalized Alias Length Pattern

Block and Mee (2003) introduced alias length pattern (alp)=(a1, . . . , aL) to

characterize the aliasing among two factor interactions for regular 2k−p
IV designs,

where L denotes the longest chain of aliased two-factor interactions and aj de-

notes the number of alias chains of length j (j = 1, . . . , L). Note that a1 denotes

the number of clear two-factor interactions. Let df2 denote the rank of X2 and

partition X2 as X2 = [X21,X22], where X21 has df2 columns with full column

rank. If the columns of X21 are orthogonal to one another, the alias matrix

involving two-factor interactions for the fitted model defined by X = [X1,X21]

is

(X ′X)−1X ′X22 =

[

1
N X ′

1X22

1
N X ′

21X22

]

=

[

0

A

]

.

Here we use A to denote only the last df2 rows of the alias matrix, since for

strength three designs the other rows are null. We note further that, using the

same partitioning of X2,

1

N
X ′

2X2 =

[

I A

A′ 1
N X ′

22X22

]

. (3)

For designs with no partial aliasing, this matrix contains 0’s, 1’s, and −1’s. Let mi

denote the number of non-zero elements of the ith row of [I,A] (i = 1, . . . , df2).

That is, mi represents the length of the alias chain that includes the interaction in

the ith column of X21. These quantities were used by Cheng, Steinberg and Sun

(1999) to study the model robustness of minimum aberration designs. Note that

the ith row of [I,A] (or its negative) is repeated mi − 1 times in the remaining

k(k − 1)/2 − df2 rows of (3). Computationally, alp may be obtained from (3) as

well as from [I,A]. Define

d =
diag(X ′

2X2X
′
2X2)

N2
.

For regular fractions, aj = fj/j (j = 1, . . . , L), where fj denotes the frequency

of j’s in d. Note also that aj is the number of mi’s (i = 1, . . . , df2) equal to j.

We propose using d as a measure of aliasing among two-factor interactions

for nonregular strength three designs. For nonregular designs, X ′
2X2/N contains

elements other than 0’s and ±1’s, reflecting partial aliasing among two-factor

interactions. The elements of d correspond to the sum of squares of each row of

X ′
2X2/N , and these are not necessarily integers. A referee noted that X ′

2X2/N

consists of elements of the confounding frequency vector (see Deng and Tang

(1999)), and that the average for d is d = 1 + 12Ag
4/[k(k − 1)].
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For both regular and nonregular designs, we define the generalized alias

length pattern (galp) as the vector of fj’s corresponding to d. For designs pro-

posed earlier, we have the following.

• The OA(192, 260 , 3) has galp: f12 = 1, 440; f30 = 330. That is, no two-factor

interactions are clear, but 1,440 of the 1,770 interactions have considerably

less aliasing (j = 12) than the other 330.

• The OA(192, 252 , 3) defined by the Kronecker product of H4 and the OA(48,

213, 3) with Ag
4 = 2, 613 has galp: f4 = 192; f11.111 = 432; f14.667 = 576;

f20 = 48; f26 = 78, so that 192 interactions are involved in relatively little

aliasing.

• Results for a doubled OA(96, 225 , 3) with Ag
4 = 245.56 are reported in Table 2.

The initial OA(96, 225, 3) has 24 clear two factor interactions. After doubling,

the OA(192, 250, 3) has 48 aliased pairs of two factor interactions, as reflected

in f2 = 4 × 24 = 96. If one begins with the OA(96, 225, 3) obtained by

reversing a single column (which has 47 clear interactions), the doubled array

has f2 = 4 × 47 = 188.

We know from Cheng, Steinberg and Sun (1999) that minimum aberration

designs tend to have uniform or nearly uniform length alias chains. This fact

suggests that deleting 8-10 columns from the OA(192, 260 , 3) will likely produce

orthogonal arrays with less aberration than for the other two SOS designs in

Table 2. We sequentially deleted columns from the OA(192, 260 , 3), in each case

dropping a column that reduces Ag
4 the most. The results are reported in Table 3

for 12 projections. Obviously, projections of the OA(192, 260 , 3) design dominate

(with respect to Ag
4) the other SOS arrays with 192 runs in Table 2. This is to be

expected in that the regular SOS designs with k = 5N/16 have many projections

that are minimum aberration (Xu and Cheng (2008)).

5. Discussion

This article has presented the construction of new strength three arrays

that increase the degrees of freedom for two-factor interactions. In so doing

we have greatly enlarged the number of available designs that avoid aliasing of

main effects and two-factor interactions. We have only distinguished the designs

constructed based on generalized word length pattern and rank(X2). However,

non-isomorphic designs may have the same gwlp and identical aliasing lengths

as reflected by the vector d = diag(X ′
2X2X

′
2X2)/N

2. To confirm that two

designs are isomorphic requires examination of the projections, as described by

Clark and Dean (2001). It could certainly be the case that two SOS designs may

have identical gwlp and d, but one has better projection designs for k′ (< k)

factors. Thus, further study of these designs is needed.
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Table 3. Twelve projections from OA(192, 260, 3).

k Column removed Best Ag

4
galp and d

60 4,235 f12 = 1440; f30 = 330

d = 15.356

59 60 3,952.7 f11 = 528; f12 = 864; f29 = 319

d = 14.861

58 1 3,681.3 f10 = 30; f10.11 = 90; f11 = 793; f12 = 432; f28 = 308

d = 14.362

57 17 3,421 f10 = 90; f10.11 = 270; f11 = 795; f12 = 144; f27 = 297

d = 13.861

56 23 3,171.7 f10 = 180; f10.11 = 540; f11 = 534; f26 = 286

d = 13.357

55 29 2,933.3 f10 = 300; f10.11 = 900; f11 = 10; f25 = 275

d = 12.852

54 31 2,720 f9 = 72; f9.11 = 72; f9.22 = 288; f10 = 188; f10.11 = 540;

f11 = 6; f24 = 72; f24.11 = 189; f25 = 4

d = 12.405

53 4 2,515.7 f8.11 = 18; f8.33 = 72; f9 = 118; f9.11 = 108; f9.22 = 432;

f10 = 102; f10.11 = 270; f11 = 3; f23 = 27; f23.11 = 66;

f23.22 = 156; f24 = 6

d = 11.954

52 2 2,320.3 f8.11 = 54; f8.33 = 216; f9 = 138; f9.11 = 108; f9.22 = 432;

f10 = 42; f10.11 = 90; f11 = 1; f22 = 14; f22.11 = 9;

f22.22 = 90; f22.33 = 126; f23 = 6

d = 11.499

51 3 2,134 f8.11 = 108; f8.33 = 432; f9 = 132; f9.11 = 72; f9.22 = 288;

f10 = 8; f21 = 6; f21.22 = 18; f21.33 = 108; f21.44 = 99;

f22 = 4

d = 11.042

50 5 1,956.7 f8.11 = 180; f8.33 = 720; f9 = 100; f20.33 = 30;

f20.44 = 120; f20.56 = 75

d = 10.584

49 55 1,799.8 f7.22 = 32; f7.33 = 64; f7.56 = 224; f8 = 32; f8.33 = 432;

f9 = 60; f19.44 = 24; f19.56 = 58; f19.67 = 80; f19.78 = 50;

f20.44 = 4

d = 10.183

48 11 1,650.2 f6.56 = 28; f6.89 = 42; f7 = 7; f7.22 = 48; f7.33 = 100;

f7.56 = 336; f8 = 48; f8.11 = 66; f8.33 = 216; f9 = 30;

f18.56 = 12; f18.67 = 36; f18.78 = 73; f18.89 = 48; f19 = 30;

f19.67 = 8

d = 9.778

Wu and Hamada (2000, Sec. 8.4) propose methods for considering interac-

tions in the modeling of data from nonregular designs. Even more closely con-

nected to our designs, Miller and Sitter (2001) proposed a method for considering
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interactions in the analysis of 24-, 40-, and 48-run strength three designs based on

the two-step procedure of first identifying significant main effects, and then per-

forming an all-subsets regression analysis involving two-factor interactions that

contain one or more of the significant main effects. Miller and Sitter state that

all-subsets regression is believed to be preferred to stepwise regression procedures.

When the number of significant main effects is large, all-subsets regression will

be computationally infeasible, even with the weak heredity constraint. For such

cases, they propose doing all-subsets regression up to the largest computationally

feasible size model, select the best subset, and then consider additional terms in

a third stage that forces in the terms already identified as significant. This ap-

proach seems reasonable, although the question of whether one can discriminate

between alternative models must be considered. Given these new OA(N, 2k, 3)

with complex aliasing, the need has increased for further study of model selec-

tion approaches. For some designs proposed here, there exists a full set of df2

orthogonal two-factor interaction columns. Whether this feature is useful for the

analysis has not yet been investigated.

Appendix 1. Some Properties of Even Designs

It is known that all even regular designs are foldover designs. In an un-

published work, one of the authors (C. S. Cheng) showed that the result holds

more generally for nonregular designs. It was also obtained independently by

Balakrishnan and Yang (2006) at about the same time. That foldover designs

are even is trivial. We include the converse here and use it to show that for even

designs, rank[X2] ≤ N/2 − 1.

Lemma A1. A two-level even design must be a foldover design.

Proof. For each factor-level combination x = (x1, . . . , xk), where xi = ±1, let

f(x) denote the number of times x appears in the design. For each subset S of

{1, . . . , k}, let xS =
∏

i∈S xi. As shown in Ye (2003), as well as Tang (2001) in a

slightly different form, f(x) can be expressed as f(x) = b0 +
∑

S bSxS , where the

sum is over all nonempty subsets of {1, . . . , k}; explicit forms of the coefficients

bS are given in their papers. It suffices to say that Ag
i is proportional to the

sum of squares of the coefficients bS over all S of size i. Thus, for even designs,

bS = 0 for all S containing an odd number of elements. Since xS = (−x)S for

all S containing an even number of elements, we have f(x) = f(−x), i.e., each

factor-level combination and its mirror image appears the same number of times

in the design.

According to Lemma A1, each even design is a foldover design, i.e., it can

be partitioned as C, followed by the foldover −C, where C is (N/2) × k. Let

x2 denote the (N/2) × k(k − 1)/2 matrix of all two-factor interactions from the
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columns of C. Then the corresponding matrix X2 for the N -run even design

satisfies

rank[X2] = rank

[

x2

x2

]

= rank[x2] ≤
N

2
− 1.

In fact, this can be strengthened to show that the column space of all even effects

(excluding the intercept) has rank ≤ N/2 − 1.

Appendix 2. Construction of Alternative SOS OA(64, 217, 3)

Let D denote the regular 216−11
IV fraction. The five non-isomorphic SOS

217−11
IV designs may be obtained as follows.

• Let B contain any single column. Then S1 is the Chen, Sun and Wu (1993)

(CSW) design 17−11.6, with the number of length four words (A4) = 105

and alp= (31, 0, 0, 0, 0, 0, 15), where alp (alias length pattern) is defined in the

beginning of Section 4.

• Let B contain any three columns. Then S1 is the CSW design 17−11.5 with

A4 = 73 and alp= (19, 0, 12, 0, 12, 0, 3).

• Let B contain any four columns that do not form a length-four word for D.

Then S1 is the CSW design 17−11.4 with A4 = 68 and alp= (16, 6, 0, 18, 0, 6).

• Let B contain any five columns such that no subset forms a length-four

word for D. Then S1 is the CSW design 17−11.3 with A4 = 65 and alp=

(16, 0, 15, 0, 15).

• Let B contain any six columns such that no subset forms a length-four word for

D. Then S1 is the CSW design 17−11.2 with A4 = 60 and alp= (16, 0, 0, 30).

SOS designs 17−11.2 and 17−11.4 are obtained by reversing an even number of

columns. While reversing an even number of columns does not guarantee that

S1 is SOS, in this case and others in Table 1, the best SOS design cannot be

constructed only by considering B with an odd number of columns.

There exist five non-isomorphic OA(16, 215, 2) designs − only one of which is

regular (Hedayat, Sloane and Stufken (1999, p.156)). Taking D as the foldover

of one of these nonregular OAs, one can obtain many nonregular Type 1 SOS

OA(64, 217, 3) that have Ag
4 and galp identical to the five regular SOS above, but

with partial aliasing of effects. Hall types II and III (Wu and Hamada (2000) )

both resulted in OA(64, 217, 3) designs with Ag
4 = 60 for b = 6; no b achieved this

small an Ag
4 for Hall types IV and V.

Appendix 3. Construction of the Best Type 1 SOS OA(N, 2k, 3)

Here we provide additional detail regarding the best choice of columns for the

arrays described in Table 1. To construct the OA(48, 213, 3), any partitioning of

the OA(24, 212, 3) into three columns for B produces a Type 1 SOS design with
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Ag
4 = 26. For a nonregular OA(64, 217, 3) with Ag

4 = 60, one may begin with

Hadamard matrix 16.1 from Sloane (1999), foldover to create D, and then select

columns 1−3, 5, 11, 14 for B. For an OA(80, 221, 3) with Ag
4 = 136.52, begin

with Hadamard matrix 20.1 from Sloane (1999), foldover over to create D, and

then select columns 11, 13, 14, 16−20 for B. Finally, for an OA(96, 225, 3) with

Ag
4 = 245.56, one may begin with Hadamard matrix 24.1 from Sloane (1999),

foldover to create D, and then select columns 12, 14, 15, 18, 20, and 22−24

for B. Other choices also yield the same Ag
4. Those above are provided for the

convenience of the reader.
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