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Abstract: We propose a general class of semiparametric transformation models

with random effects to formulate the effects of possibly time-dependent covari-

ates on clustered or correlated failure times. This class encompasses all commonly

used transformation models, including proportional hazards and proportional odds

models, and it accommodates a variety of random-effects distributions, particularly

Gaussian distributions. We show that the nonparametric maximum likelihood esti-

mators of the model parameters are consistent, asymptotically normal and asymp-

totically efficient. We develop the corresponding likelihood-based inference proce-

dures. Simulation studies demonstrate that the proposed methods perform well in

practical situations. An illustration with a well-known diabetic retinopathy study

is provided.
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1. Introduction

Clustered failure time data arise when the study subjects are sampled in

clusters so that the failure times within the same cluster tend to be correlated.

Medical examples include the onset of a genetic disease among family members,

the appearance of tumors in littermates exposed to a carcinogen, the occurrence

of visual loss in left and right eyes, and the initiation of cigarette smoking by

classmates. Such failure times are inevitably subject to right censoring. The

presence of censoring and intra-class dependence poses serious challenges in the

semiparametric regression analysis of these data.

One approach to formulating the effects of covariates on the failure time

while accounting for the intra-class dependence is the proportional hazards frailty

model, under which the hazard function for the jth subject of the ith cluster

associated with covariates Xij(·) takes the form

λ(t|Xij , ξi) = ξiλ0(t)e
Xij (t)T β, i = 1, . . . , n; j = 1, . . . , ni, (1.1)
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where λ0(·) is an unspecified baseline hazard function, β is a vector of unknown

regression parameters, and ξi is an unobserved frailty for the ith cluster. Statis-

tical inference under model (1.1) turns out to be an interesting and challenging

problem. The consistency and asymptotic distribution of the nonparametric

maximum likelihood estimator for this model have been rigorously studied by

Murphy (1994, 1995) for the case of no covariates, and by Parner (1998) for the

case with covariates. All the results are restricted to the special case of gamma

frailty.

The proportional hazards model with gamma frailty, although very inter-

esting and useful, has important limitations. First, the proportional hazards

assumption on the effects of covariates may not be reasonable in certain applica-

tions. Secondly, gamma frailty induces a restrictive form of dependence.

To address the above concerns, we study a broad class of transformation

models with random effects. For the jth subject of the ith cluster, let Xij(·)
be a d1-vector of (possibly time-dependent) covariates, and Zij(·) be another

set of covariates, which may contain 1 and part of Xij(·). Also, let Xij(t) and

Zij(t) denote the histories of Xij(·) and Zij(·) over [0, t]. The cumulative hazard

function of Tij , the jth failure time of the ith cluster, is related to Xij(·) and

Zij(·) as follows:

Λ(t|Xij(t),Zij(t),bi)=H0

( ∫ t

0
eXij (s)T β+Zij(s)T bidΛ(s)

)
, i=1, . . . , n;

j=1, . . . , ni, (1.2)

where H0 is a known increasing function with H0(0) = 0 and H0(∞) = ∞, Λ(·) is

an unspecified increasing function, β is a set of unknown regression parameters,

and bi is a set of unobserved mean-zero random effects for the ith cluster with

a density function ψ(bi;γ) (with respect to a σ-finite measure µ(bi)) indexed

by a d2-dimensional parameter γ. Note that (1.2) allows covariate-specific or

subject-specific random effects.

Let G0(x) = 1 − e−H0(x). We may rewrite (1.2) as

∫ Tij

0
eXij(s)T β+Zij(s)T bidΛ(s) = ǫij, i = 1, . . . , n; j = 1, . . . , ni, (1.3)

where the ǫij are i.i.d. random variables from a known distribution with the

cumulative distribution functionG0(·). If both Xij and Zij are time-independent,

then (1.3) reduces to linear transformation models

H(Tij) = −XT
ijβ − ZT

ijbi + log ǫij, i = 1, . . . , n; j = 1, . . . , ni, (1.4)

where H(x) = log Λ(x). The choices of the extreme-value and standard logistic

distributions for log ǫij or G0(x) = 1− e−x and G0(x) = 1− (1+x)−1 correspond
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to the proportional hazards model (Cox (1972)) and the proportional odds model

(Bennett (1983) and Pettitt (1984)), respectively.

Equation (1.4) is reminiscent of the linear mixed-effects model (Laird and

Ware (1982)) for longitudinal data. For the latter model, however, the transfor-

mation of the response variable is known, and there is no censoring. The presence

of censoring and the involvement of an unknown transformation make the esti-

mation of transformation models with random effects for correlated failure time

data much harder. In view of the linear model representation given in (1.4),

Gaussian random effects are the most natural choice even for the proportional

hazards model. The focus of the existing literature on gamma frailty is due to

its mathematical simplicity.

Linear transformation models for independent failure time data (i.e., in the

absence of random effects) have been studied extensively. In particular, the

proportional odds model was studied by Bennett (1983), Pettitt (1984), Cuzick

(1988), Wu (1995), Murphy, Rossini and van der Vaart (1997), Shen (1998) and

Lam and Leung (2001). Estimation for general linear transformation models was

investigated by Bickel (1986), Dabrowska and Doksum (1988), Cheng, Wei and

Ying (1995) and Chen, Jin and Ying (2002), among others. Recently, Kosorok,

Lee and Fine (2004) considered a class of frailty models for independent obser-

vations which is a one-parameter extension of the proportional hazards model.

For clustered failure time data, Cai, Cheng and Wei (2002) considered the

class of models given in (1.4) with a scalar random effect (i.e., Zij ≡ 1). They

proposed to estimate the parameters by minimizing the empirical sum of squares

of the differences between certain observed quantities and their expected values.

The estimators are not asymptotically efficient, and the variance estimation is

computationally demanding. Furthermore, the censoring mechanism is required

to be purely random and independent of covariates. Recently, Zeng, Lin and Yin

(2005) studied efficient estimation of a special member of (1.4), namely, the pro-

portional odds model with time-independent covariates and Gaussian random

effects. They showed that the estimators of Cai et al. (2002) can be quite inef-

ficient. Efficient estimation of (1.4), let alone (1.2), has not been studied in any

generality.

In this paper, we study nonparametric maximum likelihood estimation of

(1.2). Rather than focusing on specific models, we identify general conditions on

the transformation G0(·) and the distribution of random effects under which the

nonparametric maximum likelihood estimators have desirable asymptotic proper-

ties. We show that many commonly used transformations, including the familiar

Box-Cox transformations and the class of logarithmic transformations studied by

Chen et al. (2002), and Gaussian distributions of random effects ensure that the

nonparametric maximum likelihood estimators for the regression parameters are
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asymptotically efficient. Important special cases include the Cox proportional

hazards and proportional odds models with Gaussian random effects.

The structure of this paper is as follows. In Section 2, we describe the

proposed methodology based on the nonparametric likelihood. In Section 3, we

provide the asymptotic theory behind the proposed methodology. In Section

4, we report the results of our simulation studies. In Section 5, we provide an

illustration with a medical study. In Section 6, we provide some concluding

remarks. We relegate the proofs of the theoretical results to an appendix.

2. Likelihood and Inference

Suppose that there are n independent clusters with potentially different sizes.

The relationship between Tij and (Xij ,Zij) is given in equation (1.2) or (1.3). Let

Cij be the censoring time on Tij . The data consist of (Yij ,∆ij,Xij(Yij),Zij(Yij))

(i = 1, . . . , n; j = 1, . . . , ni), where Yij = Tij ∧ Cij and ∆ij = I(Tij ≤ Cij). Here

and in the sequel, a∧b = min(a, b), and I(·) is the indicator function. Our goal is

to make inference about the regression parameters (β,γ) and the function Λ(·).
We make the coarsening at random assumption that, conditional on Xij(·),

Zij(·), Tij and bi, the hazard function of Cij at time t is only a function of Xij(t)

and Zij(t). Then under (1.2), the likelihood function for the parameters (β,γ,Λ)

is proportional to

n∏

i=1

[∫

b

ni∏

j=1

{
G′

0

(∫ Yij

0
eXij(t)T β+Zij(t)T bdΛ(t)

)
eXij (Yij)T β+Zij(Yij)T bΛ′(Yij)

}∆ij

×
{

1 −G0

(∫ Yij

0
eXij(t)T β+Zij(t)T bdΛ(t)

)}1−∆ij

ψ(b;γ)dµ(b)

]

where, for any function g, g′(x) is the derivative of g(x).

It would seem natural to calculate the maximum likelihood estimators of

(β,γ,Λ) by maximizing the above likelihood function. The maximum of this

function, however, is infinity since we can always choose some function Λ(t) with

fixed values at each Yij while letting Λ′(Yij) go to infinity for some Yij with

∆ij = 1. Thus, we relax Λ(t) to be right-continuous and allow Λ(t) to have

jumps at the Yij. We then propose to maximize

Ln(β,γ,Λ)

≡
n∏

i=1

[∫

b

ni∏

j=1

{
G′

0

(∫ Yij

0
eXij(t)

T β+Zij(t)
T
bdΛ(t)

)
eXij(Yij)

T β+Zij(Yij )T
bΛ{Yij}

}∆ij

×
{

1 −G0

(∫ Yij

0
eXij (t)T β+Zij(t)

T
bdΛ(t)

)}1−∆ij

ψ(b;γ)dµ(b)

]
, (2.1)
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where Λ{t} denotes the jump size of Λ(·) at t. To be specific, we maximize

Ln(β, γ,Λ) over the parameter space

{(β,γ,Λ) : (β,γ) ∈ Θ, Λ(t) is an increasing step function in [0, τ ]

with jumps at the observed failure times and Λ(0) = 0} .

The resulting estimators, denoted by β̂n, γ̂n and Λ̂n, correspond to the Kiefer-

Wolfowitz nonparametric maximum likelihood estimators (NPMLEs).

We show later that the maximum of (2.1) exists and that the jump sizes

of Λ̂n are finite. Thus, the NPMLEs for (β,γ,Λ) can be obtained by maxi-

mizing Ln(β,γ,Λ) over the parameter space (β,γ) ∈ Θ and the jump sizes of

Λ at the Yij for which ∆ij = 1. Computationally, to ensure the positiveness

of the jump size, we can use the transformed parameter log(Λ{Yij}) instead

of Λ{Yij} in the maximization. For a general transformation G0(·), the maxi-

mization can be realized via optimization algorithms which consist of optimum

search based on the interior-reflective Newton method (Coleman and Li (1994,

1996)). These algorithms are available in the optimization toolbox of MATLAB.

In the numerical calculation, the integration over b is replaced by numerical

summation, such as the Gaussian quadrature approximation for Gaussian b. In

each iteration of the search, a large linear system is approximately solved by

using the method of preconditioned conjugate gradients (Coleman and Li (1994,

1996)). This search works very well in our setting. In the special case when the

transformation G0(·) induces the proportional hazards model, the maximization

can be carried out efficiently by the expectation-maximization (EM) algorithm

(Dempster, Laird and Rubin (1977)). In the EM algorithm, random effects are

treated as missing data and efficient computation takes advantage of the explicit

solution for estimating Λ(·) in the M-step.

It is desirable to estimate the asymptotic covariance matrices of β̂n and

γ̂n. When the nuisance parameter is of high dimension, i.e., the number of

jumps in Λ̂n is large, the profile likelihood method (Murphy and van der Vaart

(2000)) is particularly useful in estimating the variances. We define the profile

log-likelihood function for θ ≡ (β,γ) as

pln(θ) = max
Λ

ln(β,γ,Λ),

where ln(β,γ,Λ) = logLn(β,γ,Λ), and Λ is any right-continuous and increas-

ing function in [0, τ ] with Λ(0) = 0. Theorem 3 of Section 3 states that the

asymptotic covariance for (β̂
T

n , γ̂
T
n )T can be estimated by the negative inverse of

the curvature of pln(θ) around (β̂
T

n , γ̂
T
n )T . Specifically, to estimate the (s, l)th

element of the asymptotic covariance matrix for (β̂
T

n , γ̂
T
n )T , we choose a constant
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hn of the order 1/
√
n, and let es and el be the canonical bases which are one

at the sth and the lth coordinates, respectively, and are zero elsewhere. Then

the (s, l)th element of the inverse of the asymptotic covariance matrix can be

estimated by

− 1

h2
n

{
pln(θ̂n + hnes + hnel) − pln(θ̂n − hnes + hnel)

−pln(θ̂n + hnes − hnel) + pln(θ̂n)
}
.

Thus, we need to evaluate the profile likelihood function pln(θ) in a neighborhood

of θ̂n. Computationally, for a general transformation G0(·), the profile likelihood

function can be calculated by using the optimization search for fixed θ close to

θ̂n. When G0(·) is the transformation corresponding to the proportional hazards

model, the profile likelihood function can be calculated via the EM algorithm

in which (βT ,γT )T is held constant in both the E-step and M-step, so that

the only updated parameters are the jump sizes of Λ(·) at the observed failure

times. Our experiences showed that the EM algorithm is more efficient than

direct optimization.

When the number of observed failure times is not large, an alternative way of

estimating the asymptotic variance is simply to invert the observed information

matrix for all the parameters including β, γ, and the jump sizes of Λ̂n. That is,

we treat the likelihood function (2.1) as a likelihood function from a parametric

model. One benefit of this approach is that we can estimate the asymptotic

variance for Λ̂n. The validity of inverting the observed information matrix is

ensured by Theorem 4. Our numerical studies revealed that this approach works

very well in practical situations.

3. Asymptotic Theory

We impose the following regularity conditions.

C.1. There exists some positive constant δ0 such that P (Cij ≥ τ |Xij(τ),Zij(τ)) =

P (Cij = τ |Xij(τ),Zij(τ)) ≥ δ0 almost surely, where τ is a constant denoting

the end of the study.

C.2. With probability one, Xij(·) and Zij(·) have right-continuous sample paths

in [0, τ ] and their right derivatives exist. In addition, there exists a constant

M0 such that

P
(

max
1≤j≤ni

sup
t∈[0,τ ]

{
|Xij(t)| + |Xij

′
+(t)| + |Zij(t)| + |Zij

′
+(t)|

}
≤M0

)
= 1.,

where Xij
′
+ and Zij

′
+ denote the right derivatives.
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C.3. The true value Λ0(t) of Λ(t) is a strictly increasing function in [0, τ ] and is
continuously differentiable. In addition, Λ0(0) = 0 and Λ′

0(0) > 0.

C.4. The true values of β and γ, denoted by β0 and γ0, belong to a known
compact set

Θ =
{
(β,γ) : ‖β‖ ≤ B0 for some constant B0 and γ is in a known compact

set Γ0

}
.

C.5. The size of the cluster is independent of the survival and censoring variables,
and max1≤i≤n |ni| ≤ n0 for a constant n0, almost surely.

C.6. The function G0(x) : [0,∞) → [0, 1] is four times-continuously differen-

tiable in [0,∞) with G0(0) = 0, G′
0(x) > 0, and supx≥0{|G

(k)
0 (x)|} < ∞

for k = 1, 2, 3, 4, where G
(k)
0 (x) denotes the kth derivative of G0(x). The

function ψ(b;γ) is thrice-differentiable with respect to γ, and for k = 1, 2, 3,∫
b
|ψ(k)(b;γ)|dµ(b) is uniformly bounded for γ ∈ Γ0.

C.7. There exists a positive constant ρ0 such that

lim sup
x→∞

(1 + x)ρ0(1 −G0(x)) <∞, lim sup
x→∞

(1 + x)1+ρ0G′
0(x) <∞. (3.1)

C.8. For any fixed constant K,

sup
γ∈Γ0

∫

b

eK‖b‖
{ 3∑

k=0

|ψ(k)(b;γ)|
}
dµ(b) <∞. (3.2)

C.9. For any pair of parameters (β1,γ1,Λ1) and (β2,γ2,Λ2), if with probability
one,

∫

b

k∏

j=1

G0

( ∫ tj

0
eXij(s)T β

1
+Zij(s)T bdΛ1

)
ψ(b;γ1)db

=

∫

b

k∏

j=1

G0

(∫ tj

0
eXij (s)T β

2
+Zij(s)T bdΛ2

)
ψ(b;γ2)db

for any k ∈ {1, . . . , ni} and any t1, . . . , tk ∈ [0, τ ], then β1 = β2, γ1 = γ2

and Λ1(t) = Λ2(t) for t ∈ [0, τ ].

C.10. If Xij(t)
Th1 + h(t) = 0 with probability one for some vector h1 and a

function h(t), then h1 = 0 and h(t) = 0. In addition, if there exist a vector
h2 and functions Aj(t,b), j = 1, . . . , ni such that with probability one,

∫

b

k∏

j=1

G0

(∫ tj

0
eXij (s)T β

0
+Zij(s)T bdΛ0

){ k∑

j=1

Aj(tj ,b)+
ψ′(b;γ0)

T h2

ψ(b;γ0)

}
db=0
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for any k ∈ {1, . . . , ni} and any t1, . . . , tk ∈ [0, τ ], then h2 = 0 andAj(t,b) =

0, j = 1, . . . , ni.

Remark 1. C.1−C.5 are standard conditions for clustered failure time data.

Conditions C.6 and C.7 are satisfied by all common transformations, including

the Box-Cox transformations H0(x) = ((1 + x)ρ − 1)/ρ, and the logarithmic

transformations H0(x) = r−1 log(1 + rx) (Chen et al. (2002)). Condition C.8

pertains to the random-effects distribution. This condition is clearly satisfied

by the Gaussian distribution and any distribution with tails less heavy than

e−‖b‖1+ǫ0 with ǫ0 > 0 (e.g., log-inverse Gaussian). Condition C.9 pertains to

parameter identifiability, while C.10 entails that the Fisher information along

any submodel at the true parameters is nonsingular. If X and Z are time-

independent, then C.9 and C.10 reduce to C.9’ and C.10’:

C.9’ For any γ1 and γ2, if there exist two constant vectors φ1 and φ2 such that

with probability one,

∫

b

k∏

j=1

e[1,XT
ij ]φ1

+Z
T
ijbψ(b;γ1)db =

∫

b

k∏

j=1

e[1,XT
ij ]φ2

+Z
T
ijbψ(b;γ2)db

for any k ∈ {1, . . . , ni}, then φ1 = φ2 and γ1 = γ2.

C.10’ If there exist two vectors h1 and h2 such that with probability one,

∫

b

k∏

j=1

eX
T
ijβ0

+ZT
ijb

{ k∑

j=1

[1,XT
ij ]h1+

ψ′(b;γ0)
Th2

ψ(b;γ0)

}
ψ(b;γ0)db=0, k=1, . . . , ni,

then h1 = 0 and h2 = 0. When the random effects are Gaussian and the Zij are

the same within each cluster, C.9 and C.10 are implied by the linear independence

of the covariates.

The following lemma holds under conditions C.7 and C.8.

Lemma 1. With probability one,

∫

b

ni∏

j=1

{
G′

0

( ∫ Yij

0
eXij(t)T β+Zij(t)T bdΛ(t)

)
eXij(Yij)T β+Zij(Yij)T b

}∆ij

×
{

1 −G0

(∫ Yij

0
eXij(t)

T β+Zij(t)
T
bdΛ(t)

)}1−∆ij

ψ(b;γ)dµ(b)

≤ c0

ni∏

j=1

{1 + Λ(Yij)}−(∆ij+ρ0) , (3.3)

where c0 is a constant independent of β,γ and Λ.
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Remark 2. Inequality (3.3) is essential to the consistency of the NPMLEs. In

fact, C.7 and C.8 can be replaced by (3.3) in proving consistency. We impose C.7

and C.8 because they are easier to verify. Although the popular Cox proportional

hazard model with gamma frailty does not satisfy C.8, we now show that (3.3)

still holds for this model. Under this model, the left-hand side of (3.3) is

exp
{ ni∑

j=1

Xij(Yij)
T β

} Γ(γ+
ni∑

j=1
∆ij)

Γ(γ)γ
Pni

j=1
∆ij

[
1 +

1

γ

{ ni∑

j=1

∫ Yij

0
eX

T
ij(t)βdΛ(t)

}]−
ni
P

j=1

∆ij−γ

≤ O(1)

{ ni∑

j=1

(
1+

∫ Yij

0
eX

T
ij(t)βdΛ(t)

)}−
Pni

j=1
(∆ij+

γ

ni
)

,

where O(1) denotes some positive constant. Since

∆ij + γ
ni∑ni

j=1(∆ij + γ
ni

)
≤

1 + γ
ni

γ
,

the right-hand side of the above inequality is bounded by

O(1)

{ ni∑

j=1

∆ij + γ
ni∑ni

j=1(∆ij + γ
ni

)

(
1 +

∫ Yij

0
eX

T
ij(t)βdΛ(t)

)}−
Pni

j=1
(∆ij+

γ

ni
)

.

By the concavity of log(x), we obtain the upper bound

O(1)

ni∏

j=1

(
1 +

∫ Yij

0
eX

T
ij (t)βdΛ(t)

)−(∆ij+
γ

ni
)
.

This gives the inequality (3.3) in which ρ0 = γ/n0.

As stated in the next lemma, C.9 and C.10 ensure identifiability of parame-

ters and non-singularity of information matrix.

Lemma 2. Under C.9 and C.10, the parameters in (1.2) are identifiable. Fur-

thermore, the Fisher information matrix along any one-dimensional submodel is

non-singular.

Our last lemma pertains to the existence of the NPMLEs.

Lemma 3. Under C.1 ∼C.8, the maximum likelihood estimators (β̂n, γ̂n, Λ̂n)

exist almost surely.

The following two theorems state our main results about the asymptotic

properties of the proposed maximum likelihood estimators.
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Theorem 1. Under C.1 ∼C.10, ‖β̂n − β0‖ → 0, ‖γ̂n − γ0‖ → 0 and supt∈[0,τ ]

|Λ̂n(t) −Λ0(t)| → 0 almost surely, where ‖ · ‖ is the Euclidean norm.

Theorem 2. Under C.1 ∼C.10,
√
n(β̂

T

n − βT
0 , γ̂

T
n − γT

0 , Λ̂n − Λ0)
T weakly con-

verges to a zero-mean Gaussian process in the metric space Rd1 ×Rd2 × l∞[0, τ ],

where l∞[0, τ ] is the linear space consisting of all the bounded functions in [0, τ ]

and is equipped with the supremum norm. Furthermore, β̂n and γ̂n are asymp-

totically efficient.

Remark 3. Theorem 1 states the consistency of the maximum likelihood esti-

mators. In C.1 to C.10, Λ(·) is not assumed to be a bounded function, which

means that the weak-compactness of the parameter Λ(·) is not imposed. Thus,

obtaining a bound for Λ̂n(·) is a key to the proof of Theorem 1. The consistency

proof is based on the essential inequality (3.3), and it adopts the partitioning

idea from Murphy’s (1994) proof of the consistency in the gamma frailty model.

This partitioning idea was also used by Parner (1998), Kosorok et al. (2004)

and Zeng et al. (2005). However, we provide a novel justification to avoid the

concavity of G0 assumed in all previous papers. Once the consistency is estab-

lished, the asymptotic distributions of the maximum likelihood estimators stated

in Theorem 2 can be proved by verifying the conditions in Theorem 3.3.1 of

van der Vaart and Wellner (1996). Our verification of the continuous invertibil-

ity of the information operator is specific to model (1.2) and is based on Lemma

2. Moreover, the Donsker property of some new classes of functions is proven. In

the statement of Theorem 2, asymptotically efficient estimators mean that the

asymptotic variances attain the semiparametric efficiency bounds as defined in

Bickel et al. (1993, Chap. 3).

The next two theorems justify the validity of the proposed approach to esti-

mating the asymptotic covariance.

Theorem 3. Under C.1 ∼C.10,

−pln(θ̂n + hne) − 2pln(θ̂n) + pln(θ̂n − hne)

nh2
n

→p eT I(θ0)e,

where hn = Op(n
−1/2), e is any vector in Rd1+d2 with norm 1, and I(θ0) is the

efficient information matrix for θ0 ≡ (βT
0 ,γ

T
0 )T .

Theorem 3 does not deal with the estimation of the asymptotic variance of

Λ̂n, which is often desirable when one wishes to make prediction on future sur-

vival experience. Theorem 2 suggests that the parameter Λ(·), although infinite-

dimensional, can be treated in the same way as the finite-dimensional parameters

β and γ. Thus, the asymptotic covariance matrix can be estimated by the in-

verse of the observed information matrix. Specifically, for any constant vector
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(h1,h2) ∈ Rd1 ×Rd2 and any bounded function h3, the asymptotic variance of

hT
1 β̂n + hT

2 γ̂n +

∫ τ

0
h3(t)dΛ̂n(t) ≡ hT

1 β̂n + hT
2 γ̂n +

∑

∆ij=1

h3(Yij)Λ̂n{Yij}

can be estimated by hT
nJ−1

n hn, where hn is the vector comprising of h1, h2

and the h3(Yij) for which ∆ij = 1, and Jn is the negative Hessian matrix of

logLn(β,γ,Λ) with respect to (β,γ) and the jump sizes of Λ at the Yij for

which ∆ij = 1, evaluated at (β̂n, γ̂n, Λ̂n). The next theorem formalizes this

approximation.

Theorem 4. Let V (h1,h2, h3) be the asymptotic variance of n1/2{hT
1 (β̂n −

β0)+hT
2 (γ̂n−γ0)+

∫ τ
0 h3(t)d(Λ̂n(t)−Λ0(t))}. Under C.1∼C.10, nhT

nJ−1
n hn →p

V (h1,h2, h3) uniformly in (h1,h2, h3) such that ‖h1‖ ≤ 1, ‖h2‖ ≤ 1 and ‖h3‖V ≤
1, where ‖h‖V denotes the total variation of h(t) in [0, τ ].

4. Simulation Studies

We carried out simulation studies to assess the performance of the proposed

inference procedures in finite samples. We set the cluster size to two, and gener-

ated failure times from the proportional hazards model with a Gaussian random

effect

Λ(t|Xij , bi) = Λ0(t) exp(β1X1ij + β2X2ij + bi), j = 1, 2; i = 1, . . . , n,

where Λ0(t) = t, β1 = 1, β2 = −1, X1i1 ≡ X1i2 is a dichotomous variable

with half of the subjects taking the value 1, Xij is an independent uniform(0, 1)

variable, and bi is normal with mean zero and variance σ2. The censoring time

was set to be the minimum of 3 and a uniform(0, 4) variable, corresponding to an

approximate 35% censoring rate. The MLEs of β and σ2 were obtained via the

EM algorithm. The standard error estimates were based on the profile likelihood

function at some fixed parameter values around the MLEs. This calculation was

done through the the EM algorithm, where these parameters were held fixed in

both the E-step and M-step. Then the variance of the MLE was computed by

using the numerical difference of the profile log-likelihood function as stated in

Theorem 3 for an appropriate choice of hn. Specifically, we chose hn = 5/
√
n.

The confidence intervals for β and σ2 were based on the normal approximations to

β̂n and log σ̂2
n, respectively. We considered variance estimation with hn ranging

from 0.1/
√
n to 10/

√
n. It turned out that the variance estimation for β̂n is fairly

robust to the choice of hn, whereas that of log σ̂2
n is more sensitive. Murphy et al.

(1997) suggested a rule of thumb of hn = 1/
√
n or hn = |θ̂n|sgn(θ̂n)/

√
n, where

θ̂n is the maximum likelihood estimate.
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The simulation results with n = 200 are summarized in Table 1. These

results demonstrate that the proposed methods work well in that the parameter

estimators have little bias, the variance estimators are reasonably accurate and

the confidence intervals have proper coverage probabilities. Additional simulation

studies (results not shown) revealed that the efficiency gains of the proposed

MLEs over the estimators of Cai et al. (2002) can be substantial in realistic

situations.

Table 1. Simulation results for the proportional hazards model with Gaus-
sian random effects.

Bias SE SEE 95% CP

σ2 = 1 β1 -0.003 0.210 0.201 0.942

β2 -0.015 0.267 0.285 0.953

σ -0.018 0.151 0.144 0.960

σ2 = 3 β1 -0.010 0.300 0.287 0.946

β2 -0.012 0.313 0.328 0.958
σ -0.025 0.190 0.180 0.935

Note: Bias and SE are the bias and standard error of the estimator. SEE
is the mean of the standard error estimator, and 95% CP is the coverage
probability of the 95% confidence interval. Each entry is based on 1,000
simulated data sets.

In related simulation studies, Zeng et al. (2005) generated failure times from

proportional odds models with Gaussian random effects. The MLEs were cal-

culated via the optimization search method and the variance estimates were

calculated by inverting the observed information matrix. The conclusions are

similar.

5. An Example

We now consider the well-known Diabetic Retinopathy Study (Huster, Brook-

meyer and Self (1989)). This study was conducted to assess the ability of laser

photocoagulation in delaying visual loss among patients with diabetic retinopa-

thy. The subset of the data that has been analyzed extensively in the statistical

literature pertains to 197 high-risk patients. For each patient, one eye was ran-

domly selected to receive the laser treatment while the other eye was observed

without treatment. The failure time of interest is the time to visual loss as mea-

sured by visual acuity less than 5/200. As in the existing literature, we consider

three covariates: X1ij indicates, by the values 1 versus 0, whether or not the

jth eye (j = 1 for the left eye and j = 2 for the right eye) of the ith patient

was treated with laser photocoagulation, X2i1 ≡ X2i2 indicates, by the values
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1 versus 0, whether the ith patient had adult-onset or juvenile-onset diabetics,

and X3ij ≡ X1ij ∗X2ij is the interaction between X1ij and X2ij . We fit model

(1.2) with these three covariates, along with a Gaussian random effect bi to ac-

count for the dependence between the two eyes of the same patient. We consider

the transformation G0(·) from the following class:
{
1 − (1 + ξx)−1/ξ ; ξ ∈ [0, 1]

}
,

where ξ = 0 corresponds to the proportional hazards model and ξ = 1 to the

proportional odds model.

We vary the value of ξ from 0 to 1 in 0.1 increments and maximize the corre-

sponding likelihood. It turns out that ξ = 0.3 is the best choice in that it yields

the maximal value of the observed-data likelihood function. Table 2 summarizes

the results under the selected transformation model, as well as the proportional

hazards and proportional odds models. There is a high degree of dependence

between the two eyes of the same patient in time to visual loss. The treated eye

is less likely to suffer visual loss than the untreated eyes, and treatment is more

effective for adult-onset diabetics than for juvenile-onset diabetics.

Table 2. Parameter estimates under random-effect transformation models

for the diabetic retinopathy study.

Model

Parameter ξ = 0 ξ = 0.3 ξ = 1

β1 -0.523 (0.231) -0.564 (0.250) -0.659 (0.295)

β2 0.421 (0.264) 0.447 (0.288) 0.496 (0.345)

β3 -0.999 (0.369) -1.073 (0.398) -1.234 (0.466)
σ 1.038 (0.191) 1.114 (0.207) 1.296 (0.251)

Note: Standard error estimates are shown in parentheses.

6. Conclusion

The proposed likelihood-based methods have several advantages over the

estimating-equations methods of Cai et al. (2002). First, the proposed estimators

are more efficient. Second, it is less time-consuming to evaluate the variances

of the proposed estimators than those of Cai et al.’s estimators. Third, the

assumption on the independence of the censoring time and failure time required

in the Cai et al. approach is avoided in the likelihood approach. Finally, the

likelihood approach allows one to use AIC and other likelihood-based criteria for

model selection, as demonstrated in the example.

Our experience shows that the algorithms described in Section 2 perform

very well when the initial values are chosen appropriately. We recommend setting

β = 0, σ2 = 1 and the jump sizes of Λ to 1/n. The algorithms are quite fast. It

took about 10 hours on an IBM BladeCenter HS20 machine to complete all the
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simulation studies reported in Table 1. No convergence problem was encountered

in any simulation run.

We have found that the estimation of regression parameters is not sensitive

to the misspecification of the the random-effects distribution. For example, when

we simulated failure times from the proportional hazards gamma frailty model

but fitted the data using the proportional hazards model with normal random

effect, the estimators of the regression parameters have very little bias and the

confidence intervals have reasonable coverage probabilities.

An alternative approach to random-effects models is marginal models. In-

deed, Cai, Wei and Wilcox (2000) studied marginal linear transformation models

for clustered failure time data. There are several reasons for using random-effects

models. First, these models allow one to predict survival experience of a subject

given the event history of other members of the same cluster. Second, efficient

estimation is possible under these models. Third, the dependence structures can

be of scientific interest, especially in genetic studies.
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Appendix

In this appendix, we outline the proofs of the lemmas and theorems. The

detailed proofs are given in a supplementary technical report. We introduce some

notation. Let Oi denote the observations in the ith cluster consisting of ni and

(Yij,∆ij , Xij(Yij),Zij(Yij)), j = 1, . . . , ni. Let Pn and P be the empirical mea-

sure and the expectation of n i.i.d observations O1, . . . ,On. That is, for any mea-

surable function g(O), Pn [g(O)] = n−1
∑n

i=1 g(Oi) and P [g(O)] = E [g(O)] .

Proof of Lemma 1. Under C.7, G′
0(x)

∆ij (1−G0(x))
1−∆ij ≤ c1(1+x)−(∆ij+ρ0)

for some constant c1. Therefore, the left-hand side of (3.3) is bounded by

cni

1 exp
{ ni∑

j=1

∆ijXij(Yij)
T β

} ∫

b

ni∏

j=1

{
1 +

∫ Yij

0
eXij (t)T β+Zij(t)T bdΛ(t)

}−(∆ij+ρ0)

× exp
{ ni∑

j=1

∆ijZij(Yij)
T b

}
ψ(b;γ)dµ(b).

Let M be a constant larger than 1 such that M−1 ≤ eXij(t)
T β ≤M and M−1 ≤
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‖Zij(t)‖ ≤M. Then

1 +

∫ Yij

0
eXij(t)

T β+Zij(t)
T
bdΛ(t) ≥ 1 +M−1e−M‖b‖Λ(Yij)

≥ e−M‖b‖M−1 {1 + Λ(Yij)} .

Thus,

∫

b

ni∏

j=1

{
1 +

∫ Yij

0
eXij(t)T β+Zij(t)T bdΛ(t)

}−(∆ij+ρ0)

× exp
{ ni∑

j=1

∆ijZij(Yij)
Tb

}
ψ(b;γ)dµ(b)

≤
∫

b

ni∏

j=1

{1 + Λ(Yij)}−(∆ij+ρ0)

× exp
{

(M‖b‖ + logM)

ni∑

j=1

(ρ0 + ∆ij) +

ni∑

j=1

∆ijZij(Yij)
T b

}
ψ(b;γ)dµ(b).

Since Zij and Xij are bounded and ψ(b;γ) satisfies C.8, (3.3) in Lemma 1 holds

for some constant c0.

Proof of Lemma 2. Suppose that the parameters (β∗,γ∗,Λ∗) and (β0,γ0,Λ0)

yield the same joint density of the data. That is, almost surely,

∫

b

ni∏

j=1

{
Λ∗′(Yij)e

Xij (Yij)
T β

∗

+Zij(Yij)
T
bG′

0

(∫ Yij

0
eXij(s)

T β
∗

+Zij(s)
T
bdΛ∗(s)

)}∆ij

×
{

1 −G0

(∫ Yij

0
eXij(s)

T β
∗

+Zij(s)
T
bdΛ∗(s)

)}1−∆ij

ψ(b;γ∗)dµ(b)

=

∫

b

ni∏

j=1

{
Λ0

′(Yij)e
Xij (Yij)T β

0
+Zij(Yij)T bG′

0

( ∫ Yij

0
eXij (s)T β

0
+Zij(s)T bdΛ0(s)

)}∆ij

×
{

1 −G0

(∫ Yij

0
eXij(s)

T β
0
+Zij(s)

T
bdΛ0(s)

)}1−∆ij

ψ(b;γ0)dµ(b).

We wish to show that β∗ = β0,γ
∗ = γ0 and Λ∗ = Λ0. For any fixed k ≤ ni, we

perform the following actions on both sides of the above equality: for j ≤ k, we

let ∆ij = 1 and integrate Yij from 0 to tj ; for j > k, if ∆ij = 1, we integrate Yij

from 0 to τ ; otherwise, we let Yij = τ . We then sum over the equalities for all



370 DONGLIN ZENG, D. Y. LIN AND XIHONG LIN

possible {∆ij : j = k + 1, . . . , ni} to obtain

∫

b

k∏

j=1

{
G0

( ∫ tj

0
eXij(s)

T β
∗

+Zij(s)
T
bdΛ∗(s)

)}
ψ(b;γ∗)dµ(b)

=

∫

b

k∏

j=1

{
G0

(∫ tj

0
eXij (s)T β

0
+Zij(s)

T
bdΛ0(s)

)}
ψ(b;γ0)dµ(b). (A.1)

It follows from C.9 that β∗ = β0,γ
∗ = γ0 and Λ∗ = Λ0.

To prove the second half of the lemma, we suppose that there exists a one-
dimensional submodel at the true parameters, denoted by (β0+ǫh1,γ0+ǫh2,Λ0+∫
h3(s)dΛ0(s)), ǫ ∈ R, for which the Fisher information is zero, or equivalently,

the score function along this path is zero almost surely. Simple algebraic manip-
ulations yield

∫

b

R1i(β0,Λ0,b)

ni∏

j=1

{
Λ′

0(Yij)
}∆ij

×
[ ni∑

j=1

Mij(h1, h3,b) +
ψ′(b;γ0)

T h2

ψ(b;γ0)

]
ψ(b;γ0)dµ(b) = 0, (A.2)

where

R1k(β,Λ,b) =

nk∏

l=1

{
G′

0

(∫ Ykl

0
eXkl(t)

T β+Zkl(t)
T
bdΛ(s)

)
eXkl(Ykl)

T β+Zkl(Ykl)
T
b

}∆kl

×
{

1−G0

( ∫ Ykl

0
eXkl(t)

T β+Zkl(t)
T bdΛ(t)

)}1−∆kl

,

Mij(h1, h3,b) =Qij(β0,Λ0,b)

{∫ Yij

0
eXij(t)

T β
0
+Zij(t)

T
b(Xij(t)

T h1+h3(t))dΛ0(t)

}

+∆ij

{
Xij(Yij)

Th1 + h3(Yij)
}
.

We show that (A.2) yields h1 = 0,h2 = 0 and h3 = 0. Fix a k such that 1 ≤
k ≤ ni and, for any function of the type g1(∆i1, Yi1) . . . gni

(∆ini
, Yini

), perform
the following action. Partition {(∆ij , Yij) : j = 1, . . . , ni} into three subsets: for
j ≤ k, let ∆ij = 1 and integrate Yij from 0 to tj ; for j > k and ∆ij = 0, let
Yij = τ ; for j > k and ∆ij = 1, integrate Yij from 0 to τ . Apply this action to
the integrand on the left-hand side of (A.2). Then sum over all possible choices
of ∆ij ∈ {0, 1} for j > k and let t1 = . . . = tni = t. These calculations yield

∫

b

{ k∏

m=1

aim(tm;b)

k∑

m=1

bim(tm;b) +

k∏

m=1

aim(tm;b)
ψ′(b;γ0)

Th2

ψ(b;γ0)

}
ψ(b;γ0)dµ(b)

= 0,
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where

aim(t;b) =G0

( ∫ t

0
eXij (s)T β

0
+Zij(s)T bdΛ0(s)

)
,

bim(t;b) =
G′

0(
∫ t
0 e

Xij(s)
T β

0
+Zij(s)

T
bdΛ0(s))

G0(
∫ t
0 e

Xij(s)T β
0
+Zij(s)T bdΛ0(s))

×
∫ t

0
(Xim(s)Th1 + h3(s))e

Xim(s)T β
0
+Zim(s)T

bdΛ0(s).

It then follows from C.10 that h2 = 0 and bim(t,b) = 0. The latter implies that
Xij(t)

T h1 + h3(t) = 0. Thus, C.10 yields h1 = 0 and h3 = 0.

Proof of Lemma 3. Under C.7, {G′
0(x)x}∆ij {1 −G0(x)}1−∆ij is bounded by

some constant c1. Thus, (2.1) is bounded from above by

c2

n∏

i=1

∫

b

ni∏

j=1

{
1 −G0(

∫ τ

0
eXij(t)T β+Zij(t)T bdΛ(t))

}I(Yij=τ)

ψ(b;γ)dµ(b),

where c2 is some number depending on the observations. On the other hand, C.1
implies that there exists some (i, j) such that Yij = τ with probability tending
to one. Therefore, at least one integral in the above expression is present, and
such an integral is zero if Λ has an infinite jump size for some failure time. Thus
the NPMLE exists and Λ̂n has finite jump sizes.

Proof of Theorem 1. Let Ω be the measurable set in the probability space
such that all the conditions hold for any fixed ω ∈ Ω. Clearly, P (Ω) = 1. Thus,
the following arguments pertain to fixed ω ∈ Ω. We use O(1) to denote some
positive constant, which may depend on ω but is independent of parameters and
sample size. The proof consists of two steps.

Step 1. We prove that Λ̂n(t) has an upper bound in [0, τ ] with probability
one. Write ln(β,γ,Λ) = logLn(β,γ,Λ). We prove the boundedness of Λ̂n(·) by
contradiction. Suppose that Λ̂n(τ) → ∞. From the compactness of Θ, we also as-
sume that β̂n → β∗ and γ̂n → γ∗. The idea of obtaining a contradiction is the fol-
lowing: we first construct a step function Λn with jumps only at the Yij for which
∆ij = 1 such that Λn is close to the true function Λ0; then since (β̂n, γ̂n, Λ̂n)
maximizes ln(β,γ,Λ), it holds that 0 ≤ {ln(β̂n, γ̂n, Λ̂n) − ln(β0,γ0,Λn)}/n; fi-
nally, we show that if Λ̂n(τ) → ∞, the right-hand side of the foregoing inequality
will eventually be negative, which yields the contradiction.

By differentiating ln(β,γ,Λ) with respect to Λ{Yij} and setting it to zero,
we see that Λ̂n{Yij} satisfies

∆ij

Λ{Yij}
=

n∑

k=1

{∫
b
R1k(β̂n,Λ,b)R2k(Yij ; β̂n,Λ,b)ψ(b; γ̂n)dµ(b)

∫
b
R1k(β̂n,Λ,b)ψ(b; γ̂n)dµ(b)

}

, (A.3)
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where R1k(·) is defined in the proof of Lemma 2, and

R2k(t;β,Λ,b) =

nk∑

l=1

I(Ykl ≥ t)eXkl(t)
T β+Zkl(t)

T
b

×
{
− ∆klG

′′
0(

∫ Ykl

0 eXkl(s)
T β+Zkl(s)

T bdΛ(s))

G′
0(

∫ Ykl

0 eXkl(s)T β+Zkl(s)T bdΛ(s))

+
(1 − ∆kl)G

′
0(

∫ Ykl

0 eXkl(s)
T β+Zkl(s)

T bdΛ(s))

1 −G0(
∫ Ykl

0 eXkl(s)T β+Zkl(s)T bdΛ(s))

}
.

In view of (A.3), we construct a step function Λn(t) with jumps only at the Yij

with jump size Λn{Yij} satisfying

∆ij

Λn{Yij}
=

n∑

k=1

{∫
b
R1k(β0,Λ0,b)R2k(Yij ;β0,Λ0,b)ψ(b;γ0)dµ(b)∫

b
R1k(β0,Λ0,b)ψ(b;γ0)dµ(b)

}
. (A.4)

Thus, Λn(t) =
∑n

i=1

∑ni

j=1 I(Yij ≤ t)Λn{Yij}. By the Glivenko-Cantelli property

of the classes R1k and R2k (proved in the appendix of our technical report), we

can show that Λn(t) converges uniformly in [0, τ ] to Λ0(t).

Clearly, n−1ln(β̂n, γ̂n, Λ̂n)−n−1ln(β0,γ0,Λn) ≥ 0. From the construction of

Λn and according to (3.3), this inequality is equivalent to

0 ≤ O(1)+
1

n

n∑

i=1

ni∑

j=1

log
{
nΛ̂n{Yij}

}
− 1

n

n∑

i=1

ni∑

j=1

(ρ0+∆ij) log(1+Λ̂n(Yij)). (A.5)

We show that if Λ̂n(τ) → ∞, the right-hand side of (A.5) is eventually negative.

The proof of the divergence of the right-hand side mimics the arguments of

Murphy (1994). Specifically, we consider a partition of [0, τ ] which consists of

a sequence τ = s0 > · · · > sN = 0. Then the right-hand side of (A.5) can be

bounded from above by

O(1) +

N∑

q=0

1

n

n∑

i=1

ni∑

j=1

I(Yij ∈ [sq+1, sq)) log
{
nΛ̂{Yij}

}

− 1

n

n∑

i=1

ni∑

j=1

I(Yij = τ)ρ0 log(1 + Λ̂(τ))

−
N∑

q=0

1

n

n∑

i=1

ni∑

j=1

I(Yij ∈ [sq+1, sq)) log(1 + Λ̂(Yij)),
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which is further bounded by

− 1

2n

n∑

i=1

ni∑

j=1

(ρ0 + ∆ij)I(Yij = τ) log(1 + Λ̂n(τ))

−
{

1

2n

n∑

i=1

ni∑

j=1

(ρ0 + ∆ij)I(Yij = τ) log(1 + Λ̂n(τ))

− 1

n

n∑

i=1

ni∑

j=1

∆ijI(Yij ∈ [s1, s0)) log(1 + Λ̂n(τ))

}

−
N∑

q=1

{
1

n

n∑

i=1

ni∑

j=1

(ρ0 + ∆ij)I(Yij ∈ [sq, sq−1)) log(1 + Λ̂n(sq))

− 1

n

n∑

i=1

ni∑

j=1

∆ijI(Yij ∈ [sq+1, sq)) log(1 + Λ̂n(sq))

}
+O(1). (A.6)

Using Murphy’s (1994) idea of constructing the partition, we can choose s0 >

s1 > s2 > . . . > sN such that the first term on the right-hand side of (A.6)

diverges to −∞ as Λ̂n(τ) → ∞ and the second term and the third term are

negative for large n. This contradicts the fact that (A.6) should be non-negative.

Thus we have shown that, with probability one, Λ̂n(τ) has an upper bound.

By Helly’s Selection Theorem, we can assume that β̂n → β∗, γ̂n → γ∗, and Λ̂n

converges pointwise to some increasing function Λ∗.

Step 2. We show that β∗ = β0,γ
∗ = γ0 and Λ∗(t) = Λ0(t). We consider

0 ≤ 1

n
ln(β̂n, γ̂n, Λ̂n) − 1

n
ln(β0,γ0,Λn)

=
1

n

n∑

i=1

log

{∫

b
R1i(β̂n, Λ̂n,b)ψ(b; γ̂n)dµ(b)

}

− 1

n

n∑

i=1

log

{∫

b
R1i(β0,Λn,b)ψ(b;γ0)dµ(b)

}

+
1

n

n∑

i=1

ni∑

j=1

∆ij log

[
Λ̂n{Yij}
Λn{Yij}

]
. (A.7)

Using equations (A.3) and (A.4), we can easily see that Λ̂n(t) is absolutely con-

tinuous with respect to Λn(t), and

Λ̂n(t) =

∫ t

0

Pn [ν(O;β0,γ0,Λ0, t)]∣∣∣Pn

[
ν(O; β̂n, γ̂n, Λ̂n, t)

] ∣∣∣
dΛn(t), (A.8)
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where

ν(Ok;β,γ,Λ, t) =

∫
b
R1k(β,Λ,b)R2k(t;β,Λ,b)ψ(b;γ)dµ(b)∫

b
R1k(β,Λ,b)ψ(b;γ)dµ(b)

.

It follows from the Donsker property proved in the appendix of our technical

report that

sup
t∈[0,τ ]

∣∣∣Pn[ν(O;β0,γ0,Λ0, t)] − P[ν(O;β0,γ0,Λ0, t)]
∣∣∣ → 0, a.s.,

sup
t∈[0,τ ]

∣∣∣Pn[ν(O; β̂n, γ̂n, Λ̂n, t)] −P[ν(O;β∗,γ∗,Λ∗, t)]
∣∣∣ → 0, a.s..

We wish to take limits on both sides of (A.8). We first show that the de-

nominator of the integrand is uniformly bounded away from zero. From (A.8),

for any ǫ > 0,

lim sup
n

Λ̂n(τ) ≥
∫ τ

0

P [ν(O;β0,γ0,Λ0, t)]

ǫ+
∣∣∣P [ν(O;β∗,γ∗,Λ∗, t)]

∣∣∣
dΛ0(t).

Let ǫ→ 0 and use the Monotone Convergence Theorem to obtain

∫ τ

0

P [ν(O;β0,γ0,Λ0, t)]∣∣∣P [ν(O;β∗,γ∗,Λ∗, t)]
∣∣∣
λ0(t)dt <∞. (A.9)

We claim that mint∈[0,τ ]

∣∣∣P [ν(O;β∗,γ∗,Λ∗, t)]
∣∣∣ > 0. If this inequality does not

hold, then there exists some t∗ ∈ [0, τ ] such that P [ν(O;β∗,γ∗,Λ∗, t∗)] = 0.

The function P [ν(O;β∗,γ∗,Λ∗, t)] is right-differentiable almost everywhere pro-

vided that λc(t|Xij(t),Zij(t)) exists and is uniformly bounded almost everywhere.

Thus, there exists a δ > 0 such that for t ∈ (t∗, t∗ + δ),

∣∣∣P [ν(O;β∗,γ∗,Λ∗, t)]
∣∣∣ =

∣∣∣P [ν(O;β∗,γ∗,Λ∗, t)] − P [ν(O;β∗,γ∗,Λ∗, t)]
∣∣∣

≤ O(1)|t− t∗|

almost everywhere. Thus (A.9) implies
∫ t∗+δ
t∗ λ0(t)/|t− t∗|dt < ∞. This is a

contradiction.

We can now take the limits on both sides of (A.8) to obtain

Λ∗(t) =

∫ t

0

P [ν(O;β0,γ0,Λ0, t)]∣∣∣P [ν(O;β∗,γ∗,Λ∗, t)]
∣∣∣
dΛ0(t).
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We conclude that Λ∗(t) is absolutely continuous with respect to Λ0(t), so that

Λ∗(t) is differentiable with respect to t. In addition, dΛ̂n(t)/dΛn(t) converges to

dΛ∗(t)/dΛ0(t) uniformly in t. Let n→ ∞ in (A.7). Then we have

0 ≤ 1

n
ln(β̂n, γ̂n, Λ̂n) − 1

n
ln(β0,γ0,Λn)

→ E

{

log

∫
b
R1i(β

∗,Λ∗,b)ψ(b;γ∗)dµ(b)
∏ni

j=1 Λ∗′(Yij)
∆ij

∫
b
R1i(β0,Λ0,b)ψ(b;γ0)dµ(b)

∏ni

j=1 Λ0
′(Yij)∆ij

}

,

which is the negative Kullback-Leibler information. The identifiability result in

Lemma 2 implies that β∗ = β0, γ∗ = γ0, and Λ∗ = Λ0.

Combining the results from Step 1 and Step 2, we conclude that, almost

surely,

‖β̂n − β0‖ → 0, ‖γ̂n − γ0‖ → 0, |Λ̂n(y) − Λ0(y)| → 0, y ∈ [0, τ ].

The uniform convergence of Λ̂n to Λ0 follows from the fact that Λ0 is a continuous

function.

Proofs of Theorems 2-4. The proof of the weak convergence of
√
n(β̂

T

n −
βT

0 , γ̂
T
n −γT

0 , Λ̂n−Λ0) in Theorem 2 makes use of Theorem 3.3.1 of van der Vaart

and Wellner (1996). The most difficult part is to verify that the information

operator at the true parameters is invertible. This can be done by showing

that the information operator is the summation of an invertible operator and

a compact operator and that the the information operator is one to one. The

former is derived from the explicit expression of the information operator and

the latter follows from the fact, shown in Lemma 2, that any submodel has

non-singular information. The details can be found in our technical report.

The proof of Theorem 3 proceeds by verifying the conditions of Murphy

and van der Vaart (2000). In particular, we can construct an approximate least

favorable submodel using the invertibility of the information operator. The no-

bias condition along the least favorable submodel follows from the arguments used

in proving Theorem 1. The other regularity conditions follow from the Donsker

property of appropriate functional classes proved in our technical report.

The proof of Theorem 4 is essentially the same as the that of Theorem 3 of

Parner (1998). The main idea is that the empirical information operator based

on Jn approximates the true information operator, so that it is invertible; see

our technical report.
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