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Abstract: Suppose that data on (X,Y), where X is a q × 1 vector and Y is p ×

1 vector, are collected from C independent but closely related populations, and

that one is interested in measuring the amount of relationship between sets of

variables Y and X within each population. Goria and Flury (1996) argued that in

these situations it is more meaningful to construct common canonical variates that

are identical across populations, while the canonical correlations themselves may

vary. Here we construct common information canonical variates based on Kullback-

Leibler information. The proposed method does not require specific distributional

assumptions and is useful in measuring true relations, whether linear or nonlinear.

Simulations and dataset examples are presented. We also contrast our findings, in

some instances, with those of Goria and Flury (1996).

Key words and phrases: Common information canonical variates, kernel density

estimators, sequential permutation test.

1. Introduction

Canonical correlation analysis (CCA), a theory pioneered by Hotelling (1935,

1936), is a useful multivariate statistical technique for measuring the amount

of linear relationship between sets of multiple variables Y and X. The pur-

pose of canonical correlation is to identify the optimum structure or dimen-

sionality of each variable set that maximizes the linear relationship between

them. In the last three decades or so there has been a proliferation of litera-

ture on generalizations and modifications of the classical two-set theory of CCA.

Kettenring (1971, 1985) investigated simultaneous consideration of more than

two sets of random variables. Van der Burg and De Leeuw (1983) presented

an alternating least squares algorithm, termed as nonlinear canonical correla-

tion analysis, to find an optimal scale for each variable in multivariate settings.

Van der Burg, De Leeuw and Verdegaal (1988) extended the latter work to sev-

eral sets of variables. Shi and Taam (1992) used a conditional mean and a non-

parametric estimation method to find nonlinear structures between two sets of
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the variables. Leurgans, Moyeed and Silverman (1993) extended the CCA to

situation where data are curves, while Luijtens, Symons and Vuylsteke-wauters

(1994) developed linear and nonlinear CCA for group-structured data. Recently,

Yin (2004) proposed a new canonical analysis based on Kullback-Leibler (KL)

information, which is useful in measuring true relations, whether linear or non-

linear.

As Kettenring (1971) remarks, canonical correlation analysis results are of-

ten difficult to interpret but that this can be overcome by imposing restrictions

on the coefficients of the canonical variates. Neuenschwander and Flury (1995)

developed this idea of common canonical variates further, under the restriction

that the canonical variates have the same coefficients in all the sets of the vari-

ables. Das and Sen (1994) have studied restricted canonical correlations obtained

under nonnegativity constraints on the coefficients. In their pioneering article,

Goria and Flury (1996) proposed a new concept called common canonical anal-

ysis in which the coefficients of the canonical variates are identical across the C

populations, while the canonical correlations themselves may vary across popu-

lations. Such common canonical models, when appropriate for given data, are

more parsimonious and hence are preferred over one with many parameters. In

this paper, we revisit the problem studied in Goria and Flury (1996) and propose

a new common canonical analysis for C independent populations using a recently

developed KL information approach of Yin (2004).

We formally describe our method in Section 2 and study its basic properties

in Section 2.1. A computational algorithm is described in Section 2.2, and a

permutation test for determining the number of canonical variates is developed

in Section 2.3. In Section 2.4, under certain regularity conditions, we obtain

strong consistency of the proposed estimators. In Section 3 we present simula-

tions and revisit two examples, of which one with machine data brings in some

interesting differences between our approach and that of Goria and Flury (1996).

Concluding remarks are given in Section 4.

2. The Common CCA Method

Suppose that {(Yi,Xi,Wi), i = 1, · · · , n} is a random sample distributed

as (Y,X,W ), where W = 1, . . . , C. As in Goria and Flury (1996), we want to

construct canonical variates η = aTX and ψ = bTY such that η and ψ have

the largest possible information within each of the C groups, and the coeffi-

cient vectors a and b are identical across all the independent groups. These,

so called common canonical variates, provide a parsimonious summary of data

while describing the relationships between two sets of variables across indepen-
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dent populations. More specifically, we define KL information by

I(a,b) = E
(

log
p(aTX|bTY,W )

p(aTX|W )

)

(1)

= E
(

log
p(aTX,bTY|W )

p(bTY|W )p(aTX|W )

)

(2)

= E
(

log
p(bTY|aTX,W )

p(bTY|W )

)

, (3)

where p(·|·) is the conditional density. For each i ≤ k = min(q, p), we find the

coefficient vectors ai and bi such that

Ii = I(ai,bi) = max
a,b

I(a,b) (4)

subject to the constraints aT
i Σ1ai = bT

i Σ2bi = 1 and aT
j Σ1ai = bT

j Σ2bi = 0,

for j = 1, . . . , k, i 6= j, and Σ1 = Σw
X, Σ2 = Σw

Y for w = 1, . . . , C. Here,

Σw
X and Σw

Y are conditional covariance matrices of X and Y, respectively, given

W = w. Note that the constraints in (4) are not essential. However, we impose

these in order to be consistent with the classical CCA method. Also, in practice,

by the nature of the common canonical covariate problem, we would expect the

covariance matrices across the groups to be the same. Even if this is not the

case, one can standardize the variables within each group and have an identity

covariance matrix across the groups.

Here, we refer to the vectors ai and bi as the ith common information

canonical coefficient vectors for X and Y, respectively. The random variables

ηi = aT
i X and ψi = bT

i Y are called the ith common information canonical vari-

ates, and Ii is called the ith mutual common canonical information. Note that

Ii, 1 ≤ i ≤ k = min(q, p), plays a somewhat similar role as the ith canonical

correlation in the classical CCA as shown in part (2) of Proposition 2 below.

In general, the information numbers Ii are much harder to interpret than the

canonical correlations because the former measure dependence through the like-

lihood, including dependence via mean functions or variance functions; see Yin

(2004, Sec. 2.3 and Sec. 7.1) for more details. However, when (X,Y)|W is jointly

normally distributed, it can be shown that I(a,b) = (−1/2)
∑C

w=1 pw log[1 −
ρ2

w(a,b)], where pw = P (W = w) and ρw(a,b) is the correlation coefficient be-

tween aTX and bTY within group w. If C = 1, then the usual CCA is equivalent

to the information CCA (Yin (2004)). However, if C > 1 and ρ2
w(a,b) varies

with w for the same pair of variates, but with the same order within w for dif-

ferent pairs, then our common method agrees with the usual CCA for individual

groups. If C > 1 and ρ2
w(a,b) varies with w for the same pair of variates, but

with different order within w for different pairs, then our common method does
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not agree with usual CCA for individual groups. In such a case, since the signif-

icance of our information value only points to some significant relationship but

not the actual structure of it (unlike the common CCA method where a signif-

icant correlation coefficient speaks to a linear relationship), we can use plots to

reveal the actual structure of relationship. These plots may help us to detect

whether a common model holds. For instance, when C = 2, suppose that there

is one significant pair (η1, ψ1) for group 1 (w = 1), and there is one significant

pair (η2, ψ2) for group 2 (w = 2), but Cov (η1, η2) = 0 and Cov (ψ1, ψ2) = 0.

Then a common model may conclude that there are two significant pairs, while

the plots may reveal otherwise. In this instance, our information CCA will detect

that a common model may not be appropriate, see the machine data example in

Section 3.2.

Throughout, we assume that the maximization in (4) has a unique solution.

Also, assuming that all the required densities exist, we maximize the sample

version of I(a,b) with respect to a and b:

In(a,b) =
1

n

C
∑

w=1

nw
∑

j=1

log
(p(aTXj|bTYj , w)

p(aTXj |w)

)

=
1

n

C
∑

w=1

nw
∑

j=1

log
(p(bTYj|aTXj , w)

p(bT Yj|w)

)

,

where nw is the sample size for group w and n =
∑C

w=1 nw. The successive

common coefficient vectors are obtained by maximizing In(a,b) subject the con-

straints in (4). If a is known, then the first equality above is equivalent to

maximizing the conditional log likelihood over b, and vice versa. Thus, our

method maximizes a conditional log likelihood function in order to find the com-

mon canonical coefficient vectors. Our approach is more general than the one

proposed in Goria and Flury (1996) because the latter method can only detect

linear relationships. Note that the density functions in the above equalities are

unknown and hence need to be estimated using appropriate kernel density esti-

mators. Details are in Section 2.2.

2.1. Properties of the method

For the information measure I(a,b) defined in (1) we establish some basic

properties, the first of which gives the invariance of the information measure

under affine transformations.

Proposition 1. Let U = A−1X + a0 and V = B−1Y + b0 where A and B are

two nonsingular matrices with appropriate dimensions, and a0 and b0 are fixed

q × 1 and p× 1 vectors. Then
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1. IXY(a,b) = IUV(ATa,BT b).

2. The common canonical information between U and V is the same as that of

X and Y.

3. The common information canonical vectors for U and V are given by ATai

and BTbi, i = 1, . . . , k, where ai and bi are the common information canon-

ical coefficient vectors for X and Y.

The first part of the next proposition gives a necessary and sufficient condition for

the random variables aTX and bTY to be conditionally independent, given W .

Incidentally, if I(a,b) = 0 for every a and b, then the first part of Proposition
2 also implies that the random vectors X and Y are conditionally independent,

given W . Note that in the Common CCA, ρw(a,b) = 0 for every a,b and fixed

w does not necessarily imply independence of aTX and bTY given w, unless

(X,Y)|W is normal. The second part of Proposition 2 shows that Ii also satisfies

similar properties as the classical canonical correlations in that the common

canonical information decreases, with I1 providing the most information.

Proposition 2. The following hold for the information measure defined above.

1. I(a,b) ≥ 0, for any a and b. Moreover, I(a,b) = 0 iff bTY is condition-

ally independent of aTX, given W .

2. I1 > · · · > Ii · · · > Im > 0 = Im+1 = · · · = Ik, where m ≤ k = min(q, p).

2.2. Computational algorithm

As in Yin (2004), we use the sample version of (2) to obtain (a,b). For our
computations, as suggested in Scott (1992) and Silverman (1986), we use a two-
dimensional Gaussian kernel density estimate (with product kernels) to estimate
p(aTX,bTY|W ), and a one-dimensional Gaussian kernel density estimate to es-
timate p(aTX|W ) and p(bTY|W ), respectively. For all these density estimates
we use the optimal bandwidth suggested in Scott (1992, p. 150). Step 1 below
gives definitions of the density estimates. Step 2 gives the sample index that
needs to be maximized.

Step 1. Construct the following one- and two- dimensional density estimates
using a univariate Gaussian kernel K:

p1(u|w) =
1

nwh

nw
∑

i=1

K
(u− ui

h

)

for , u ∈ R,

p2(u1, u2|w) =
1

nwh1h2

nw
∑

i=1

K
(u1 − ui1

h1

)

K
(u2 − ui2

h2

)

for , (u1, u2) ∈ R2,

where h = 1.06sn−.2
w and hj = sjn

−1/6
w for j = 1, 2, with the corresponding

sample standard deviations s, s1, and s2 of u, u1, and u2, respectively.
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Step 2. Obtain

(âi,n, b̂i,n) = arg max
a,b

În(a,b) = arg max
a,b

1

n

C
∑

w=1

nw
∑

j=1

log
p2(a

Txj ,b
Tyj |w)

p1(aTxj |w)p1(bT yj|w)
.

Any iteratively re-weighted least squares algorithm can be used to solve this
equation. However, a preferred method that incorporates the constraint in (4)
(see Hernández and Velilla (2005)) is known as Sequential Quadratic Program-
ming (SQP) (Gill, Murray and Wright (1981, Chap. 6)). This method imposes
nonlinear constraint during the search. In our computations, we use the corre-
sponding sample versions of pooled covariance matrices for the data on X and Y,
respectively (see (4)), and the function ‘fmincon’ in Matlab that uses SQP pro-
cedure. With this function, given initial values, we use the default convergence
criterion in Matlab. This processes is repeated until i = min(q, p).

2.3. Sequential permutation test and graphical plot

One of the goals of CCA is to determine the number of canonical variates.
In our present context, this essentially means that we need to determine the
number of common canonical information values Ii (starting from i = 1) that
are significantly different from zero. This is possible here, because part 1 of
Proposition 2 guarantees that I(a,b) = 0 iff bT Y is conditionally independent
of aTX, given W . In view of this, we develop the following sequential permutation
test to estimate the number of pairs of the canonical variates.

For notational convenience, let A0 and B0 be null vectors. Let Ai =
(a1, · · · ,ai) and Bi = (b1, · · · ,bi) be the first i common information canoni-
cal coefficient vectors for X and Y, respectively. Let Ac,i = (ai+1, · · · ,aq) and
Bc,i = (bi+1, · · · ,bp) be matrices so that Aq = (Ai,Ac,i) and Bp = (Bi,Bc,i)
satisfy AT

q Σ1Aq = Iq and BT
p Σ2Bp = Ip. For Ii defined in (4), we want

to sequentially test the following hypotheses: H0 : Ii = 0;H1 : Ii > 0, for
i = 1, · · · , k = min(q, p).

Fix (AT
c,i−1x,B

T
c,i−1y), use the algorithm in Section 2.2 to calculate Îi,n =

În(âi,n, b̂i,n). Let xw and yw be the corresponding x and y data for W = w,
respectively. For fixed w, permute the nw points of the BT

c.iyw data and repeat
this for each w = 1, . . . , C. This forms the new data BT

c,i−1ynew. Combine this

with AT
c,i−1x to find maxa,b În(a,b) using the algorithm in Section 2.2 again.

Denote this maximum value as I∗
i,n. Repeat this process B times, each time

calculating I∗
i,n. Let I∗

i,0.05 be the 95th percentile of I∗
1,n values. We reject H0 if

Îi,n > I∗
i,0.05 and proceed to the case i+ 1. If we do not reject H0, then we stop

and conclude that there are (i − 1) significant common information canonical
variates. In our numerical studies we use B = 1,000. For more details, see
Davison and Hinkley (1997), and Efron and Tibshirani (1993).
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In practice, we use the corresponding sample versions to carry out the per-

mutation test. Our choice of kernel or bandwidth may introduce some bias in the

estimated densities used above. However, these will be canceled by our permuta-

tion test since we use the same kernel and bandwidths during each permutation.

Undoubtedly, the sequential permutation tests given above are computationally

intensive.

As an alternative, it is possible to use graphical methods to estimate number

of pairs. After finding the pairs of common information variates, we can plot each

common pair conditioning on w and use the structure of the plots to visually

decide on the number of pairs; see Example 2 in Section 3.1. This is particularly

reasonable in a canonical analysis because we focus on relationship within the pair

(ηi, ψi) rather than between the pairs (ηi, ψj) for i 6= j. In addition, these plots

can help us identify even nonlinear relationships between common information

variates across the groups.

Before we proceed further, we illustrate our common information canonical

method and sequential permutation test through a simulated example where the

true relationships are nonlinear for each group. This example also brings about

a sharp contrast between our method and the ones available in the literature.

An Example: Suppose P [W = w] = 0.5 for w = 0, 1, and X1, X2, Y2, ǫ1,

ǫ2 and W are independent random variables, where X1, X2, Y2, ǫ1 and ǫ2 are

standard normal random variables. We let X = (X1,X2)
T and Y = (Y1, Y2)

T ,

where Y1 = (X1 + X2)
2 + .2ǫ1 if W = 0, and Y1 = 8 − (X1 + X2)

2 + .2ǫ2 if

W = 1. It is clear that there is only one true common pair for each group given

by (η = aTX, ψ = bTY) with aT = (1, 1) and bT = (1, 0).

Denote by (âT x, b̂Ty) the estimate based on a random sample of size n = 60.

The correlation coefficient between aTx and âTx values, and between bT y and

b̂Ty values were 0.998 and 0.9983, respectively. Moreover, we performed the

permutation test of H0 : I1 = 0 vs H1 : I1 > 0 which yielded a p-value of 0, and

a permutation test of H0 : I2 = 0 vs H1 : I2 > 0 which yielded a p-value of 0.679.

From these, we can conclude that there is only one significant common pair and

our estimates are rather accurate. Note in this example that the classical CCA

for each individual group or the common canonical analysis of Goria and Flury

(1996) would fail to detect the true relationship due to nonlinearity.

2.4. Asymptotic theory

For the estimates defined in Section 2.2, it is possible to establish strong

consistency by essentially following the steps in Yin (2004), along with condi-

tioning on W = w. Here, we prove the strong consistency of slightly mod-

ified estimates of common information coefficient vectors. The modified esti-

mates defined below are obtained by replacing the kernel density estimators
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defined in Section 2.2 with the following leave-one-out type kernel density es-
timators. Incidentally, these leave-one-out density estimators have been used by
Powell, Stock and Stoker (1989) in their work. We prove the consistency result
for the case i = 1 only. The proof is given in the Appendix.

For a univariate kernel K, define the leave-one-out kernel density estimates
as

f̂i(u|w) =
1

(nw − 1)h11

nw
∑

j=1,j 6=i

K
(u− uj

h11

)

for u ∈ R
1, (5)

f̂i(u1, u2|w)=
1

(nw−1)h21h22

nw
∑

j=1,j 6=i

K
(u1−uj1

h21

)

K
(u2−uj2

h22

)

for (u1, u2)∈R
2, (6)

where hij = cijn
−δij
w for some cij , δij > 0 to be specified later.

Define

(α1,n,β1,n)=arg max
α,β

Î(1)
n (α,β)=arg max

α

1

n

C
∑

w=1

nw
∑

i=1

log
f̂i(β

TYi,α
TXi|w)

f̂i(β
TYi|w)f̂i(αTXi|w)

.

Let Ω be the support of V = (YT ,XT )T and let
Ωy = {y : there exist x such that (y,x) ∈ Ω}, Ωx = {x : there exist y such that
(y,x) ∈ Ω}, Tα = {t : there exist x ∈ Ωx and α ∈ Θ such that t = αTx} and
Tβ = {s : there exist y ∈ Ωy and β ∈ Θ such that s = βTy}, where Θ denotes
the parameter space for α and β.

We state the regularity conditions needed to prove the consistency theorem.
Assume the following.

(C.0) (a,b) is unique and identifiable.
(C.1) (Yi,Xi) ∈ R

p × R
q are i.i.d. random vectors with E (||Xi||) < ∞ and

E (||Yi||) <∞.
(C.2) Θ is a compact subset of Rp ×Rq.
(C.3) The set Ω is compact such that inf(v,α,β)∈Ω×Θ p(β

Ty,αT x|w) > 0,

inf(x,α)∈Ωx×Θ p(α
Tx|w) > 0, and inf(y,β)∈Ωy×Θ p(β

Ty|w) > 0.

(C.4) p(s, t|w), p(t|w) and p(s|w) satisfy Lipschitz conditions, for s ∈ Tβ, and
t ∈ Tα, uniformly in (α,β) ∈ Θ for any fixed w.

(C.5) K is a real, symmetric, and differentiable kernel with |K(u)| < c0 and
|(∂K(u))/∂u| < c0 for some c0 > 0.

In condition (C.0), even if (a,b) is the unique population direction, it may
not be identifiable. Note that for any nonzero constants c1 and c2, (c1a, c2b)
will give the same solution. Thus for identifiability, we need to impose some
constraints. For instance, without loss of generality, we can let the first element
of a,b to be 1, then the rest of the q − 1 and p− 1 parameters, respectively, are
uniquely determined and identifiable.
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Note that condition (C.3) seems at first glance restrictive. It says that the

joint and the marginal pdfs are bounded below by 0. However, we may confine

it to a relevant compact region, as we do in condition (C.2), where the pdfs are

strictly positive. We use condition (C.3) for technical simplicity.

Lemma 1. Under the assumptions (C.0)−(C.5), with δij ∈ (0, 1/4) in (6), we

have

sup
v∈Ω

sup
(α,β)∈Θ

| log f̂i(s, t|w) − log p(s, t|w)| → 0 a.s.

sup
x∈Ωx

sup
α∈Θ

| log f̂i(t|w) − log p(t|w)| → 0 a.s.

sup
y∈Ωy

sup
β∈Θ

| log f̂i(s|w) − log p(s|w)| → 0 a.s..

Lemma 2. Under (C.0)−(C.5), with δij ∈ (0, 1/4) in (6), we have

sup
(α,β)∈Θ

|Î(1)
n (α,β) − I(α,β)| → 0 a.s..

Theorem 1. Under (C.0)–(C.5), with δij ∈ (0, 1/4) in (6), we have (α1,n,β1,n)

→ (a,b) a.s..

Theorem 1 provides the consistency result for the first pair. The second pair

is obtained by maximizing Î(α,β) over the set {(α,β) ∈ Rq×Rp : α ⊥ α1,n,β ⊥
β1,n} which is a random set depending on (α1,n,β1,n). If (α1,n,β1,n) were the

population pair, then the proof for the second pair is exactly the same. However,

since (α1,n,β1,n) is a consistent estimator, we can modify the proof in Theorem

1 appropriately to obtain the consistency of the second pair. The same logic can

then be applied to further pairs. We omitted these proofs here.

3. Numerical studies

3.1. Simulations

We present two simulation studies to assess the performance of our method.

We simulated 100 datasets for each of the two studies where there are two groups,

i.e, C = 2, but the relationship between the true pairs is linear and/or nonlinear.

We use the distance m = ||(It−B̂B̂T )B|| if s ≥ k, or m = ||(It−BBT )B̂|| if s < k

(Xia, Tong, Li and Zhu (2002)), to measure the goodness of two k-dimensional

subspaces S(Bt×k) and S(B̂t×s), where BT B = Ik and B̂T B̂ = Is. Also see

Ye and Weiss (2003) and Li, Zha and Chiaromonte (2005) for similar measures.

If m = 0, then S(B) = S(B̂). The smaller is the m value, the better is the

estimate.
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Example 1. Let P [W = w] = 0.5 for w = 0, 1. Suppose X1, X2, Y2, ǫ1,
ǫ2 and W are independent random variables, where X1, X2, Y2, ǫ1 and ǫ2 are

standard normal random variables. Let X = (X1,X2)
T and Y = (Y1, Y2)

T ,

where Y1 = X1 +X2 + .2ǫ1 if W = 0, and Y1 = sin(X1 +X2) + .3ǫ2 if W = 1.
It is clear that there is only one true common pair for each group given by

(η = aTX, ψ = bTY) with aT = (1, 1) and bT = (1, 0). However, note that the
relationship between the pair is linear when W = 0 and nonlinear when W = 1.

Table 1 reports the mean ± stand.error for 100 values of m2 with B̂ = â

and B = a, and B̂ = b̂ and B = b, respectively. We take a0 = (1/
√

5,−2/
√

5)T

and b0 = (1/
√

2, 1/
√

2)T . From Table 1, one can see that the results are more

accurate for larger sample sizes as expected. Even when sample size n = 60, the
results seem reasonable.

Table 1. Accuracy of the estimated dimensions in Example 1.

m2 n = 60 n = 120 n = 240

a 0.1615± 0.3456 0.0316 ± 0.1651 0.0176± 0.1071

b 0.1301± 0.2995 0.0253 ± 0.1386 0.0120± 0.0664

To see the effect of the initial values, we choose a0 = (1/
√

2, 1/
√

2)T and

b0 = (0, 1)T . The results are 0.0220 ± 0.0880 and 0.0785 ± 0.2358 for a and b

respectively, when n = 60; 0.0139 ± 0.0927 and 0.0126 ± 0.0824 for a and b,

respectively, when n = 240. This shows that there is some early effect of initial

values, possibly due to the procedure being trapped around a local maximum, or

slower convergence to the solution etc., but these problems disappear when the

sample size is large. We suggest that when the sample size is small, one might

use prior information for choosing starting values, and several of them to check

whether a proper global solution is reached. Another way for choosing initial

values is to take that (a0,b0) with the biggest index Î(a0,b0) among a set of

random selected initials values.

In addition, based on a random sample of size n = 60, we performed the

permutation test of H0 : I1 = 0 vs H1 : I1 > 0, which yielded a p-value of 0,

and a permutation test of H0 : I2 = 0 vs H1 : I2 > 0, which yielded a p-value of

0.858. From this we conclude that there is only one common pair, which indeed

is the case.

Example 2. Let P [W = 0] = 0.4 = 1 − P [W = 1]. Suppose that X1 ∼
N(0, 1), X2 ∼ t13, X3 ∼ F (2, 10), X4 ∼ χ2(2), X5 ∼ F (2, 12), X6 ∼ χ2(3),

Y2 ∼ U(0, 1), Y3 ∼ N(0, 1), Y4 ∼ χ2(3), Y3 ∼ t15, and ǫi’s for i = 1, 2, 3, 4, are

iid standard normal. Let (η1 = aT
1 X, ψ1 = bT

1 Y) with aT
1 = (0, 0, 0, 0, 1, .3) and

bT
1 = (1,−2, 0, 0, 0, 0), and (η2 = aT

2 X, ψ2 = bT
2 Y) with aT

2 = (1,−1, 1,−1, 0, 0)

and bT
2 = (0, 0, 0, 1,−1, 1). Furthermore, we let bT

1 Y = cos(aT
1 X) + 0.2ǫ1 and
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bT
2 Y = (aT

2 X)2 + 0.2ǫ3 if W = 0, and bT
1 Y = sin(aT

1 X) + 0.3ǫ2 and bT
2 Y =

−(aT
2 X)2 + 0.3ǫ3 if W = 1, where X = (X1, . . . ,X6)

T and Y = (Y1, . . . , Y3)
T .

Thus there are two true pairs.

Table 2 reports the mean ± stand.error for 100 values of m2. Initial values

are chosen in a way that the convergence is reached quickly. To illustrate our

graphical way of determining the number of pairs, a random sample of size n =

360 was drawn. Figures 1a and 1b show a strong nonlinear relation between

η̂1 and ψ̂1, and between η̂2 and ψ̂2, while Figure 1c shows no-apparent relation

between η̂3 and ψ̂3 for third pair. This example serves as an evidence that the

graphical methods can be used to determine the number of pairs. Finally, note

that the non-normality of some of the variables has little affect on our method.

Table 2. Accuracy of the estimated dimensions in Example 2.

m2 n = 240 n = 360

a1 0.0149 ± 0.0641 0.0104 ± 0.0757

b1 0.0010 ± 0.0016 0.0006 ± 0.0017

a2 0.0171 ± 0.0133 0.0162 ± 0.0215

b2 0.0624 ± 0.0873 0.0556 ± 0.0548
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a. Plot of η̂1 vs ψ̂1 shows a nonlinear b. Plot of η̂2 vs ψ̂2 shows a non-linear

relation for each group. relation for each group.
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c. Plot of η̂3 vs ψ̂3 shows a noapparent relation for either group.

Figure 1. Graphs of first three common estimated pairs in Example 2.
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3.2. Iris and machine datasets

Iris data: This well-known dataset, discussed by Anderson (1935), has three

species of Iris flowers known as Iris Versicolor, Iris Virginica and Iris Seton. The

following four variables were measured from 50 plants of each species : XT =

(X1,X2) where X1 = sepal length and X2 = sepal width, and YT = (Y1, Y2)

where Y1 = petal length and Y2 = petal width. Goria and Flury (1996) concluded

that a common canonical variate model fits well for data belonging to the two

groups Iris Versicolor and Iris Virginica, with two common pairs denoted as

(U1, V1) and (U2, V2).

We carried out the common information canonical analysis for the Iris data

belonging to the two groups Iris Versicolor and Iris Virginica. The first and sec-

ond common information canonical pairs (âT
1 x, b̂T

1 y) and (âT
2 x, b̂T

2 y) are plotted

in Figures 2a and 2b, respectively. Comparing with Goria and Flury’s analy-

sis, we obtained the following correlation coefficients: Corr(âT
1 x, U1) = 0.9998,

Corr(b̂T
1 y, V1) = 0.99995, Corr(âT

2 x, U2) = 0.9879, and Corr(b̂T
2 y, V2) = 0.9973.

These show that our method yields very similar result as in Goria and Flury

(1996). Furthermore, our sequential permutation test of H0 : I1 = 0 vs H1 :

I1 > 0 yielded a p-value of 0, followed by a permutation test of H0 : I2 = 0 vs

H1 : I2 > 0 which yielded a p-value of 0. Hence, we conclude that two pairs of

common information canonical variates are needed. In addition, we also carried

out our method for all three groups and found that the results are very similar.

These results are not given here.

Figure 2a shows a strong linear relationship between âT
1 x and b̂T

1 y for both

the species. Figure 2b shows a mild linear relationship between âT
2 x and b̂T

2 y for

both the species. These conclusions are consistent with those in Goria and Flury

(1996). The superimposed curves over the scatter plots in Figures 2a and 2b are

the mean curves (in the middle) with lower and upper bounds of one-standard

deviations obtained using LOWESS method, conditioned on each species. This

example clearly illustrates that our results agree with those of Goria and Flury

(1996), when the linear relationship between the pairs is the dominant one for

both species.

Machine data: The electrode data (Flury and Riedwyl (1988)) are of five

measurements on 50 electrodes produced by two different machines: the first

three XT = (X1,X2,X3) are widths and the other two YT = (Y1, Y2) are lengths.

Goria and Flury (1996) concluded that a common canonical variate model fits

well for Machine 1 and Machine 2. Their first two common canonical correla-

tions are ρ̂1,1 = 0.748 and ρ̂2,1 = 0.101 for Machine 1, and ρ̂1,2 = 0.139 and

ρ̂2,2 = −0.322 for Machine 2. The values ρ̂1,1 and ρ̂1,2 indicate that the linear

relationship between the length and width variables is much stronger for Machine

1 than for the Machine 2. For Machine 2, the common correlations ρ̂1,2 and ρ̂2,2
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a. Plot of ux=âT

1
x vs uy=b̂T

1
y shows b. Plot of vx=âT

2
x vs vy=b̂T

2
y shows

a strong linear relationship for a mild linear relationship for
both species. both species.

Figure 2. Iris flowers data for species Versicolor and Virginica.

seem to indicate a very weak linear relationship between the length and width

variables. Finally, as noted in Goria and Flury (1996), these correlation val-

ues suggest a potential conflict in which the first common canonical variate has

stronger correlation for Machine 1 but a weaker correlation for Machine 2. In our

view, all these observations indicate that there may not be a significant second

common canonical variate and, more importantly, a common canonical variate

model may not even be appropriate for the machine data. Next we show that

our common information analysis for the machine data supports this view.

Our sequential permutation test showed that the first common information

canonical pair is significant with a p-value 0.003, but the test of H0 : I2 = 0

vs H1 : I2 > 0 produced a p-value of 0.048, which raises strong doubts about

the necessity of second common information canonical pair. The plot of our

first common information canonical variates in Figure 3a shows a nonlinear re-

lationship for Machine 2 but no apparent relationship for Machine 1, where

ux ∝ η̂1 = 0.723x1 + 0.333x2 + 0.605x3 and uy ∝ ψ̂1 = 0.596y1 + 0.803y2. It

seems that η̂1 is weighted width with approximate weights (2.2, 1, 1.8), while

ψ̂1 is weighted length with approximate weights (3, 4). The plot of our sec-

ond common information canonical variates in Figure 3b shows no relationship

for Machine 2, but perhaps a mild nonlinear relation for Machine 1, where

uxw ∝ η̂2 = 0.697x1 − 0.702x2 − 0.148x3 and vyw ∝ ψ̂2 = −0.767y1 +0.642y2. It

seems that η̂2 is weighted width with approximate weights (−4.7, 4.7, 1) while ψ̂2

is weighted length with approximate weights (1.2,−1). These seem to indicate

that Machine 1 and Machine 2 may have different pairs of significant variates.
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a. Plot of the first common canonical b. Plot of the second common canonical
pair: ux=âT

1
x vs uy=b̂T

1
y shows pair: vxw=âT

2
x vs vyw=b̂T

2
y shows

strong nonlinear relationship for mild nonlinear relationship for
Machine 2 and no relationship Machine 1 and no relationship
for Machine 1. for Machine 2.

Figure 3. Common Information canonical variates for Machine data.

Therefore, instead of a common model, an individual information canonical anal-

ysis may be more appropriate. This is the case that we discussed in the third
paragraph in Section 2.

Clearly, our conclusions do not agree at all with those of Goria and Flury

(1996). One simple way to resolve this is to carry out a (comparable) analysis

individually for each machine. That is, to carry out an individual analysis us-

ing the classical CCA and Yin (2004)’s method, and to compare the results to

those in Goria and Flury (1996) and ours above. If the conclusion of a common

analysis approach is consistent with the comparable individual analysis, then the

conclusions based on that approach may be considered valid; otherwise common

analysis may not be valid.

Yin (2004) analyzed this data for Machine 2 using his information-based
canonical analysis and determined that only the first pair of information canonical

variate, say (η̂2
1 , ψ̂

2
1), is needed, and that the relationship between the elements

of the first pair is nonlinear. Yin (2004) also showed that a sine curve fits the

scatter plot of the first pair reasonably well, which agrees with our conclusions

here. Incidentally, the classical CCA for Machine 2 shows, on the contrary, that

there is no significant pair. As for Machine 1, we carried out an information

canonical analysis and the associated sequential permutation tests of Yin (2004).

These showed that the first information-based canonical variate pair, say (η̂1
1 , ψ̂

1
1),

for Machine 1 is significant with a p-value of 0, but the second pair has a p-

value of 0.428, implying that only the first pair is necessary for the Machine
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1 data. It is interesting to note that the classical CCA for Machine 1 data
has essentially the same result, as indicated by the correlations Corr(η̂1

1, η̂
CCA
1 )

= 0.9869 and Corr(ψ̂1
1, ψ̂

CCA
1 ) = 0.999986, where η̂CCA

i is the canonical variate
based on the classical CCA. We also note that the pairs (η̂2

1 , ψ̂
2
1) for Machine 2 and

(η̂1
1 , ψ̂

1
1) for Machine 1 are in different directions, but not completely uncorrelated.

That is why our common informational method finds the first pair (η̂2
1 , ψ̂

2
1), but

marginally recovers (η̂1
1 , ψ̂

1
1). With the plots, our method essentially leads to

using a separate information CCA analysis for each machine.
In view of all these, an individual informational canonical analysis seems

more appropriate for the machine data. Also, only the first canonical variate is
necessary for each machine. Finally, there seems to be a strong linear relationship
between the first canonical variate pair for Machine 1, while there seems to be a
strong nonlinear relationship between the first canonical variate pair for Machine
2.

4. Concluding Remarks

We have described a common canonical analysis based on Kullback-Leibler
information which is useful in measuring true relations, whether linear or non-
linear. We have also proposed a sequential permutation test as well as graphical
plot to determine the number of pairs of canonical information variates to use in
practice. In addition, graphical plots can identify the true relationship between
the linear combinations. As shown by our simulations and examples, our method
is competitive with the method of Goria and Flury (1996) when the relation is
linear. More importantly, our method offers a general dimension reduction tech-
nique which can help identify nonlinear relationships.

Inherent in our method are maximizations and permutation tests which re-
quire choice of appropriate kernel density estimators, bandwidths and initial
values. In our computations we found Gaussian kernels and the bandwidth se-
lections made in Section 2.2 to be reasonable choices. Since our primary focus
is on finding common canonical variates that provide maximum information and
dimension reduction, optimal choices of kernel density estimators and bandwidth
do not seem very crucial as they only play a role in our intermediate steps.

Appendix: Proofs

Proposition 1. As for the first assertion, use the notations to write

IXY(a,b) = E
(

log
p(aTX|bTY,W )

p(aTX|W )

)

= E
(

log
p(aTX|bT BV,W )

p(aTX|W )

)

= E
(

log
p(bTBV|aT X,W )

p(bTBV|W )

)

= E
(

log
p(bTBV|aT AU,W )

p(bTBV|W )

)

= IUV(ATa,BT b).
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This proves Assertion 1.

Assertion 2 follows from Assertion 1 because Ii,XY(ai,bi) = Ii,UV(AT ai,

BTbi).

Assertion 3 follows directly from Assertion 2 and uniqueness. Note that the

constraints in (4) still hold.

Proposition 2. Rewriting the information in terms of conditional densities and

using the definition of KL information (Kullback (1959)) we get

I(a,b) = E
(

log
p(aTX|bTY,W )

p(aTX|W )

)

= E (bT Y,W )

[

E aT X|(bT Y,W )

(

log
p(aTX|bT Y,W )

p(aTX|W )

)]

≥ 0.

This yields the first part of the first assertion. Also, by the definition of KL in-

formation, the equality holds above if and only if p(aTX|bT Y,W ) = p(aTX|W ),

which yields the second part of the first assertion.

Assertion 2 follows from the definition and by the assumption of uniqueness

of the maximization. Without the uniqueness assumption, the strict inequalities

become equalities. It is possible that Assertion 2 holds for m < k. If not, m = k.

Lemma 1. We first prove that

sup
v∈Ω

sup
(α,β)∈Θ

|f̂i(s, t|w) − p(s, t|w)| → 0 a.s.. (7)

Using the result of Klein and Spady (1993), it suffices to show that

sup
v∈Ω

sup
(α,β)∈Θ

∣

∣

∣

∣

∣

E |W

[ 1

h21
K

(s− sj

h21

) 1

h22
K

(t− tj
h22

)]

− p(s, t|w)

∣

∣

∣

∣

∣

→ 0.

But the left hand side is less than or equal to

sup
v∈Ω

sup
(α,β)∈Θ

∣

∣

∣

∫

W=w

1

h21
K

(s− u1

h21

) 1

h22
K

(t− u2

h22

)

(p(u1, u2) − p(s, t)du1du2

∣

∣

∣

≤ sup
v∈Ω

sup
(α,β)∈Θ

∣

∣

∣

∫

W=w
K(v1)K(v2)[p(s− h21v1, t− h22v2) − p(s, t)]dv1dv2

∣

∣

∣

≤
∫

W=w
|K(v1)K(v2)| sup

v∈Ω
sup

(α,β)∈Θ

[

|p(s−h21v1, t−h22v2) − p(s, t)|
]

dv1dv2

≤ L

∫

W=w
|K(v1)K(v2)(h21|v1| + h22|v2|)dv1dv2

≤ n−δL

∫

W=w
|K(v1)K(v2)|v1|dv1dv2 ≤ n−δL,
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where L is some generic positive constant.

Note that

sup
v∈Ω

sup
(α,β)∈Θ

∣

∣

∣
log f̂i(s, t|w) − log p(s, t|w)

∣

∣

∣

≤
(

inf
v∈Ω

inf
(α,β)∈Θ

[f̂i(s, t|w), p(s, t|w)]
)−1

×sup
v∈Ω

sup
(α,β)∈Θ

∣

∣

∣
f̂i(s, t|w)−p(s, t|w)

∣

∣

∣
.

The first term is bounded above by (C.3) and (7). The conclusion follows from

(7) again. Similarly, the other two results follow.

Lemma 2. Since

sup
(α,β)∈Θ

∣

∣

∣
Î(1)

n (α,β) − In(α,β)
∣

∣

∣

≤ sup
(α,β)∈Θ

1

n

C
∑

w=1

nw
∑

i=1

[
∣

∣

∣
log f̂i(si, ti|w) − log p(si, ti|w)

∣

∣

∣

+
∣

∣

∣
log f̂i(ti|w) − log p(ti|w)

∣

∣

∣
+

∣

∣

∣
log f̂i(si|w) − log p(si|w)

∣

∣

∣

]

≤ sup
v∈Ω

sup
(α,β)∈Θ

[∣

∣

∣
log f̂i(s, t|w) − log p(s, t|w)

∣

∣

∣

+
∣

∣

∣
log f̂i(t|w) − log p(t|w)

∣

∣

∣
+

∣

∣

∣
log f̂i(s|w) − log p(s|w)

∣

∣

∣

]

following Lemma 1, we have sup(α,β)∈Θ |Î(1)
n (α,β) − In(α,β)| → 0, a.s..

Under our assumptions, the assumptions A1, A2, and A4 of Andrews (1987)

are satisfied. Therefore, sup(α,β)∈Θ |In(α,β) − I(α,β)| → 0 a.s.. Hence the

conclusion follows.

Theorem 1. Under our condition, I(α,β) is continuous in Θ. Let ǫ > 0. Since

Θ is compact, there is a number δ > 0 such that

sup{I(α,β) : |a − α| + |b − β| > ǫ, (α,β) ∈ Θ} < I(a,b) − δ. (8)

Based on Lemma 2, with probability tending to 1, we have

|Î(1)
n (a,b) − I(a,b)| < δ

4
and |Î(1)

n (α1,n,β1,n) − I(α1,n,β1,n)| < δ

4
.

By construction, Î(1)
n (α1,n,β1,n) ≥ Î(1)

n (a,b) which, combined with the first of the

above inequalities, implies with probability tending to 1 that, Î(1)
n (α1,n,β1,n) >

I(a,b)−δ/4. Using the second inequality above we see that, with probability tend-

ing to 1, I(α1,n,β1,n) > I(a,b)− δ/2. By (8), P
(

|α1,n − a| + |β1,n − b| > ǫ
)

≤
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P
(

I(α1,n,β1,n) < I(a,b) − δ
)

. Therefore, the limit of the left hand side is no

more than

lim sup
n→∞

P
(

I(α1,n,β1,n) < I(a,b) − δ
)

= lim sup
n→∞

P
(

I(α1,n,β1,n) < I(a,b) − δ,I(α1,n,β1,n) > I(a,b) − δ

2

)

+ lim sup
n→∞

P
(

I(α1,n,β1,n) < I(a,b) − δ,I(α1,n,β1,n) ≤ I(a,b) − δ

2

)

≤ 0 + lim sup
n→∞

P
(

I(α1,n,β1,n) ≤ I(a,b) − δ

2

)

= 0.

Hence the result.
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