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Abstract: Most sufficient dimension reduction methods hinge on the existence of

finite moments of the predictor vector, a characteristic which is not necessarily

warranted for every elliptically contoured distribution as commonly encountered

in practice. Hence, we propose a contour-projection approach, which projects the

elliptically distributed predictor vector onto a unit contour, which shares the same

shape as the predictor density contour. As a result, the projected vector has finite

moments of any order. Furthermore, contour-projection yields a hybrid predictor

vector, which encompasses both the direction and length of the original predictor

vector. Therefore, it naturally leads to a substantial improvement on many exist-

ing dimension reduction methods (e.g., sliced inverse regression and sliced average

variance estimation) when the predictor vector has a heavy-tailed distribution. Nu-

merical studies confirm our theoretical findings.
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1. Introduction

High-dimensional data frequently encountered in applications pose a seri-

ous challenge for parameter estimation and statistical inference, especially in the

presence of unknown nonlinear structures. One plausible solution is to reduce

the dimension without going through a parametric or nonparametric model fit-

ting process. To this end, Li (1991) introduced seminal work on sliced inverse

regression (SIR). Since then, various dimension reduction methods have been

proposed (e.g., sliced average variance estimation (SAVE, Cook and Weisberg

(1991)), principal Hessian directions (pHd, Li (1992)), and most recently con-

tour regression (CR, Li, Zha and Chiaromonte (2005)). See Cook and Ni (2005)

for a recent review.

A common feature of the aforementioned dimension reduction methods is

that they are model-free, with assumptions on the marginal distribution of the

predictor x ∈ Rp instead of on the conditional distribution of the response y|x.

To exploit this information via the inverse regression approach, one often assumes
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that the predictor is elliptically distributed. However, this assumption does not

guarantee that the predictor has the finite first or second moments required for

the inverse regression or other dimension reduction methods (e.g., SIR, SAVE,

and pHd). Even if those moments do exist, the heavy-tailed predictor may still

seriously deteriorate the performance of existing methods. The heavy-tailed dis-

tribution has been observed in many natural phenomena, including financial,

physical, and sociological variables. Resolving this challenge task is important

to further facilitate the use of existing dimension reduction methods.

Observations generated from heavy-tailed distributions are sometimes viewed

as outliers (see Hampel, Ronchetti, Rousseeuw and Stahel (1986)). Therefore,

one could explore the robust version of SIR for dimension reductions. For ex-

ample, Gather, Hilker and Becker (2002) discussed the outlier sensitivity of SIR

and Prendergast (2005) proposed the detection of influential observations for SIR

via influence functions. However, none of them studied dimension reductions for

heavy-tailed distributions. This motivated us to propose a contour-projection

(CP) procedure. Specifically, the CP approach projects the predictor vector

onto a unit contour that shares the same shape as the original density contour.

The resulting CP-predictor encompasses the direction and length of the original

predictor vector and has finite moments of any order. The CP approach enables

us to improve parameter estimations for heavy-tailed predictors. To utilize our

findings, we focus on two widely used dimension reduction methods, SIR and

SAVE.

The rest of this paper is organized as follows. Section 2 presents the basic

idea of the contour-projection approach and its properties. The utilization of the

contour-projection for dimension reduction is addressed in Section 3. Simulation

studies are carried out in Section 4, and the results show that CP performs well

for heavy-tailed predictors. An example is given to illustrate the usefulness of

CP. We conclude the paper with a brief discussion in Section 5.

2. Contour-Projection

Let S denote a linear subspace of Rp with, for example, S(A) the linear

space spanned by the columns of matrix A. To capture the dependence between

y and x, it is assumed that there is p × d matrix β, for some integer d > 0, such

that

y x|β⊤x, (2.1)

where “ ” denotes independence. In other words, β⊤x summarizes all infor-

mation x has about y. We refer to S(β) as the sufficient dimension reduction

subspace (SDR, Cook (1996)). It is easy to see that any subspace S ⊃ S(β) is

also a SDR subspace. Therefore, it is only of interest to infer the “smallest” SDR
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subspace, referred to as the central subspace and denoted by Sy|x. In the rest

of article, we assume that Sy|x exists with a basis being β as defined in (2.1).

The notion of central subspace is very helpful in exploratory analysis and data

visualization. When p is large, sufficient summary plots based on the central

subspace with dimension d < p can be very informative for statistical modeling.

We take p > 1 in the rest of the paper.

We assume that the predictor x follows an elliptically contoured (EC) dis-

tribution with density (see Muirhead (1982))

fµ,Σ(x) = |Σ− 1
2 |f

(

||x − µ||2Σ
)

, (2.2)

where µ ∈ Rp×1 and Σ ∈ Rp×p are the parameters. Here Σ is a positive definite

matrix with tr(Σ) = p for identifiability, and ||t||2Σ = t⊤Σ−1t is the corresponding

Mahalanobis distance. The elliptically contoured distribution is the most com-

mon assumption for the predictor in sufficient dimension reduction literature,

partly because it ensures that a so-called linearity condition holds for the basis

of central subspace: E(x|β⊤x) is a linear function of β⊤x (Li (1991)). The lin-

earity condition connects the central subspace with inverse regression, which is

one of the main venues for sufficient dimension reduction. It is worth noting that

the EC condition implies the linearity condition when second-order moments ex-

ist. In addition, the EC condition can still be satisfied when the second-order

moment of the predictor does not exist. Moreover, even if the actual distri-

bution departs from (2.2), it can be improved by either re-weighting methods

(Cook and Nachtsheim (1994)) or through the multivariate Box-Cox transforma-

tion (Quiroz, Nakamura and Pérez (1996)). A classical vs. robust Mahalanobis

distance plot (DD plot) can serve as a diagnostic tool for elliptical symmetry

(Olive (2002)).

The idea of the contour-projection is simple. Given µ and Σ, C = {x :

||x−µ||2Σ = 1} defines a unit contour, that shares the same shape as the predictor

density in (2.2). For any predictor x, the CP procedure constructs a new predictor

x̃ = (x−µ)/r, by projecting x onto the unit contour C, where r = ‖x−µ‖Σ. The

resulting x̃ is bounded with finite moments of any order. Lemma 1 gives some

important properties of x̃ and r.

Lemma 1. Assume x has the density function (2.2). Then (1) E(x̃) = 0 and

cov(x̃) = p−1Σ; (2) if ξ ∈ Rp×q, q < p, is any orthogonal matrix such that

ξ⊤ξ = Iq, we have E(x̃|ξ⊤x̃) = Aξ⊤x̃, where A = Σξ(ξ⊤Σξ)−1; (3) x̃ and r are

independent.

Proof. (1) Define u = Σ−1/2(x − µ) = (u1, . . . , up)
⊤, with density given by

f(||u||2). Then, x̃ = Σ1/2u/||u||. Because the ui’s are exchangeable, we have

E(ui|||u||) = 0, E(u2
i |||u||) = E(u2

j |||u||), and E(uiuj |||u||) = 0 for the given ||u||
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when i 6= j. These results together with trace{E(uu⊤/||u||2)} = 1 imply that

E(x̃) = Σ1/2E (u/||u||) = 0 and E{x̃x̃⊤} = Σ1/2E
(

uu⊤/||u||2
)

Σ1/2 = p−1Σ.

(2) Let γ = Σ1/2ξ, Pγ = γ(γ⊤γ)−1γ⊤ be the orthogonal projection onto the

subspace spanned by γ, and Qγ = Ip − Pγ . We then have E(Qγu|Pγu, ‖u‖) = 0

and

E
( u

‖u‖
∣

∣

∣
Pγ

u

‖u‖
)

= E
{

(Pγ + Qγ)
u

‖u‖
∣

∣

∣
Pγ

u

‖u‖
}

= Pγ
u

‖u‖ + E
{

Qγ
u

‖u‖
∣

∣

∣
Pγ

u

‖u‖
}

= Pγ
u

‖u‖ + E
{

‖u‖−1E
(

Qγu
∣

∣Pγu, ‖u‖
)

∣

∣

∣
Pγ

u

‖u‖
}

= Pγ
u

‖u‖ .

Therefore, E{x̃|Σ1/2ξ(ξ⊤Σξ)−1ξ⊤x̃} = Σξ(ξ⊤Σξ)−1ξ⊤x̃. Consequently, we have

E(x̃|ξ⊤x̃) = Aξ⊤x̃ since Σ1/2ξ(ξ⊤Σξ)−1 ∈ Rp×q is a full column rank matrix.

(3) This is a direct result of Theorem 1 in Cambanis, Huang and Simons (1981).

Remark 1. Lemma 1 shows that Li’s (1991) linearity condition holds for the CP

predictor. It also suggests that x̃ itself may contribute useful information on the

central subspace, while the role of the length of the predictor x can be secondary

(see Section 3 for detailed illustrations).

In practice, both µ and Σ are unknown and need to be estimated from the

data. To this end, (Tyler (1987, p.245)) proposed simultaneous M-estimators for

µ and Σ that coincide with those from a simple iterative estimating procedure

motivated by Lemma 1. Specifically, let µ(m) and Σ(m) be the estimates obtained

after the m’th iteration. Because E(x̃) = E((x − µ)/(||x − µ||Σ)) = 0 suggests

that, µ(m+1) can be obtained, based on (µ(m),Σ(m)), as

µ(m+1) =
( 1

n

n
∑

i=1

1

||xi − µ(m)||Σ(m)

)−1( 1

n

n
∑

i=1

xi

||xi − µ(m)||Σ(m)

)

. (2.3)

Subsequently, using the fact that cov(x̃) = p−1Σ, Σ(m+1) can be obtained by first

computing

Σ(m+1) =
1

n

n
∑

i=1

(xi − µ(m))(xi − µ(m))⊤

‖xi − µ(m)‖2
Σ(m)

, (2.4)

and then re-scaling Σ(m+1) so that its trace equals p.

It seems natural to obtain parameter estimators of µ and Σ by iterating

(2.3) and (2.4) until the algorithm converges. However, Tyler (1987) pointed out
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that the convergence and consistency of simultaneous fixed-point solutions is still

an open question. Under some regularity conditions, Tyler (1987) showed that

if µ(m) is a consistent estimate of µ, the fixed point solution of (2.4) uniquely

exists and produces a consistent estimate of Σ (see Frahm (2004) for detailed

discussions). This motivates us to propose a hybrid estimator that combines the

fixed-point solution and one-step reweighting algorithm given below.

1. Let µ̂0 be the componentwise median and Σ̂0 the sample covariance matrix.

2. Let µ(m) = µ̂0 in (2.4). The fixed point solution is Σ̂1.

3. Plug (µ̂0, Σ̂1) into (2.3) to obtain µ̂1.

4. Let µ(m) = µ̂1 in (2.4). The fixed point solution is Σ̂2.

5. Plug (µ̂1, Σ̂2) into (2.3) to obtain µ̂2.

The above procedure not only avoids the convergence issue of (2.3) but also

facilitates the computation. Furthermore, the consistent estimate µ̂0 of µ leads

to the fact that µ̂2 and Σ̂2 are consistent. They perform well in simulation studies

(see Section 4).

Remark 2. In multivariate distributions, there is considerable literature on ro-

bust location and dispersion estimators (e.g., minimum covariance determinant

(MCD) and minimum volume ellipsoid (MVE) methods, see Maronna and Zamar

(2002)). In addition, the function cov.rob in the package MASS (Venables and

Ripley (2006)) of R provides robust estimators of location and dispersion param-

eters. Once those estimators’ theoretical and computational issues have been

resolved, they may also be employed to estimate µ and Σ in contour-projection.

3. Dimension reduction via contour-projection

To make contour-projection an effective SDR technique for regression, we

build up a connection between the dimension reduction subspaces before and

after contour-projection via the following lemma.

Lemma 2. Suppose ξ is a basis of Sy|x. Then, y x̃|ξ⊤x̃.

Proof. Let F be a generic cumulative distribution function. Suppose ξ is a

basis of Sy|x. Then y x|ξ⊤x, which is equivalent to y (x̃, r)|ξ⊤x. Moreover,

y (x̃, r)|(ξ⊤x̃, r), which leads to y x̃|(ξ⊤x̃, r). Hence, for any scalar a,

Fy|x̃(a) = Er[Fy|(x̃,r)(a)] = Er[Fy|(ξ⊤x̃,r)(a)] = Fy|ξ⊤x̃(a).

Consequently, y x̃|ξ⊤x̃ (compare Cook (1998, pp. 63, 64 and 106)), and the

proof is completed.

Remark 3. Lemma 2 indicates that one may apply the CP predictor x̃ to gain

information of the central subspace Sy|x. To further elucidate this finding, we
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consider the multi-index model

y = g(β⊤x, ǫ), (3.1)

where g(·) is some unknown function and ǫ is a random noise independent of x.

Because x = µ + rx̃, (3.1) can be expressed as

y = g̃(β⊤x̃, r, ǫ), (3.2)

for some unknown function g̃, where (ǫ, r) is independent of x̃. Therefore, it is

possible to find β via (3.2) rather than (3.1).

Remark 4. For the sake of simplicity, one can exclude r from (3.2) to compute

β. However, this may lead to an identification problem. For example, assume

that x follows a p-dimensional standard normal distribution with Σ = I, p > 2,

and

y =

p
∑

i=2

x2
i + ǫ = r2

p
∑

i=2

x̃2
i + ǫ = r2 − x2

1 + ǫ = r2(1 − x̃2
1) + ǫ, (3.3)

where ǫ is an independent noise. As a result, both S(e1) and its orthogonal com-

plement Sy|x are dimension reduction subspaces in the x̃ scale, where e1 ∈ Rp is

a vector with first component 1, and the others 0. Therefore, we recommend in-

cluding r in the analysis and also comparing the results from dimension reduction

methods with and without contour projection.

We explore applications of SIR and SAVE on dimension reduction via the

CP predictor. In regression analysis, Li (1991) proposed a sliced inverse regres-

sion approach to dimension reduction, which implicitly assumes that the first two

moments of x exist. In addition, SIR requires the linearity condition: E(x|Pβx)

is a linear function of Pβx, where β is a basis of Sy|x. To find the central sub-

space, Li (1991) considered the standardized predictor z with zero mean and

identity covariance matrix. Under the linearity condition, E(z|y) ∈ Sy|z, thus

Msir = cov(E(z|y)) ⊆ Sy|z. When y is discrete, it is straightforward to obtain a

sample version of Msir. If y is continuous, we discretize y first by partitioning

the range of y to a few slices. If dim(Sy|z) = d, then the d eigenvectors corre-

sponding to the largest d eigenvalues of M̂sir constitute an estimated basis of

Sy|z. Then we transform the central subspace back to the original x-scale via

Sy|x = cov(x)−1/2Sy|z.

In practice, however, an elliptically contoured predictor may not have a finite

second moment even though it satisfies the linearity condition. In this case, SIR

is not applicable. This motivated us to employ contour-projection since the CP

predictor has finite moments of any order. Based on x̃ and assuming β is an
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orthogonal basis, we then apply the linearity condition given in Lemma 1 to
obtain

E(x̃|y) = E[E(x̃|(β⊤x̃, y))|y] = E[E(x̃|β⊤x̃)|y] = Σβ(β⊤Σβ)−1E[β⊤x̃|y].

Under (2.2), Σ−1E(x̃|y) ∈ Sy|x, which suggests a direct application of SIR on x̃ is
warranted, and this is referred to as contour-projected SIR (CP-SIR). Accordingly,
the non-identifiability of Sy|x̃ does not affect the validity of CP-SIR.

In the last decade, SIR has been used successfully in many applications.
However, it fails in a strictly symmetric case, e.g., y = (β⊤z)2 + ǫ, where (z, ǫ)
are multivariate independent standard normal. To this end, Cook and Weisberg
(1991) proposed SAVE, which may recover some of the information overlooked
by SIR. Let η be a basis of Sy|z. Then, for the elliptically distributed predictor,
Cook and Weisberg (1991) found that

wy Ip − cov(z|y) = Pη [wy Ip − cov(z|y)]Pη ,

where the scalar wy is a function of y that depends on the distribution of x.
Since E(wy) = 1, wy varies for different values of y about 1. Empirical results
indicate that a SAVE kernel matrix Msave = E[( Ip−cov(z|y))2] can be utilized to
estimate Sy|x in a way similar to the procedure for Msir (see Cook and Weisberg
(1991)).

To employ the CP predictor x̃, take v = Σ−1/2x̃ and let γ = Σ1/2β denote a
basis for a dimension reduction subspace of the regression of y on v. Since v is
uniformly distributed on a unit hypersphere, we have E(v|y) ∈ S(γ), E(v|Pγv) =
Pγv, and cov(v|Pγv) = (1−‖Pγv‖2)Qγ/(p− d). It is easy to see that cov(v|y) =
uyQγ + Pγcov(v|y)Pγ , or uy Ip − cov(v|y) = Pγ [uy Ip − cov(v|y)]Pγ , where uy =
E(1 − ‖Pγv‖2|y)/(p − d) and E(uy) = 1/p. This motivates us to adopt the
SAVE approach to estimate the central subspace via a kernel matrix E[( Ip/p −
cov(v|y))2], which is equivalent to applying SAVE to x̃. We call this procedure
contour-projected SAVE (CP-SAVE).

4. Simulations and an Example

In this section, we employ the hybrid estimation procedure introduced in
Section 2 to estimate location and dispersion parameters. Furthermore, we adopt
Weisberg’s (2002) dr package in R to implement SIR and SAVE and to make
comparisons.

4.1. Comparison of estimates

Consider the two models given by

Model I: y =
x1

0.5 + (x2 + 1.5)2
+ 0.2ǫ,

Model II: y = (x1 + 0.5)2 + x2 + 0.2ǫ,
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where ǫ is a standard normal distribution. For each model, we generated 500

data sets with the sample sizes n = 100, 200, 300, and 400. Furthermore, x =

(x1, . . . , x10)
′ = w/

√

vdf/df , where w ∈ R10 is a standard multivariate normal

distribution and vdf is a chi-square distribution with degrees of freedom df (df=1,

3, 5, ∞). As a result, x follows a multivariate t distribution (see Lange, Little,

and Taylor (1989)) and we have situations where the tail of the predictor is

extremely heavy so that moments do not exist (df = 1); the predictor has a

heavy tail with finite first order moment (df = 3); the predictor has a heavy tail

with finite second order moment (df = 5); and the tail of the predictor is not

heavy at all (df = ∞ corresponds to a multivariate normal distribution of xi).

The central subspace associated with both models is given by S(β), where

β = {e1, e2} and el ∈ Rp is a vector with l-th component 1, and the others 0.

For each data set, SIR, CP-SIR, SAVE, and CP-SAVE were applied with the

number of slices set at 5. Without loss of generality, let β̂ denote the estimated

basis obtained from any of the four inverse regression approaches. The estimation

accuracy of the central subspace is measured by ∆ = ‖Pβ̂ −Pβ‖ (see Li, Zha and

Chiaromonte (2005)), where ‖ · ‖ is the maximum singular value of a matrix.

For Model I, Table 1 reports the average ∆ for estimates obtained from

SIR and CP-SIR, respectively, in 500 realizations. Although SIR deteriorates

with heavier tails, CP-SIR holds its accuracy. Because the constant 1.5 in the

denominator of Model I is relatively large, the results from SAVE methods are

less satisfactory than those in Table 1. In this situation, however, the unreported

results showed that CP-SAVE is superior to SAVE.

Table 1. The average of ∆ from 500 realizations for model I when the

predictors are generated from multivariate t distributions.

sample df = 1 df = 3 df = 5 df = ∞
size sir cp-sir sir cp-sir sir cp-sir sir cp-sir

100 0.914 0.691 0.655 0.558 0.591 0.550 0.519 0.523

200 0.909 0.492 0.526 0.391 0.425 0.379 0.355 0.355

300 0.914 0.413 0.459 0.316 0.364 0.309 0.287 0.289

400 0.904 0.361 0.427 0.280 0.316 0.264 0.246 0.244

As discussed in Section 3, SAVE is usually more comprehensive than SIR in

the estimation of the central subspace. For example, if the constant 1.5 in Model

I is closer to 0, SIR is less capable of detecting the direction associated with x2,

while SAVE still can do this. Model II is another example where SAVE can be

sharper than SIR. Table 2 reports the average ∆ for estimates obtained from
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SAVE and CP-SAVE for Model II, which corroborates the benefits of contour-

projection. Next, we show the effect of contour projection on parameter inference.

Table 2. The average of ∆ from 500 realizations for model II when the
predictors are generated from multivariate t distributions.

sample df = 1 df = 3 df = 5 df = ∞
size save cp-save save cp-save save cp-save save cp-save

100 0.949 0.956 0.942 0.938 0.943 0.937 0.940 0.937

200 0.939 0.822 0.928 0.689 0.900 0.660 0.573 0.613

300 0.941 0.627 0.912 0.448 0.832 0.426 0.360 0.406

400 0.946 0.461 0.912 0.313 0.807 0.294 0.283 0.298

4.2. Comparison of inferences

Suppose that η̂i is the i-th eigenvector of M̂sir with corresponding eigenvalue
0 < λ̂i < 1. Then β̂i = cov(x)−1/2η̂i is the estimate of βi (the i-th column of β)
in the central subspace Sy|x. Under the null hypothesis, H0 : e⊤l βi = 0, Chen and

Li (1998) showed that the test statistic n(e⊤l β̂i)
2(λ̂i/(1 − λ̂i))[e

⊤
l ˆcov(x)−1el]

−1

follows an asymptotic chi-squared distribution with 1 degree of freedom. The

above result can be analogously applied to CP-SIR.
To make comparisons, we revisit Model I. For the sake of simplicity, we only

consider x to be the multivariate t distribution with df = 3 and sample size

n = 300. Under the null hypothesis H0 : e⊤3 β1 = 0, the p-values should be
uniformly distributed. Figure 1 depicts the uniform quantile-quantile plot of 500
p-values obtained from SIR and CP-SIR, respectively. Apparently, the CP-SIR
performs better than SIR. When x has df = 1, the contrast is more conspicuous

than that of df = 3. But we do not show that here.
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Figure 1. Uniform quantile plots of p-values for testing H0 : e⊤
3
β1 = 0

obtained from the SIR and CP-SIR approaches with 5 slices.
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Analogously, we conducted the test to assess the null hypothesis, H0 : e⊤3 β2 =

0, and obtained the similar results to those given above. Next, we assess the

sensitivity of the contour projection against non-elliptical predictors.

4.3 Non-elliptical predictors

Although SIR and SAVE are not particularly sensitive to the violation of

the elliptical assumption, it is still of interest to evaluate the performance of CP

under a non-elliptically symmetric distribution. To this end, we consider the

same simulation settings as those in Section 4.1, except that the random variable

w was generated from a uniform distribution on [−
√

3,
√

3]10. The simulation

results are similar to those in Section 4.1. For example, Table 3 shows that CP-

SIR is superior to SIR for heavy-tailed predictors. Here CP is not sensitive to

the elliptical assumption.

Table 3. The average of ∆ from 500 realizations for model I when the
predictors are generated from multivariate uniform distributions.

sample df = 1 df = 3 df = 5 df = ∞
size sir cp-sir sir cp-sir sir cp-sir sir cp-sir

100 0.896 0.581 0.553 0.435 0.443 0.410 0.373 0.393

200 0.895 0.393 0.439 0.298 0.328 0.280 0.254 0.263

300 0.907 0.327 0.396 0.243 0.275 0.226 0.203 0.212

400 0.899 0.288 0.354 0.208 0.241 0.195 0.180 0.186

4.4 An example

To illustrate the effectiveness of the CP approach, we consider the data set

created by CCER (Center for China Economic Services). The CCER database is

one of most authoritative and widely used stock market databases on the China

stock market (http://www.ccerdata.com/). The objective of this study is to derive

an index that can be used for predicting the firm’s next year’s earning. To this

end, the response variable (yi) is taken as next year’s return on equity (ROEy),

while the predictor vector (xi) includes the firm’s current year’s return on equity

(ROE,), log-transformed asset (ASSET), profitability margin (PM), sales growth

rate (SALES), leverage level (LEV), and asset turnover ratio (ATO). In addition,

the data contain yearly information about firms from 1995 to 2004. The sample

size of firms per year ranges from 283 (Year 1995) to 1,172 (Year 2003). More-

over, the kurtosis measures indicate that all predictors have very heavy tailed

distributions.

For each of nine years’ data sets, we employ both SIR and CP-SIR with

the same number of slices (5) as used in the simulation studies. For the sake of
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illustration, we only reported the most important direction estimate identified

by SIR and CP-SIR, respectively, in each year. As a result, we obtained the nine

most important direction estimates of SIR and CP-SIR. Figure 2 depicts the

absolute value of the estimated coefficient for each of the six predictors across

nine years of data sets. We found that the CP-SIR estimates yield much less

variabilities than those of SIR estimates (except for the predictor PM). In sum,

CP-SIR should be considered when the predictor has a heavy-tailed distribution.

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

0
.5

0
.5

0
.5

0
.5

0
.5

0
.5

A
b
s
o
lu

t
e

V
a
lu

e

A
b
s
o
lu

t
e

V
a
lu

e

A
b
s
o
lu

t
e

V
a
lu

e

A
b
s
o
lu

t
e

V
a
lu

e

A
b
s
o
lu

t
e

V
a
lu

e

A
b
s
o
lu

t
e

V
a
lu

e

SIRSIR

SIRSIR

SIRSIR

CP-SIRCP-SIR

CP-SIRCP-SIR

CP-SIRCP-SIR

DR MethodDR Method

DR MethodDR Method

DR MethodDR Method

ROE ASSET

PM GROWTH

LEV ATO

Figure 2. The stability comparison between the associated SIR and CP-SIR
estimates of each predictor across nine years’ data sets.
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5. Conclusion

In this article, we propose a contour-projection procedure and then employ it

to improve inverse regression methods for dimension reduction. We also present

theoretical properties and Monte Carlo results, showing that SIR and SAVE can

be improved substantially via the CP approach. However, this improvement is

not limited to SIR and SAVE. We may extend the application of CP to other

inverse regression approaches if the predictor has an elliptically contoured distri-

bution. Possible gains of CP over recently developed approaches (e.g., Xia et al.

(2002) and Yin and Cook (2005)) are under consideration.
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