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Abstract: Nearest neighbor imputation (NNI) is a popular method used to com-

pensate for item nonresponse in sample surveys. Although previous results showed

that the NNI sample mean and quantiles are consistent estimators of the population

mean and quantiles, large sample inference procedures, such as asymptotic confi-

dence intervals for the population mean and quantiles, are not available. For the

population mean, we establish the asymptotic normality of the NNI sample mean

and derive a consistent estimator of its limiting variance, which leads to an asymp-

totically valid confidence interval. For the quantiles, we obtain consistent variance

estimators and asymptotically valid confidence intervals using a Bahadur-type rep-

resentation for NNI sample quantiles. Some limited simulation results are presented

to examine the finite-sample performance of the proposed variance estimators and

confidence intervals.

Key words and phrases: Bahadur representation, hot deck, mean, quantiles, vari-

ance estimation.

1. Introduction

Consider a bivariate sample (x1, y1), . . . , (xn, yn) with observed y1, . . . , yr

(respondents), missing yr+1, . . . , yn (nonrespondents), and observed x1, . . . , xn.

In sample surveys, imputation is commonly applied to compensate for this type
of item nonresponse (Sedransk (1985), Kalton and Kasprzyk (1986) and Rubin

(1987)). The nearest neighbor imputation (NNI) method imputes a missing yj

by yi, where 1 ≤ i ≤ r and i is the nearest neighbor of j measured by the x-
variable, i.e., i satisfies |xi −xj| = min1≤l≤r |xl −xj|. We focus on the case where

x has a continuous distribution so that there are no tied x-values. In practice, if

there are tied x-values due to reasons such as rounding, NNI can be applied by
randomly selecting a j from the nearest neighbors from tied x-values. Also, NNI

is often carried out by first dividing the sample into several “imputation classes”

and then finding nearest neighbors within each imputation class.
The NNI method has some nice features. First, it imputes a nonrespon-

dent by a respondent from the same variable; the imputed values are actually

occurring values, not constructed values and, while they may not be perfect sub-

stitutes, they are unlikely to be nonsensical. Second, the NNI method may be
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more efficient than other popular methods, such as mean imputation and random
hot deck imputation, when the x-variable provides useful auxiliary information.
Third, the NNI method does not assume a parametric regression model between
y and x and, hence, it is more robust against model violations than methods
such as ratio imputation and regression imputation that are based on a linear
regression model. Finally, under some conditions, NNI estimators (i.e., estima-
tors calculated using standard formulas and treating nearest neighbor imputed
values as observed data) are asymptotically valid not only for moments of the
y-variable, but also for the distribution and quantiles of the y-variable, which
is an advantage over other non-random imputation methods (such as the mean,
ratio, and regression imputation) that lead to valid moment estimators only.

There are other nonparametric imputation methods (see, e.g., Cheng (1994)
and Wang and Rao (2002)) that are more efficient than NNI, although they
impute nonrespondents by constructed values. However, the NNI method has
a long history of applications in such surveys as Census 2000 and the Current
Population Survey conducted by the U.S. Census Bureau (Farber and Griffin
(1998) and Fay (1999)), the Job Openings and Labor Turnover Survey and
the Employee Benefits Survey conducted by the U.S. Bureau of Labor Statis-
tics (Montaquila and Ponikowski (1993)), and the Unified Enterprise Survey, the
Survey of Household Spending, and the Financial Farm Survey conducted by
Statistics Canada (Rancourt (1999)). In these agencies, it is unlikely that NNI
will be replaced by another nonparametric imputation method in the near future.

Therefore, a theoretical study of the properties of NNI is important. Al-
though NNI is the same as regression imputation using k-nearest neighbor re-
gression with k = 1, the existing theoretical (asymptotic) results for k-nearest
neighbor regression (see, e.g., Härdle (1990)) are all for the case where k → ∞
as the sample size increases. Theoretical studies of the NNI methodology started
with Lee, Rancourt and Särndal (1994) and Rancourt (1999), who showed some
properties of NNI estimators when yi and xi are assumed to follow a simple
linear regression model. The first theoretical work on NNI under a general non-
parametric setting is Chen and Shao (2000), who established the consistency of
NNI estimators such as the sample mean and sample quantile; Chen and Shao
(2001) investigated jackknife variance estimators for the sample mean. In prac-
tice, statistical inference, such as setting an approximate confidence interval for
a population parameter, is often needed. Asymptotic results on confidence inter-
vals based on survey data with NNI, however, are not available, and the purpose
of this paper is to fill this gap.

The most important population parameter in surveys is the population mean
(or a function of several population means). Although empirical results (e.g.,
Chen and Shao (2001)) showed that a confidence interval of the form

NNI sample mean ± zα
√

variance estimator for NNI sample mean (1)
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works well, where α is a fixed nominal confidence level and zα is the 100(1−α/2)th
normal percentile, the use of (1) lacks statistical justification, since it has not been
shown that the interval in (1) is asymptotically valid in the sense that

P (confidence interval covers the true population parameter) → 1 − α (2)

(under some limiting process as the sample size increases). After an introduction
to some notation and assumptions in Section 2, we establish (2) in Section 3 by
first showing the asymptotic normality of NNI sample means, and then finding
a variance estimator in (1) that is consistent for the variance in the limiting
distribution of the NNI sample mean.

Estimation or inference on population quantiles has become more and

more important in modern survey statistics (Rao, Kovar and Mantel (1990) and
Francisco and Fuller (1991)). For income variables, for example, the median in-
come or other quantiles are as important as the mean income. In children with
cystic fibrosis, the 10th percentiles of height and weight are important clini-
cal boundaries between healthy and possibly nutritionally compromised patients
(Kosorok (1999)). Although Chen and Shao (2000) showed that NNI sample
quantiles are consistent for population quantiles, variance estimation for NNI

sample quantiles was not discussed. Note that the jackknife cannot be directly
applied to sample quantiles (Efron (1982)). In Section 4, using some Bahadur-
type representations for NNI sample quantiles, we show the asymptotic normality
of NNI sample quantiles, and provide consistent variance estimators for NNI sam-
ple quantiles and asymptotically valid confidence intervals (in the sense of (2))
for population quantiles.

To complement the theoretical results, some simulations are presented in
Section 5 to examine the performance of the proposed estimators and confidence

intervals. Some discussion is in the last section.

2. Notation and Assumption

This section introduces some notation and general assumptions used through-
out the paper. Let P be a finite population containing M units indexed by i. A
sample S of size n is taken from P according to some sampling design. Let wi be
the survey weight for unit i, the inverse of the probability that unit i is selected.

For any set of values {zi : i ∈ P},

Es

(

∑

i∈S

wizi

)

=
∑

i∈P

zi (3)

(i.e.,
∑

i∈S wizi is a Horvitz-Thompson-type estimator), where Es is the expec-
tation with respect to sampling. Although wi is defined for any i ∈ P, we only

need wi for i ∈ S in applications.
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We consider one-stage sampling without clusters. Some discussion of cluster
sampling and multistage sampling is given in the last section.

To consider asymptotics, we assume that the finite population P is a member

of a sequence of finite populations indexed by ν. All limiting processes in this
paper are understood to be as ν → ∞. As ν → ∞, the population size M and the
sample size n increase to infinity. In sample surveys, the following two regularity

conditions on wi’s are typically imposed:

max
i∈P

nwi

M
≤ b0, (4)

n

M2
Var s

(

∑

i∈S

wi

)

≤ b1, (5)

where b0 and b1 are some positive constants, and Var s is the variance with
respect to sampling. Condition (4) ensures that none of the weights wi is dis-
proportionately large (see Krewski and Rao (1981)). Condition (5) means that
Var s(

∑

i∈S wi/M) is at most of the order n−1. Conditions (4)-(5) are satisfied

for stratified simple random sampling designs.
Note that (3) and (5) imply that

∑

i∈S wi/M →p 1, where →p is convergence
in probability as ν → ∞. Furthermore, Es

(
∑

i∈S w
4
i

)

=
∑

i∈P w
3
i ≤ (Mb0/n)3

under condition (4). Hence, it follows from the Liapunov Central Limit Theorem

that
(

∑

i∈S

wi

M
− 1

)/

√

Var s

(

∑

i∈S

wi

M

)

→d N(0, 1), (6)

where →d is convergence in distribution as ν → ∞.
Let (x, y) be a bivariate characteristic from a given unit in the population,

where y is the main variable of interest and x is a covariate. Let a be the response
indicator, i.e., a = 1 if y is observed and a = 0 if y is a nonrespondent. Note
that we define a for every unit in P (see, e.g., Shao and Steel (1999)). For unit
i ∈ P, we denote (x, y, a) by (xi, yi, ai). To study asymptotic validity of NNI, we

need some assumptions.

Assumption A. Each finite population P is divided into K (a fixed integer)
imputation classes Pk, k = 1, . . . ,K, such that the population and sample sizes

of each imputation class increase to infinity and, within imputation class k, the
(xi, yi, ai) are independent and identically distributed (i.i.d.) from a superpop-
ulation with P (ai = 1|xi, yi, k) = P (ai = 1|xi, k), and P (ai = 1|k) = pk > 0.
Sampling is independent of the superpopulation and the (xi, yi, ai) from different

imputation classes are independent. NNI is carried out within each imputation
class.

Throughout this paper, the probability, expectation, and variance with re-

spect to sampling and the superpopulation in Assumption A are denoted by P ,
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E, and Var , respectively. When S is not present, however, P , E, and Var reduce

to the probability, expectation, and variance with respect to the superpopulation

only. For example, E(y|x) is the conditional expectation of y given x with re-

spect to the superpopulation; E(
∑

i∈S yi) is the expectation with respect to both

sampling and the superpopulation. Furthermore, i.i.d. is always with respect to

the superpopulation.

The assumption on the response probability means that the response in-

dicator a is independent of y, given the covariate x and the imputation class

k. That is, within an imputation class, the response mechanism is covariate-

dependent (Little (1995)) or unconfounded (Lee, Rancourt and Särndal (1994)),

an assumption made for the validity of many other popular imputation meth-

ods. Although the (xi, yi, ai) within an imputation class are assumed i.i.d., the

response mechanism is still not completely at random, since P (a = 1|x) depends

on the covariate x. In particular, the conditional distribution of (x, y) given a = 1

may be different from the conditional distribution of (x, y) given a = 0.

Imputation classes are usually constructed using a categorical variable whose

values are observed for all sampled units; for example, under stratified sampling,

strata or unions of strata are often used as imputation classes. Each imputation

class should contain a large number of sampled units. When there are many strata

of small size, imputation classes are often obtained through poststratification

(Valliant (1993)) and/or by combining small strata.

The superpopulation assumption on (x, y, a) within each imputation class is

natural, since NNI requires some exchangeability of units within each imputation

class. The NNI method is a model-based approach, rather than a design-based

approach. However, the model assumption is nonparametric (i.e., we only assume

that (x, y, a)’s are i.i.d. within each imputation class) and is much weaker than

a parametric linear model assumption on the conditional mean of y given the

covariate x, which is typically assumed for a regression-type imputation.

Let ψ(x) be a continuous, bounded, and strictly increasing function of x.

Then E(y|x) = E(y|ψ(x)). Since the NNI method recovers information about

nonrespondents using x-covariates through E(y|x), without loss of generality we

can always apply the transformation ψ(x). Hence, we assume in the rest of this

paper that x is bounded, say −∞ < x− ≤ x ≤ x+ < ∞. However, we do not

need to know the values of x− and x+.

Assumption B. For any fixed imputation class k, P (a = 1|x, k) > 0 for all

x ∈ [x−, x+] and is a continuous function of x; conditional on a, x has a bounded

and continuous Lebesgue density fk,a; E(y|x, k) is Lipschitz continuous of x.

In imputation class k, let Rk be the set of indices of y-respondents, R̄k

be the set of indices of nonrespondents, and Sk = Rk ∪ R̄k. Define µk(x) =

E(y|x, k), µk,a = E(y|k, a), µk = E(y|k) = pkµk,1 +(1−pk)µk,0, and µ = E(y) =
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∑K
k=1(Mk/M)µk, where Mk is the size of Pk and M =

∑

k Mk. Conditional on

Rk and Xk = {xi : i ∈ Rk} (the covariates from the respondents), let

qk,i = P

(

|x− xi| = min
j∈Rk

|x− xj |
∣

∣

∣

∣

a = 0, k,Rk ,Xk,Sk

)

be the probability that i ∈ Rk will be selected as the nearest neighbor for a

nonrespondent within R̄k, where P is with respect to x conditional on a =

0, k,Rk,Xk, and Sk.

When there is only one imputation class (K = 1), the subscript k on Sk, Rk,

Xk, pk, µk, µk,a, qk,i, fk,a, etc., will be dropped.

3. Confidence Intervals for Means

Without nonresponse, the superpopulation mean µ and the finite popula-

tion mean Ȳ = M−1
∑

i∈P yi are estimated by a Horvitz-Thompson estimator
∑

i∈S wiyi/M . After NNI, our estimator of µ or Ȳ is

µ̂ =
1

M

∑

k

(

∑

i∈Rk

wiyi +
∑

i∈R̄k

wiỹi

)

=
∑

k

Mk

M

(

∑

i∈Rk

w̄k,iyi +
∑

i∈R̄k

w̄k,iỹi

)

, (7)

where ỹi is the imputed value for the nonrespondent yi, i ∈ R̄k, and w̄k,i = wi/Mk

when i ∈ Sk. The estimator µ̂ will be referred to as the NNI sample mean,

although it is a weighted average of respondents and imputed values. In some

cases, M is unknown. From (6), M̂ =
∑

i∈S wi is a consistent estimator of M .

We can estimate µ or Ȳ by a ratio estimator

1

M̂

∑

k

(

∑

i∈Rk

wiyi +
∑

i∈R̄k

wiỹi

)

=
µ̂

M̂
M

.

An example is the (ratio) estimator given by (20) in Section 4. The asymptotic

property of this estimator can be obtained using (6), the result for µ̂, and the

delta-method. Similarly, if the parameter of interest is a differentiable function

of several population means, the point estimator is the same function of sample

means and its asymptotic property can be derived using the delta-method. Thus,

in what follows, we focus on the asymptotic property of µ̂.

Note that, conditional on S and all observed (yi, xi), imputed values within

imputation class k are i.i.d. taking the value yi with probability qk,i, i ∈ Rk.

Hence,

E(µ̂|sample and respondents) =
∑

k

Mk

M

(

∑

i∈Rk

w̄k,iyi +
∑

i∈R̄k

w̄k,i

∑

i∈Rk

qk,iyi

)

.
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Applying part (iii) of the following lemma to each imputation class, we conclude

that
∑

i∈Rk
qk,iyi converges to µk,0 (the mean of y-nonrespondents in imputation

class k), which shows how NNI recovers information about y-nonrespondents

using y-respondents and x-values, under Assumptions A−B.

Lemma 1. Suppose that Assumptions A-B hold with K = 1.

(i) If g is a function of x with E[g(xi)]
2 <∞ then, for any m = 1, 2, . . .,

E

[

rm−1
∑

i∈R

qm
i g(xi)

]

− (m+ 1)!

2m
E

[

g(xi)f
m−1
0 (xi)

fm−1
1 (xi)

∣

∣

∣

∣

ai = 0

]

→ 0, (8)

where r is the size of R (the number of respondents).

(ii) If E[g(xi)]
4 <∞, then, for any m = 1, 2, . . .,

E

{

rm−1
∑

i∈R

qm
i g(xi) −

(m+ 1)!

2m
E

[

g(xi)f
m−1
0 (xi)

fm−1
1 (xi)

∣

∣

∣

∣

ai = 0

]

}2

→ 0. (9)

(iii) If E(y4l
i ) <∞ for a positive integer l, then

∑

i∈R

qiy
l
i →p E(yl

i|ai = 0). (10)

The proof of Lemma 1 is in Shao and Wang (2007). The following is a

heuristic argument on why NNI and any other type of regression imputation

can use the value of x to impute a missing y and produce an almost unbiased

estimator of µ, under Assumption A. Assume that K = 1 and µ(x) is a known

function. Then a missing yi is imputed as µ(xi) and the resulting estimator of µ

is µ̃ =
∑

i∈S [w̄iaiyi + w̄i(1 − ai)µ(xi)]. Under Assumption A,

E(µ̃|x1, . . . , xn) =
∑

i∈S

w̄i[E(aiyi|xi) + E((1 − ai)µ(xi)|xi)]

=
∑

i∈S

w̄i[E(ai|xi)E(yi|xi) + E(1 − ai|xi)µ(xi)]

=
∑

i∈S

w̄iµ(xi)

= E

(

∑

i∈S

w̄iyi

∣

∣

∣

∣

x1, . . . , xn

)

,

where the second equality follows from P (ai = 1|xi, yi) = P (ai = 1|xi) in As-

sumption A. Hence, µ̃ has the same asymptotic mean as
∑

i∈S w̄iyi, the estimator

without nonresponse.
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The following result is fundamental for any inference method based on nor-

mal approximation.

Theorem 1. Assume Assumptions A−B and, within each imputation class k,

conditions (4)−(5). Assume further that E(y8
i ) <∞. Then

√
n(µ̂− µ)

σ
→d N(0, 1) (11)

for some σ > 0, where →d is convergence in distribution, unconditionally with

respect to the superpopulation model in Assumption A and sampling.

Proof. Let µ̂k =
∑

i∈Rk
w̄k,iyi +

∑

i∈R̄k
w̄k,iỹi. Then µ̂ =

∑

k(Mk/M)µ̂k. Since

variables are independent across imputation classes and imputation is carried out

within each imputation class, the µ̂k are independent. Hence, it suffices to show

result (11) for each µ̂k. We now drop the subscript k with the understanding

that the rest of the proof is for a single fixed imputation class. Let S, R, and

X be defined in Section 2, and let Y = {yi : i ∈ R}. Then E(ỹi|Y,X ,R,S) =
∑

i∈R qiyi. Define ẽi = ỹi − E(ỹi|Y,X ,R,S). Consider the decomposition

µ̂− µ = Q1 +Q2 +Q3 +Q4 +Q5 +Q6,

where Q1 =
∑

i∈R̄ w̄iẽi, Q2 =
∑

i∈R w̄i[yi − µ(xi)] + (1 − p)
∑

i∈R qi[yi − µ(xi)],

Q3 =
∑

i∈R w̄i[µ(xi)−µ1], Q4 = (µ1−µ0)
∑

i∈S w̄i(ai−p), Q5 = µ
(
∑

i∈S w̄i − 1
)

,

andQ6 =
[
∑

i∈R̄ w̄i − (1 − p)
]
∑

i∈R qi[yi−µ(xi)]+
∑

i∈R̄ w̄i

[
∑

i∈R qiµ(xi) − µ0

]

.

By repeatedly applying Lemma 1 in Schenker and Welsh (1988), (11) follows from

P (
√
nQ1 ≤ σ1t|Y,X ,R,S) → Φ(t) a.s., (12)

P (
√
nQ2 ≤ σ2t|X ,R,S) → Φ(t) a.s., (13)

P (
√
nQ3 ≤ σ3t|R,S) → Φ(t) a.s., (14)

P (
√
nQ4 ≤ σ4t|S) → Φ(t) a.s., (15)

P (
√
nQ5 ≤ σ5t) → Φ(t), (16)

√
nQ6 →p 0, (17)

for any real t, where P (·|A) denotes the conditional probability given A, Φ is the

standard normal distribution function, σi’s are some nonnegative parameters,

and σ2 = σ2
1 + · · ·+σ2

5. The proofs of (12)−(17) can be found in Shao and Wang

(2007).

We now consider a variance estimator for µ̂ that is a simplified version of the

partially adjusted jackknife variance estimator in Chen and Shao (2001):

vn =
K
∑

k=1

1

mk(mk − 1)M2

∑

j∈Sk

(mkwj ỹj − ȳk)
2 , (18)
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where mk is the size of Sk, ȳk =
∑

i∈Rk
(1 + d

(k)
i )wiyi, d

(k)
i =

∑

j∈R̄k
(wj/wi)dij ,

dij = 1 if i is the nearest neighbor of j and dij = 0 otherwise, ỹj = yj +

d
(k)
j g

(k)
j (yj − (yjk1

+ yjk2
)/2) if j ∈ Rk and ỹj = the imputed value of yj if

j ∈ R̄k, g
(k)
j = [

√

6(d
(k)
j )2 + 6d

(k)
j + 4 − 2]/3d

(k)
j (g

(k)
j = 0 if d

(k)
j = 0), and jk1

and jk2 are the two nearest neighbors of j in Rk. It is shown in Chen and Shao
(2001) that vn/Vn →p 1, where

Vn = E

[

∑

i∈R

(1 + di)
2 w̄2

i Var (yi|xi)

]

+ Var

[

∑

i∈S

w̄iµ(xi)

]

. (19)

For the purpose of showing that the confidence interval [µ̂− zα
√
vn, µ̂+ zα

√
vn]

is asymptotically valid for µ, we need to show that nvn/σ
2 →p 1, because (11)

has σ2/n as the variance of the limiting distribution of µ̂−µ. Since vn/Vn →p 1,
this can be achieved by showing nVn/σ

2 → 1, which is the first part of the fol-
lowing theorem. The theorem also shows that nVar (µ̂)/σ2 → 1 and, hence, vn is
consistent for nVar (µ̂). The proof of Theorem 2 can be found in Shao and Wang
(2007).

Theorem 2. Assume the conditions in Theorem 1. Then,

(i) nvn/σ
2 →p 1,

(ii) vn/Var (µ̂) →p 1, and

(iii)P (µ̂− zα
√
vn ≤ µ ≤ µ̂+ zα

√
vn) → 1 − α.

4. Confidence Intervals for Quantiles

Population quantiles are typically estimated by sample quantiles (Rao, Ko-
var and Mantel (1990) and Francisco and Fuller (1991)). In what follows we use
F and f to denote the distribution and density of y with respect to the super-
population. Note that fk,a or fa is used in the previous section for the density
of x given a.

Let Iy(t) = 1 if y ≤ t and Iy(t) = 0 if y > t, and let

F̂ (t) =
1

M̂

∑

k

(

∑

i∈Rk

wiIyi
(t) +

∑

i∈R̄k

wiIỹi
(t)

)

(20)

be the empirical distribution, a survey estimator of F (t) = P (y ≤ t). Even if M
is known, M̂ in (20) cannot be replaced by M unless M̂ = M , since F̂ (∞) has to
be 1. If sampling is stratified simple random sampling, then M̂ = M ; otherwise,
M̂ and M may be different. For any fixed q ∈ (0, 1), the qth sample quantile is
θ̂ = F̂−1(q) = inf{t : F̂ (t) ≥ q}, a survey estimator of the population quantile
θ = F−1(q).

Replacing yi by Iyi
(t) in Theorem 1, we obtain that, for any fixed t,

√
n[F̂ (t)−

F (t)] is asymptotically normal with mean 0. The following is a Bahadur-type
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representation for θ̂, a result similar to that in Francisco and Fuller (1991). This
result together with the asymptotic normality of

√
n[F̂ (t) − F (t)] imply that√

n(θ̂−θ) is asymptotically normal. The proof is given in Shao and Wang (2007).

Theorem 3. Assume the conditions in Theorem 1 with yi replaced by Iyi
(t) for

any t. Assume further that F is differentiable at θ and F ′(θ) = f(θ) > 0. Then

θ̂ − θ =
F (θ) − F̂ (θ)

f(θ)
+ op(n

− 1

2 ).

It follows from Theorems 1−3 and the delta-method that the asymptotic

variance of θ̂ − θ is Vn(θ)/f2(θ), where, for any fixed t,

Vn(t) = F 2(t)Var (M̂/M) − 2F (t)Cov (M̂/M, Ĝ(t)) + Var (Ĝ(t)), (21)

and Ĝ(t) is defined by (20) with M̂ replaced by M . In the case where M̂ = M ,
Vn(t) = Var (Ĝ(t)) = Var (F̂ (t)).

A consistent estimator of Vn(θ)/f2(θ) and a confidence interval for θ satisfy-
ing (2) can be constructed in two steps. First, we construct a consistent estimator
of Vn(θ). Second, we use the Bahadur representation.

For any fixed t, let Īk(t) =
∑

i∈Rk
wi(1 + d

(k)
i )Iyi

(t), ξj(t) = Iỹj
(t) if j ∈ R̄k

and ξj(t) = Iyj
(t) + d

(k)
j g

(k)
j {Iyj

(t)− [Iyjk1

(t) + Iyjk2

(t)]/2} if j ∈ Rk, where d
(k)
j ,

g
(k)
j , yjk1

and yjk2
are the same as those in (18). Define

V̂n(t) = F̂ 2(t)

K
∑

k=1

1

mk(mk − 1)M2

∑

j∈Sk

(mkwj − M̂k)
2

−2F̂ (t)

K
∑

k=1

1

mk(mk − 1)M2

∑

j∈Sk

[

mkwjξj(t) − Īk(t)
]

(mkwj − M̂k)

+

K
∑

k=1

1

mk(mk − 1)M2

∑

j∈Sk

[

mkwjξj(t) − Īk(t)
]2
,

where M̂k =
∑

i∈Sk
wi. From the proof of Theorem 2, V̂n(θ)/Vn(θ) →p 1. How-

ever, V̂n(θ) is not an estimator since θ is unknown. The following lemma, whose
proof is given in Shao and Wang (2007), shows that V̂n(θ̂) is consistent for Vn(θ).

Lemma 2. Assume the conditions in Theorem 1 with yi replaced by Iyi
(t) for

any t. Assume further that F is continuous at θ. Then V̂n(θ̂)/Vn(θ) →p 1.

From the Bahadur representation, we propose the Woodruff confidence in-
terval for θ,

CI = [F̂−1(q − zαsn), F̂−1(q + zαsn)], (22)
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where sn = [V̂n(θ̂)]1/2, and the variance estimator for θ̂,

vn =
[F̂−1(q + zαsn) − F̂−1(q − zαsn)]2

4z2
α

. (23)

The next theorem establishes the asymptotic validity of CI and vn. The proof
is given in Shao and Wang (2007).

Theorem 4. Assume the conditions in Theorem 3. Assume further that F is

differentiable in a neighborhood of θ and f = F ′ is continuous at θ. Then

(i) vn/[Vn(θ)/f2(θ)] →p 1 and

(ii) P (θ ∈ CI) → 1 − α.

5. Simulation Results

A simulation study was performed to examine the finite sample performance

of the proposed variance estimators and confidence intervals. Stratified simple

random samples were generated from a population that matches the main char-

acteristics of an aggregated dataset from the 1998 Financial Farm Survey (FFS)

published by Statistics Canada (Rancourt (1999)). The FFS is a bi-annual survey

collecting information on agriculture operations in Canada. The survey collects

information on revenues, expenses, assets, investments, and liabilities for the ref-

erence year. Nonrespondents in the survey are imputed by NNI for some variables

(Rancourt (1999)). We focus on dairy farms and two variables: net assets (x)

and cash income (y). Strata in the FFS are constructed using the size of farm

and province (five provinces and ALT, a group of small provinces, with three

size classes in each province). These 18 strata are also used as imputation classes

and, hence, imputation does not cut across strata. Information about population

size, sample size, number of respondents, mean and standard deviation of x and

y, and the correlation coefficient between x and y in each stratum are given in

Shao and Wang (2007, Table 1). The overall sampling fraction n/M is about

7%.

For each pair (x, y), a y-respondent is generated according to the response

probability function

P (a = 1|x) =
exp(γ1 + γ2(x− µx)σ−1

x )

1 + exp(γ1 + γ2(x− µx)σ−1
x )

for some γ1 and γ2. For each pair (γ1, γ2), we define a model as follows:

Model 1 2 3 4 5 6 7 8 9 10

γ1 0.5 0.5 0.5 1.0 1.0 1.0 2.0 2.0 2.0 ∞
γ2 -1.0 1.0 0.0 -1.0 1.0 0.0 -1.0 1.0 0.0 0.0

p 0.607 0.610 0.628 0.700 0.703 0.735 0.846 0.848 0.883 1.000
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where p = E[P (a = 1|x)] is the average response probability and Model 10
corresponds to the case of no nonresponse.

We considered the estimation of six different parameters of the distribution
of y, the mean, the median, the 10th, 25th, 75th and 95th percentiles. In addition
to the NNI, we considered the linear regression imputation (LRI) that assumes
a linear model between y and x, the random hot deck imputation (RHD), and
the Bayesian bootstrap multiple imputation given by Rubin (1987), with 10 im-
putations (MI10).

Since P (a = 1|x) depends on x when γ2 6= 0 (Models 1, 2, 4, 5, 7 and 8),
RHD and MI10 are biased. On the other hand, when γ2 = 0 (Models 3, 6 and
9), P (a = 1|x) is a constant and RHD and MI10 are unbiased. The LRI is biased
for percentile estimation. For the estimation of the mean, LRI is biased when
P (a = 1|x) depends on x, because the relationship between y and x is nonlinear.
When P (a = 1|x) is a constant (Models 3, 6, and 9), LRI is unbiased even though
the relationship between y and x is not linear.

Table 1 provides empirical results, based on 2,000 simulations, in terms of
the relative bias of the point estimator, the variance of the estimator, the relative
bias (RB) of the variance estimator (given in (18) and (23) for NNI), the coverage
probability of the confidence interval of the form µ̂±zα

√
vn for the case of sample

mean, and Woodruff’s confidence interval (22) for the sample quantiles (1−α is
chosen to be 95%), together with the average length of the confidence interval.

The following is a summary of the results in Table 1.

1. The relative bias. For NNI, relative bias is smaller than 1% in absolute value
in all cases (it is actually not larger than 0.5% in absolute value for most
cases). The relative bias of RHD, MI10, and LRI is smaller than 0.5% in
absolute value when P (a = 1|x) is constant (Models 3, 6, and 9), but it is not
negligible in cases where P (a = 1|x) depends on x (Models 1, 2, 4, 5, 7, and
8). Although the relative bias in some cases is small (e.g., it is 0.8% for LRI
in the estimation of the mean under Model 7), it still leads to a low coverage
probability of the associated confidence interval.

2. The variance. Under Models 3, 6, and 9, LRI, RHD, and MI10 are unbiased
but NNI is more efficient in terms of the variance because RHD and MI10
do not use the covariate information and LRI assumes a linear relationship
between y and x; the variance of MI10 is smaller than that of RHD for esti-
mation of the mean, but it is larger for estimation of percentiles. In situations
where LRI, RHD, and MI10 are biased, their variances are sometimes smaller
than that of NNI, but having a small variance is not necessarily an advantage
when a point estimator is biased.

3. Variance estimators. The proposed variance estimator for NNI performs well
in the estimation of mean and median. For the estimation of other percentiles,
it overestimates, especially for the estimation of extreme percentiles.
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Table 1. Average Results based on 2,000 Simulations

Performance of point estimator Relative bias of Performance of confidence interval
Relative bias (%) Variance/1000 variance estimator (%) Coverage prob (%) Length/1000

θ M NNI LRI RHD MI10 NNI LRI RHD MI10 NNI LRI RHD MI10 NNI LRI RHD MI10 NNI LRI RHD MI10
µ 1 -0.01 1.60 -3.31 -3.33 229 258 355 298 6.50 9.18 -3.98 -5.20 95.4 62.4 15.4 9.8 0.96 1.01 1.14 1.06

2 0.17 1.72 3.89 3.90 227 247 253 210 0.92 0.67 -3.05 -2.96 94.3 54.2 2.3 1.4 0.93 0.96 0.97 0.90
3 0.01 0.11 -0.01 0.00 216 221 297 253 0.59 -1.82 1.86 -0.24 95.2 94.3 95.3 94.8 0.91 0.91 1.08 1.00
4 -0.04 1.28 -2.37 -2.36 204 226 294 237 3.30 -0.43 -3.20 1.19 94.3 70.0 36.2 29.6 0.90 0.93 1.04 0.97
5 0.08 1.24 3.18 3.19 204 207 225 180 -1.22 -3.45 -3.16 2.33 94.6 70.0 6.5 3.3 0.88 0.87 0.91 0.85
6 0.02 0.07 0.00 0.01 189 192 258 211 1.75 -1.40 -2.82 1.38 94.6 94.1 94.8 94.6 0.86 0.85 0.98 0.91
7 0.00 0.80 -0.99 -0.99 169 186 201 183 3.62 -2.43 5.78 4.18 95.6 82.9 80.9 79.9 0.82 0.83 0.90 0.86
8 0.01 0.57 1.81 1.82 172 165 178 151 1.41 1.37 3.45 9.27 95.2 88.2 40.8 35.4 0.82 0.80 0.84 0.80
9 0.04 0.06 0.04 0.03 183 181 207 188 -7.20 -8.83 -6.56 -5.91 94.6 93.8 94.2 94.8 0.81 0.79 0.86 0.83
10 -0.03 165 -5.86 94.3 0.77

q50 1 0.05 1.35 -3.31 -3.35 654 543 709 768 4.76 18.72 4.42 -19.26 93.2 88.3 52.8 47.6 1.57 1.55 1.66 1.54
2 0.10 0.35 3.36 3.38 506 539 531 579 7.07 -12.05 2.82 -20.97 93.7 90.8 41.0 34.6 1.41 1.32 1.42 1.32
3 0.05 -0.62 0.02 -0.01 509 440 594 631 7.73 3.55 4.70 -17.18 93.9 90.4 93.9 89.7 1.42 1.27 1.52 1.41
4 0.05 1.18 -2.29 -2.32 564 490 596 646 -1.85 5.39 2.04 -20.35 93.2 86.9 68.8 62.4 1.42 1.39 1.50 1.39
5 0.07 0.11 2.79 2.75 413 419 433 471 7.90 -5.81 8.97 -15.84 94.1 91.4 48.0 44.7 1.29 1.21 1.32 1.22
6 0.10 -0.39 0.08 0.04 449 401 509 539 3.28 -5.23 1.16 -18.06 93.2 91.6 93.2 90.6 1.31 1.19 1.38 1.29
7 0.08 0.82 -0.92 -0.92 402 399 439 427 3.52 -2.37 2.13 -6.14 93.4 88.4 88.7 86.7 1.24 1.20 1.29 1.22
8 0.04 -0.08 1.62 1.61 353 332 384 393 4.40 0.72 1.61 -11.32 93.9 92.9 74.2 70.6 1.17 1.12 1.21 1.14
9 0.08 -0.16 0.09 0.08 350 328 362 371 4.69 1.01 8.45 -3.30 93.8 93.6 95.0 93.2 1.17 1.11 1.21 1.16
10 0.03 318 0.04 94.4 1.09

q25 1 -0.12 1.67 -5.07 -5.03 721 577 1139 1337 12.37 47.28 4.37 -26.48 93.9 89.3 50.8 45.8 1.72 1.77 2.09 1.93
2 0.08 3.61 5.39 5.45 777 699 712 788 15.82 -35.70 3.53 -21.24 94.4 40.1 27.0 23.2 1.81 1.28 1.64 1.53
3 -0.06 1.23 -0.09 -0.10 684 553 913 999 13.84 -8.74 9.62 -15.85 94.8 84.5 94.3 90.3 1.69 1.37 1.92 1.78
4 -0.05 1.47 -3.55 -3.55 663 577 933 1044 5.24 25.54 5.23 -22.25 93.1 89.4 68.9 62.9 1.60 1.64 1.91 1.75
5 0.11 2.61 4.54 4.51 718 582 610 675 6.37 -26.68 9.31 -17.18 92.8 59.0 35.3 32.2 1.67 1.25 1.57 1.45
6 0.04 0.95 -0.05 -0.07 625 504 781 837 9.07 -4.68 7.29 -15.40 94.4 88.4 94.0 90.9 1.58 1.33 1.76 1.63
7 0.04 1.03 -1.46 -1.47 538 511 689 683 6.20 12.38 3.83 -5.73 93.8 90.4 88.6 86.2 1.46 1.46 1.63 1.55
8 -0.01 1.09 2.63 2.63 540 460 519 516 11.33 -7.12 6.66 -3.31 93.8 85.3 66.8 63.0 1.49 1.26 1.43 1.36
9 0.06 0.49 0.04 0.05 510 458 566 575 9.87 1.92 9.96 -1.77 95.0 92.5 94.8 93.2 1.44 1.32 1.52 1.45
10 -0.02 463 5.25 94.9 1.35

θ: the parameter of interest; qa = the ath percentile of y.
M: the model for simulation.
NNI: nearest neighbor imputation.
LRI: linear regression imputation.
RHD: random hot deck imputation.
MI10: Bayesian bootstrap multiple imputation with 10 imputations.
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Table 1 (continued)

Performance of point estimator Relative bias of Performance of confidence interval
Relative bias (%) Variance/1000 variance estimator (%) Coverage prob (%) Length/1000

θ M NNI LRI RHD MI10 NNI LRI RHD MI10 NNI LRI RHD MI10 NNI LRI RHD MI10 NNI LRI RHD MI10
q75 1 0.07 1.52 -2.60 -2.61 779 753 756 836 5.68 -10.54 5.41 -19.54 92.4 79.9 59.2 53.9 1.71 1.58 1.71 1.59

2 0.08 -1.44 2.42 2.49 501 408 510 623 8.10 23.94 16.19 -20.43 93.4 75.8 56.2 47.3 1.41 1.36 1.47 1.37
3 -0.01 -1.31 -0.02 0.00 557 475 643 713 7.17 8.85 3.05 -21.96 93.0 79.6 92.6 88.2 1.48 1.39 1.56 1.45
4 0.01 1.24 -1.79 -1.81 602 581 604 652 6.65 -6.69 7.82 -15.91 93.3 82.2 72.6 66.7 1.52 1.42 1.55 1.43
5 -0.04 -1.16 1.91 1.91 454 371 497 517 0.94 22.26 0.67 -16.60 92.9 82.3 64.2 59.5 1.30 1.30 1.36 1.27
6 0.07 -0.91 0.02 0.04 499 442 559 572 0.69 1.71 -1.55 -18.27 92.8 85.9 92.2 89.5 1.36 1.29 1.42 1.32
7 0.08 0.80 -0.66 -0.68 448 452 460 484 -0.20 -10.31 0.98 -13.63 92.7 85.7 89.1 87.2 1.28 1.22 1.31 1.25
8 -0.03 -0.54 1.07 1.07 378 350 401 394 1.97 10.98 2.42 -5.46 93.6 90.7 81.6 79.1 1.19 1.20 1.23 1.18
9 -0.03 -0.44 -0.02 -0.01 386 354 403 416 3.15 5.61 3.67 -8.39 92.9 91.6 93.2 91.3 1.21 1.18 1.24 1.19
10 0.00 330 0.88 93.3 1.11

q10 1 0.02 2.63 -5.80 -5.78 1225 1225 1703 1935 10.98 45.91 12.93 -16.57 93.6 89.8 66.2 62.0 2.24 2.56 2.64 2.45
2 0.88 11.90 10.10 10.10 2106 1269 1534 1728 15.97 24.51 22.90 -10.20 92.4 9.5 26.6 22.4 2.98 2.40 2.60 2.39
3 0.12 5.36 0.02 0.02 1470 1188 1926 2124 4.36 30.39 12.20 -14.75 93.4 66.4 93.7 89.7 2.44 2.39 2.80 2.59
4 0.06 2.04 -4.14 -4.11 1143 1139 1476 1626 13.39 29.98 15.54 -11.93 93.2 90.4 79.3 73.7 2.14 2.34 2.49 2.30
5 0.53 9.43 8.43 8.38 1731 1188 1397 1604 10.53 11.54 17.05 -13.50 90.9 20.2 35.0 31.9 2.65 2.20 2.43 2.26
6 0.19 3.99 0.08 0.10 1191 1148 1656 1693 8.76 19.51 6.22 -11.88 93.8 74.8 92.2 89.2 2.29 2.25 2.53 2.35
7 0.18 1.26 -1.74 -1.74 973 1068 1189 1193 13.27 10.37 14.16 1.19 94.2 90.6 91.7 89.3 2.02 2.08 2.23 2.11
8 0.27 5.15 5.09 5.07 1260 1092 1257 1309 1.15 3.13 7.42 -8.05 93.3 56.8 62.8 59.8 2.27 2.04 2.22 2.11
9 0.23 1.89 0.20 0.20 1095 1072 1245 1282 8.35 8.59 5.76 -6.42 93.2 87.2 92.4 91.3 2.09 2.07 2.20 2.10
10 0.18 937 10.17 93.7 1.95

q95 1 -0.31 1.45 -3.78 -3.77 5462 4477 8518 9410 12.45 62.08 -7.18 -29.23 92.7 93.0 66.1 61.3 4.73 5.15 5.37 4.98
2 -0.04 4.44 4.43 4.44 7777 4996 5624 6119 8.42 -14.68 20.51 -9.07 91.5 38.7 52.8 46.0 5.48 3.91 4.93 4.52
3 -0.11 1.77 -0.08 -0.10 6211 4422 8298 9459 6.20 5.85 1.35 -24.76 92.4 83.0 91.6 86.9 4.89 4.14 5.54 5.15
4 -0.17 1.23 -2.67 -2.65 5073 4567 7296 7738 10.76 37.77 -2.17 -20.78 92.3 92.6 77.2 72.8 4.53 4.80 5.11 4.77
5 -0.02 3.35 3.65 3.63 6741 4503 5633 5713 2.43 -19.17 5.80 -12.65 91.3 52.5 60.8 55.4 4.99 3.64 4.64 4.27
6 -0.18 1.30 -0.14 -0.10 5229 4074 6914 7089 11.44 11.08 4.46 -12.93 93.4 87.4 93.0 89.2 4.61 4.07 5.14 4.78
7 0.01 0.78 -1.13 -1.12 4395 4180 5769 5914 10.91 24.89 2.19 -10.89 92.9 91.4 90.6 87.6 4.23 4.37 4.66 4.41
8 -0.13 1.45 2.03 2.05 5129 3863 4699 4780 7.45 -7.28 10.81 -2.00 92.1 81.1 81.9 77.9 4.48 3.61 4.35 4.14
9 -0.11 0.57 -0.09 -0.12 4674 4142 5027 5357 5.46 5.58 10.57 -4.86 92.8 91.0 92.8 90.5 4.25 4.00 4.51 4.33
10 -0.01 3864 15.71 93.8 4.06
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4. The performance of the confidence interval. For NNI, the coverage probability

of confidence interval is close to the nominal level of 95% for mean estimation,

and is between 91% and 94% for percentile estimation. For mean estimation,

the coverage probability of the confidence intervals associated with LRI, RHD,

and MI10 is comparable to that of NNI under Models 3, 6, and 9, but can be

much lower than the nominal level of 95% when P (a = 1|x) depends on x.

For percentile estimation, only RHD has a comparable coverage probability

with NNI under Models 3, 6, and 9; the coverage probability for LRI is clearly

low due to its bias; the coverage probability for MI10 is much lower than that

for RHD.

We conclude that the empirical results are consistent with our theoretical

findings. In the cases where LRI, RHD, and MI10 are unbiased, NNI is better

than RHD and MI10 when useful covariate information is used; NNI is better

than LRI when the relationship between y and x is not linear. When P (a = 1|x)
depends on x, NNI is still unbiased but LRI, RHD and MI10 may not be.

6. Discussion

The results in Sections 3 are for the case where µ is the parameter of inter-

est. If the parameter of interest is the finite population mean Ȳ instead of µ,

then we first need an asymptotic distribution for
√
n(µ̂ − Ȳ ). Note that Ȳ =

1
M

∑

k

(

∑

i∈Rk
yi +

∑

i6∈Rk ,i∈Pk
yi

)

, and {yi : i ∈ Rk} and {yi : i 6∈ Rk, i ∈ Pk}
are independent. Hence it follows from the Central Limit Theorem and our The-

orem 1 that
√
n(µ̂− Ȳ ) =

√
n(µ̂−µ)+

√
n(µ− Ȳ ) is asymptotically normal with

mean 0, but with a variance that may be different from the one in (11). Since

µ − Ȳ = Op(M
−1/2), the limiting variances of

√
n(µ̂ − Ȳ ) and

√
n(µ̂ − µ) are

the same if n/M → 0. Hence, if n/M → 0, the variance estimator vn in (18) is

still consistent and the confidence interval for Ȳ of the form µ̂± zα
√
vn satisfies

(2). A similar discussion applies to the estimation of quantiles. If n/M is not

negligible, then our variance estimators may not be consistent and an extra effort

is needed to derive consistent variance estimators.

The main difficulty for extending our results to cluster sampling or multistage

sampling is that the independence of (xi, yi, ai)’s (Assumption A) does not hold,

since values within a cluster are typically dependent. In a few steps in our proof,

we apply a result for order statistics of i.i.d. xi’s that is not available for general

dependent xi’s. If the cluster sizes in cluster sampling (or the first stage cluster

sizes in multistage sampling) are bounded by a fixed integer, then our proof can

be modified to establish similar asymptotic results. For general cases, however,

further research is needed.
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NNI can be applied when the covariate x is multivariate, but the study
of its properties faces the curse of dimensionality, a problem for many other

nonparametric imputation methods. In consequence, NNI with a multivariate x
may not be efficient. As an alternative, we are working on a method for finding

a linear combination of the multivariate x with which to define neighbors.
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