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Abstract: This paper explores the estimation of
R

f2 where f is a functional pa-

rameter in the white noise model. To compare different estimation procedures, we

adopt the maxiset point of view, i.e., we point out the entire set of functions on

which a given procedure achieves a given target rate. Quadratic and soft (local and

global) thresholding wavelet procedures are considered. We compute the maxisets

for these procedures and prove that, most of the time, thresholding procedures out-

perform the quadratic one. The comparison of performances in the maxiset setting

of local and global thresholding depends on the target rate; none of them is always

preferable.
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1. Introduction

Our aim, in this paper, is to investigate the estimation of θ(f) =
∫

f2, where

f is the functional parameter of the classical white noise model

Yǫ(t) =

∫ t

0
f(u)du+ ǫB(t), t ∈ [0, 1], (1.1)

B(t) is a standard Brownian motion on [0, 1], Yǫ = (Yǫ(t), 0 ≤ t ≤ 1) is the

observed variable, and ǫ→ 0.
In a general way, for the non-parametric framework there are three steps to

take when estimating θ(f): the choice of the method (kernel, series, wavelet,. . . );

the determination of parameters of the method (the bandwidth h, the number
N , the level j,. . . ); the evaluation of the quality of the procedure θ̂ǫ (the word

“procedure” fixes the method/parameter) by computing its rate. It is well known
that the rate has to be associated with a function space. More precisely, for the

procedure θ̂ǫ and function space F ⊂ L2, we point out the associated (quadratic)

rate ρǫ that results from the computation of supg∈F E[(θ̂ǫ − θ(g))2].
When non-parametric problems are explored, the minimax theory is the

most popular point of view: it consists in ensuring that the procedure θ̂ǫ to be

used achieves the best rate on a given function space F . But the rate might
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be unknown (in an adaptive framework) and the choice of F is arbitrary (what
kind of spaces has to be considered: Sobolev spaces? Besov spaces? why?).
Moreover, F could contain very bad functions g (in the sense that θ(g) is difficult
to estimate). Since θ(f) might be easier to estimate, a procedure could be too
pessimistic and not adapted to the data. More embarrassing in practice, several
minimax procedures may be proposed and the practitioner has no way to decide
between them. To answer these questions, another point of view has recently
appeared: the maxiset point of view (see for instance Kerkyacharian and Picard
(2000)). It consists in deciding the accuracy of the estimate by fixing a prescribed
rate ρǫ and pointing out all functions g such that θ(g) can be estimated by
the procedure θ̂ǫ at the target rate ρǫ. Roughly speaking, the maxiset of the
procedure θ̂ǫ for the rate ρǫ is the set of all such functions. The maxiset point
of view brings answers to the previous questions. Indeed, there is no a priori
functional assumption and then, the practitioner does not need to restrict his
study to an arbitrary function space. The practitioner states the desired accuracy
and fixes the quality of the used procedure. Obviously, he chooses the procedure
with the largest maxiset.

Let us come back to the problem of estimating θ(f) =
∫

f2. This problem
has been intensively studied in the minimax theory and is now completely solved.
Generally, f is assumed to belong to the Besov space Bαp,∞ for α > 0, p ≥ 1.
One gets different rates according to the regularity α of the function f . If f
is regular, it is possible to estimate θ(f) with the parametric rate. Otherwise,
the (non-parametric) rates depend on α and on p when p < 2. Moreover, as in
the problem of estimating the entire function f , two forms of rates have been
pointed out when f is dense (p ≥ 2) or f is sparse (p < 2). Procedures have
been proposed to achieve the minimax rate in each case. Under some conditions,
in the case where p ≥ 2, quadratic methods or global thresholding methods are
shown to be minimax or adaptive minimax (see Tribouley (2000)); in the case
p < 2, Cai and Low (2005) prove that a local thresholding method is minimax.

In this paper, we study wavelet estimation methods and focus on thresholding
methods. We consider soft local thresholding, soft global thresholding, and no
thresholding (the resulting method is then called the quadratic procedure). Our
aim is to answer the following questions.

• Is the use of Besov spaces arbitrary in the minimax point of view?
• If f is supposed to be regular, the usual quadratic estimate is optimal in the

minimax sense. But why not use a non-quadratic procedure? Could it be
better?

• The soft local thresholding procedure has been proposed by Cai and Low
(2005) to obtain minimax procedures in the non-regular sparse case. The
global thresholding procedure proposed by Tribouley (2000) solves the prob-
lem of adaptation in the dense case. Is it judicious to use these procedures
instead of the quadratic one in a more general context?
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• If the practitioner is convinced about the performances of the thresholding

methods, is it preferable to use global or local thresholding procedures?

For each procedure, we compute the maxiset associated with a target rate.

We prove that the classical regularity assumptions of the minimax theoreticians

make sense in that the maxiset of the quadratic procedures for polynomial rates

is exactly a Besov space (see Theorem 1). Next, Theorem 2 states that the

maxisets of the thresholding procedures are weak Besov spaces; they are at least

as large as classical Besov spaces. These spaces are directly connected to the

thresholding methods, and we define a weak local version and a weak global

version. Actually, they appear in a quite natural way in the context of the

functional estimation using wavelet methods, see for instance Donoho (1993) or

Johnstone (1994). See also Kerkyacharian and Picard (2000) for a precise study

of the links between wavelet thresholding methods and weak Besov spaces in the

functional estimation framework. Given a target rate and estimation procedures,

we compute their maxisets as a basis for comparisons. For polynomial rates, and

with an optimal choice of parameters, we establish that the local thresholding

procedure is always best in the sense that it achieves the given target rate on the

largest set of functions. We also prove that the maxiset of the global thresholding

procedure is the maxiset of the quadratic procedure and we deduce that both

have the same performance. With a different choice for the parameters, the global

thresholding procedure outperforms the quadratic one and is not comparable with

the local thresholding procedure since neither maxiset is included in the other.

In this case, we point out the shape of the functions (sparse or dense) for which

each procedure is adapted. Finally, we study the case where the target rate is

more general than the polynomial one. In particular, we focus on rates of the

form ǫ2r| log(ǫ)|2r′ ; such rates appear in the minimax adaptive framework. With

these rates, the maxiset conclusions are different according to the value of r′.
This proves the influence of the target rate when we compare procedures in the

maxiset framework.

The paper is organized as follows. In Section 2, we present the model and

introduce the maxiset setting. In Section 3, we define the function spaces that

are candidates for maxisets of procedures presented in Section 4. All the results

are given in Section 5. Section 6 is devoted to the connections with the minimax

results. The proofs concerning the properties of the function spaces are postponed

to Section 7, and those concerning maxisets are postponed to Section 8.

2. Model and problem

As usual, we translate the original functional model (1.1) into the sequence

space model. For this purpose, let us take a wavelet function ψ and an associated

scaling function denoted ψ−1. We assume that these functions are compactly
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supported, see for example the Daubechies wavelets (Daubechies (1992)). By

translations and dilations, we obtain a L2-orthonormal wavelet basis denoted

(ψjk)j≥−1,k∈Z, which enables us to translate (1.1) into the following sequence

space model:

yjk = βjk + ǫ zjk, j ∈ {−1} ∪ N, k ∈ Z,

where (zjk) is a sequence of i.i.d. standard Gaussian variables, (yjk) is the se-

quence of observed variables, and (β−1,k) (respectively (βj,k) for j 6= −1) are the

coefficients of f on the scaling function (respectively on the wavelet function):

f =
∑+∞

j=−1

∑

k βjkψjk. Let us note that at each level j ≥ −1, the number of non-

zero wavelet coefficients is smaller or equal to [max(2j , 1)+ lψ−1], where lψ is the

maximal size of the supports of ψ and ψ−1. Since the wavelet basis is an orthonor-

mal basis of L2, the parameter to be estimated is θ = θ(f) =
∑∞

j=−1

∑

k β
2
jk.

Definition 1. Let R > 0 and let ρǫ > 0 be the target rate. If θ̂ denotes an esti-

mator of θ, the maxiset of θ̂ of radius R for the rate ρǫ is denoted MS(θ̂, ρǫ)(R),

and is defined by

MS(θ̂, ρǫ)(R) =

{

f ∈ L2([0, 1]) : sup
ǫ
ρ−1
ǫ E

[

(θ̂ − θ)2
]

≤ R2

}

.

We write MS(θ̂, ρǫ) = A to mean that ∀R, ∃R′, MS(θ̂, ρǫ)(R) ⊂ A(R′)
and ∀R′, ∃R, A(R′) ⊂ MS(θ̂, ρǫ)(R), where R,R′ > 0 are the radii of balls of

MS(θ̂, ρǫ) and A, respectively.

3. Function Spaces

In Section 3.1, we recall the definitions of the function spaces that play

an important role in the sequel. Note that, here, they appear with defini-

tions depending on the wavelet basis. However, as noted by Meyer (1990) and

Cohen, DeVore and Hochmuth (2000), most of them also have different defini-

tions, so this dependence on the basis is not crucial. Next, in Section 3.2, we

explore the links between the spaces that we have introduced.

3.1. Definitions

Recall the definition of the Besov spaces in terms of wavelet coefficients.

Definition 2. Let s > 0 and R > 0. A function f =
∑+∞

j=−1

∑

k βjkψjk ∈
L2([0, 1]) belongs to the Besov ball Bsp,∞(R) if and only if

[

sup
j≥−1

2
j(s+ 1

2
− 1

p
)p

∑

k

|βjk|p
]

1
p

≤ R.
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Since we focus on the estimation of θ =
∑

j≥−1

∑

k β
2
jk, the space Bs2,∞ has

specific interest. Note that, when p = 2, f belongs to Bs2,∞ if and only if

sup
J≥−1

22Js
∑

j≥J

∑

k

β2
jk < +∞.

This characterization is often used in the sequel. We now introduce spaces in the

class of Lorentz spaces that are directly connected to the estimation procedures

considered in this paper.

Definition 3. Let 0 < r < 2 and R > 0. A function f =
∑+∞

j=−1

∑

k βjkψjk ∈
L2([0, 1]) belongs to the weak local Besov ball WL

r,γ(R) if and only if

[

sup
λ>0

λr−2
∑

j≥−2γ log2(λ)

∑

k

β2
jk1|βjk |≤λ

√
j

]
1
2

≤ R,

and to the weak global Besov ball WG
r,γ(R) if and only if

[

sup
λ>0

λr−2
∑

j≥−2γ log2(λ)

∑

k

β2
jk1

P

k β
2
jk≤λ22j/2

√
j

]
1
2

≤ R.

Actually, to check that a function decomposed on the wavelet basis belongs

to one of these weak Besov spaces, it is enough to verify that f ∈ L2([0, 1])

and to evaluate the supremum for λ ≤ 1. For weak local Besov spaces, we

focus on the number of the wavelet coefficients that are smaller than a pre-

scribed threshold. For weak global Besov spaces, we do the same job, but level

by level and for a function of the wavelet coefficients. In fact, weak Besov

spaces have already been introduced in the maxiset context in statistics (see

Cohen, DeVore, Kerkyacharian and Picard (2001), Kerkyacharian and Picard

(2000, 2002), Rivoirard (2004), or Autin, Picard and Rivoirard (2004) and in

approximation theory (see Cohen, DeVore and Hochmuth (2000)). The main

difference lies in the level j’s we consider: we do not care about wavelet coeffi-

cients when j < −2γ log2(λ), and this difference is crucial in the sequel. These

spaces play an important role in approximation theory (see DeVore and Lorentz

(1993)). We show in the next section that they are strongly connected to classical

Besov spaces and they appear as weak versions of Besov spaces.

3.2. Links between function spaces

Recall the inclusions between the Besov spaces.
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Property 1. Let s, s′ > 0 and p ≥ 1. Then, we have

Bsp,∞ ⊂ Bs2,∞ if p ≥ 2,

Bsp,∞ ⊂ Bs′2,∞ if p ≤ 2, s− 1

p
≥ s′ − 1

2
.

We establish links between the weak Besov spaces.

Property 2. Let 0 < r, r1, r2 < 2 and γ, γ1, γ2 > 0. Suppose W ∗ is either the

weak local Besov space or the weak global Besov space. Then

W ∗
r1,γ ⊂W ∗

r2,γ if 0 < r1 < r2 < 2 and W ∗
r,γ1 ⊂W ∗

r,γ2 if 0 < γ1 < γ2. (3.1)

Let 0 < r < 2. If 0 < γ < 2 − r, we have

WL
2−r,γ 6⊂WG

2−r,γ , and WG
2−r,γ 6⊂WL

2−r,γ . (3.2)

If γ = 2 − r

WG
2−r,2−r ( WL

2−r,2−r. (3.3)

We now establish links between weak Besov spaces and Besov spaces.

Property 3. If 0 < r < 2 and γ > 0,

B
r
4γ

2,∞ ⊂W ∗
2−r,γ , (3.4)

where W ∗ is either the weak local Besov space WL or the weak global Besov space

WG. We also have, for s > 0 and p ≥ 1,

Bsp,∞ ⊂WL
1,1 if p < 2, and s >

1

2p
, or if p ≥ 2, and s ≥ 1

4
;

Bsp,∞ ⊂WG
1,1 if p < 2, and s ≥ 1

p
− 1

4
, or if p ≥ 2, and s ≥ 1

4
.

To compare the estimation procedures from the maxiset point of view, it is

crucial to know whether the inclusion at (3.4) is strict or not.

Property 4. When 0 < r < 2, and γ > 0,

B
r
4γ

2,∞ ( WL
2−r,γ , if γ ≤ 2 − r and B

r
4γ

2,∞ ( WG
2−r,γ , if γ < 2 − r, (3.5)

but

B
r

4(2−r)

2,∞ = WG
2−r,2−r. (3.6)
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Proofs are postponed to Section 7. The proofs of the strict inclusions or the

non-inclusions are interesting because they are constructive: we build explicit

functions belonging to a specified space, but not belonging to another.

4. Procedures of Estimation

We present different estimation procedures that are essentially thresholding

procedures. For local thresholding, we refer to Cai and Low (2005), and for global

thresholding to Tribouley (2000). Let j0, j1 be levels such that j0 ≤ j1, with τ a

threshold to be chosen (eventually depending on j, ǫ). We consider estimates

θ̂ =

j1−1
∑

j=−1

∑

k

θ̂jk,

where for j = −1, . . . , j0 − 1, and all k, θ̂jk = y2
jk − ǫ2, and for all j ≥ j0, and all

k,

θ̂jk = θ̂Ljk =
(

y2
jk − µǫ2

)

1|yjk|>ǫ
√
τ − ǫ2E

(

z2
jk − µ

)

1|zjk|>
√
τ

or

θ̂jk = θ̂Gjk = 2−j
∑

k

(

y2
jk − λǫ2

)

1P

k(y2jk−ǫ2)>ǫ2
√

2jτ
,

where µ, λ are real parameters (eventually depending on ǫ or j). We recall their

minimax properties.

Remark 1. In the sequel, 2j0 and 2j1 are powers of ǫ but, since j0 and j1 are

integers, integer parts should be used. To avoid tedious notation, and without

loss of generality, we ignore this point.

4.1. The quadratic procedures

If j0 = j1, θ̂ is the classical quadratic estimator. In this case, we note θ̂ = θ̂Q.

If f is in Bα
p,∞ for p ≥ 2, α > 0 or p ≤ 2, α ≥ 1/p − 1/4, it achieves the optimal

minimax rate

ρǫ = ǫ2r =

{

ǫ2 if α ≥ 1
4 , p ≥ 2 or α ≥ 1

p − 1
4 , p ≤ 2,

ǫ
16α

1+4α if α ≤ 1
4 , p ≥ 2,

as soon as the smoothing parameter j0 is chosen such that

2j0 =

{

ǫ−2 if α ≥ 1
4 , p ≥ 2 or α ≥ 1

p − 1
4 , p ≤ 2,

ǫ−
4

1+4α if α ≤ 1
4 , p ≥ 2.

4.2. The local thresholding procedures
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When j1 > j0, the estimate θ̂ built with the sequence θ̂Ljk is a local threshold-

ing estimator. In this case, we note θ̂ = θ̂L. The choice µ = 0 is associated with

hard thresholding procedures, while µ = τ is associated with soft thresholding

procedures. Cai and Low (2005) proved that the soft local procedure is minimax

on Bα
p,∞ when p ≤ 2. More precisely, set s = α+ 1/2 − 1/p. The minimax rates

ρǫ = ǫ2r =







ǫ2 if α > 1
2p , p ≤ 2,

ǫ
4− 2p

1+2ps if α ≤ 1
2p , p ≤ 2,

are achieved if j0 satisfies

2j0 =







ǫ−2 if α > 1
2p , p ≤ 2,

ǫ
− 2p

1+2ps if α ≤ 1
2p , p ≤ 2,

and 2j1 = | log ǫ|ǫ−1/2s, τ = κ(j−j0), κ a constant. If non-limited procedures are

allowed, we take j1 = +∞ and τ = κj, and the procedure is adaptive minimax

on Bα
p,∞ for α > 1/(2p), p ≤ 2.

4.3. The global thresholding procedures

When j1 > j0, the estimate θ̂ built with the sequence θ̂Gjk is a global thresh-

olding estimator. In this case, we note θ̂ = θ̂G. The choice λ = 1 leads to a hard

thresholding procedure, and λ = 1+2−j/2
√
τ is associated with a soft threshold-

ing procedure. For λ = 1, Tribouley (2000) proved that if 2j0 = ǫ−2, 2j1 = ǫ−4,

and τ = κj, the procedure is adaptive minimax on the space Bα
p,∞ for p ≥ 2,

α > 0. This means that the adaptive minimax rate

ρǫ =

{

ǫ2 if α ≥ 1
4 , p ≥ 2,

(| log ǫ| 14 ǫ)
16α

1+4α if α < 1
4 , p ≥ 2,

is achieved. Note that the logarithmic term is the price to pay for adaptation.

5. Main results

In this section, we apply the maxiset theory for the procedures defined previ-

ously. As mentioned earlier, use of a ”procedure” means that we fix the method

(quadratic, local thresholding, global thresholding) and the parameters of the

method (j0, j1, τ). Let ρǫ be the target rate of convergence. First we focus on

polynomial rates ρǫ = ǫ2r, 0 < r ≤ 1. In Section 5.1, we determine the maxisets

associated with the procedures described earlier. In Section 5.2, for the same

rates, we compare procedures by comparing maxisets. Finally, we study the case
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where general rates are considered: the maxiset computations are in Section 5.3

and comparisons between procedures are in Section 5.4.

5.1. Maxisets when the target rate is polynomial

Theorem 1 deals with quadratic procedures, which means that we consider

the case j0 = j1. In Theorem 2, we establish results about the thresholding

procedures for non-limited procedures and for limited procedures. The smoothing

parameter j0 is proportional to | log2 ǫ|. We always consider the case τ = κj for

some κ large enough.

Theorem 1. Let 0 < r ≤ 1 and 0 < γ ≤ 2 − r. If θ̂Q is the quadratic estimate

with 2j0 = 2j1 = ǫ−2γ, then MS(θ̂Q, ǫ2r) = Br/(4γ)2,∞ .

Next, we focus on the soft thresholding procedures: we take µ = τ for the

local thresholding, and λ−1 = m2−j/2
√
τ for some constant m > 0 for the global

thresholding.

Theorem 2. Let 0 < r ≤ 1 and 0 < γ ≤ 2−r. If θ̂L is the soft local thresholding

estimate and θ̂G is the soft global thresholding estimate, with 2j0 = ǫ−2γ , 2j1 =

+∞ and τ = κj for κ great enough, MS(θ̂L, ǫ2r) = WL
2−r,γ , and MS(θ̂G, ǫ2r) =

WG
2−r,γ . If 2j1 = ǫ−2γ′ for some γ′ > γ, the maxisets are MS(θ̂L, ǫ2r) = WL

2−r,γ ∩
Br/(4γ

′)
2,∞ and MS(θ̂G, ǫ2r) = WG

2−r,γ ∩ Br/(4γ
′)

2,∞ .

Note that Theorems 1 and 2 are special cases of Theorems 4 and 5. Note

also that each procedure depends only on the choice of γ (and γ′ for limited

procedures), but the larger γ, the larger the maxiset.

5.2. Maxiset comparisons of procedures when the target rate is poly-

nomial

We compare our estimation procedures for polynomial rates of convergence.

For this purpose, assume that the rate is of the form ρǫ = ǫ2r with 0 < r ≤ 1. We

still consider the quadratic, local thresholding and global thresholding procedures

(denoted θ̂Q, θ̂L, θ̂G) with thresholds introduced in Theorem 2. For each of them

we take 2j0 = ǫ−2γ , γ ≤ 2 − r and 2j1 = ǫ−2γ′ , where γ′ ∈ [γ,+∞] is assumed to

be a large enough constant (see Remark 3). Using the properties of Section 3.2

and Theorems 1 and 2, we immediately deduce:

Theorem 3. When γ < 2 − r, the quadratic procedure is outperformed by

the local and global thresholding ones since MS(θ̂Q, ǫ2r) ( MS(θ̂L, ǫ2r) and

MS(θ̂Q, ǫ2r) ( MS(θ̂G, ǫ2r). Moreover, local and global thresholding are not com-

parable since MS(θ̂L, ǫ2r) 6⊂MS(θ̂G, ǫ2r) and MS(θ̂G, ǫ2r) 6⊂MS(θ̂L, ǫ2r). When

γ = 2 − r, the quadratic procedure and global thresholding achieve the same
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performance since MS(θ̂Q, ǫ2r) = MS(θ̂G, ǫ2r). Moreover, the local threshold-

ing procedure outperforms global thresholding and the quadratic procedure since

MS(θ̂Q, ǫ2r) = MS(θ̂G, ǫ2r) ( MS(θ̂L, ǫ2r).

Non-comparability of local and global thresholding when γ < 2− r is then a

second point could appear as an illustration of a drawback of the maxiset setting

where the order is not total. However, we can draw interesting conclusions from

these maxiset results in the lights of counter-examples of Section 7. Indeed, in

Section 7, we point out what are the functions that belong to the maxiset of one

procedure and not to the maxiset of the other one, according to their sparsity.

And as a conclusion, roughly speaking, local thresholding is convenient when

estimating sparse functions, global thresholding for dense ones. The last point

shows that, from the maxiset point of view, local thresholding is the best choice

for an appropriate choice of γ, and global thresholding should be avoided when

γ is taken as large as possible.

5.3. Extensions of previous results for general rates

To generalize results of Section 5.1 for quadratic and thresholding procedures,

consider a continuous function u : [0, 1] −→ R+ such that

∃ δ > 0,∃M > 0,∀ x ∈ [0, 1],∀ y ∈ [x, 1], u(y)yδ−2 ≤Mu(x)xδ−2. (5.1)

The following theorem is a generalization of Theorem 1.

Theorem 4. Let γ > 0. If θ̂Q is the quadratic estimate with 2j0 = 2j1 = ǫ−2γ ,

and if (5.1) is satisfied for some δ ≥ max(γ, 1), then MS(θ̂Q, u2(ǫ)) = B2,γ,∞(u),

where

B2,γ,∞(u)(R) :=

{

f : sup
λ>0

u(λ)−1
∑

j≥−2γ log2(λ)

∑

k

β2
jk ≤ R2

}

.

Theorem 2 is generalized as follows.

Theorem 5. Let γ > 0. Let θ̂L be the soft local thresholding estimate, and θ̂G

the soft global thresholding estimate, with 2j0 = ǫ−2γ , 2j1 = +∞, and τ = κj for

κ large. If (5.1) is satisfied for δ ≥ max(γ, 1), then MS(θ̂L, u2(ǫ)) = WL
γ (u), and

MS(θ̂G, u2(ǫ)) = WG
γ (u), where

WL
γ (u)(R) :=

{

f : sup
λ>0

u(λ)−1
∑

j≥−2γ log2(λ)

∑

k

β2
jk1|βjk|≤λ

√
j ≤ R2

}

, (5.2)

WG
γ (u)(R) :=

{

f : sup
λ>0

u(λ)−1
∑

j≥−2γ log2(λ)

∑

k

β2
jk1

P

k β
2
jk≤λ22j/2

√
j ≤ R2

}

. (5.3)
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If 2j1 = ǫ−2γ′ for some γ′ > γ, the maxisets are MS(θ̂L, u2(ǫ)) = WL
γ (u) ∩

B2,γ′,∞(u) and MS(θ̂G, u2(ǫ)) = WG
γ (u) ∩ B2,γ′,∞(u).

Theorems 4 and 5 are proved in Section 8. Note that u(ǫ) = ǫr for r > 0

corresponds to the particular case studied before with M = 1 and δ = 2 − r.

Theorem 5 is especially interesting when the target rate is non-parametric. In

this case, rates like u2(ǫ) = ǫ2r| log(ǫ)|2r′ for r′ ≥ 0 are of interest because they

appear in the minimax adaptive framework. Here (5.1) is still satisfied with

M = 1 and δ = 2 − r. For instance, to study the adaptive global thresholding

procedure, u(ǫ) = ǫ8α/(1+4α)| log(ǫ)|2α/(1+4α) (0 < α < 1/4). In the lights of

these results, it is of particular interest to compare thresholding and quadratic

procedures when the rate is of this form. That is the goal of the following section.

5.4. Maxiset comparison

Here we compare thresholding (with thresholds introduced in Theorem 5)

and quadratic procedures for the rate u2(ǫ), where u(ǫ) = ǫr| log(ǫ)|r′ . We still

consider θ̂Q, θ̂L and θ̂G: the quadratic, local thresholding and global thresholding

procedures. First, we have to state properties on the links between the function

spaces (that are the maxisets of the procedures). Using similar arguments as for

Property 2, it is easy to state the following result.

Property 5. Let 0 < r < 2, r′ ≥ 0. If 0 < γ < 2 − r, then WL
γ (u) 6⊂ WG

γ (u)

and WG
γ (u) 6⊂WL

γ (u).

We now establish the links between generalized Besov spaces and generalized

weak Besov spaces. Note that the power of the logarithmic term plays a role for

weak global Besov spaces.

Property 6. Let 0 < r < 2 and r′ ≥ 0. Then B2,γ,∞(u) ( WL
γ (u) if 0 < γ ≤

2 − r. If 0 < γ < 2 − r or if γ = 2 − r, r′ > 1/2,

B2,γ,∞(u) ( WG
γ (u), WG

γ (u) 6⊂WL
γ (u). (5.4)

If γ = 2 − r, r′ < 1/2,

B2,2−r,∞(u) = WG
2−r(u). (5.5)

If γ = 2 − r, r′ = 1/2, for any R ≤ (4 − 2r)1/4 there exists R′ such that

B2,2−r,∞(u)(R) ⊂WG
2−r(u)(R) ⊂ B2,2−r,∞(u)(R′).

Theorem 6. When γ < 2 − r, the first two conclusions of Theorem 3 remain

valid when ǫ2r is replaced with u2(ǫ). When γ = 2−r, if r′ > 1/2, the thresholding
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procedure outperforms the quadratic one and local and global thresholding are not

comparable.

If r′ < 1/2, the quadratic procedure and the global thresholding one achieve

the same performance and the local thresholding procedure outperforms the other

ones since MS(θ̂Q, u2(ǫ)) = MS(θ̂G, u2(ǫ)) ( MS(θ̂L, u2(ǫ)). If r′ = 1/2, this

last result remains valid if MS(θ̂G, u2(ǫ))(R′) ⊂WG
2−r(u)((4 − 2r)1/4).

Remark 2. When r′ = 1/2, we need an accurate control of constants involved

in the proofs of Property 6 and Theorem 6 that cannot be reached by using

thresholding procedures. So, whether the last result of Theorem 6 remains true

for any value of R′ remains an open question; we conjecture that the answer is

yes.

6. Connections with Minimax Results

In this section, our goal is to establish connections between maxiset and

minimax results. Indeed, in the first part, we show how to deduce minimax

properties of a given procedure from maxiset results. To prove that a procedure

is minimax on F , we point out the minimax rate ρǫ associated with F . Then

we compute the maxiset of the procedure for the rate ρǫ by using theorems of

the previous section and prove that F is included in the maxiset. Note that

many of the minimax results established in Section 6.1 are already known. In

the second part, we focus on procedures that are optimal on Besov spaces Bαp,∞
from a minimax point of view, and we compare these procedures from a maxiset

point of view.

6.1. Minimax properties of procedures deduced from maxiset results

Recall that the minimax rate on Bαp,∞ is ǫ2 if p ≥ 2, α ≥ 1/4, or p < 2, α >

1/(2p). It is also the adaptive minimax rate. When p ≥ 2, α < 1/4, the minimax

rate is ǫ16α/(1+4α), but the adaptive minimax rate is (| log ǫ|1/4ǫ)16α/(1+4α).

We begin with quadratic procedures, which means that j1 = j0 is the only

parameter to fix (equivalently γ). Applying Theorem 1 for the minimax rates

and using the inclusions between the Besov spaces given in Property 1, we obtain

the following result.

Result 1. The quadratic procedure built with γ = 1 is minimax on Bαp,∞ if

p ≥ 2, α ≥ 1/4 or p < 2, α ≥ 1/p − 1/4. The quadratic procedure built with

γ = 2/(1 + 4α) is minimax on Bαp,∞ if p ≥ 2, α ≤ 1/4.

Let us focus now on local thresholding procedures. The soft procedures

(µ = τ) for which we take γ as large as possible are considered, and the threshold
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is chosen as in Theorem 2. We apply Theorem 2 when j1 = ∞ for the minimax

rates, and we use Property 3 giving results about the inclusions of the Besov

spaces in the weak local Besov spaces.

Result 2. The local soft thresholding procedure built with γ = 1 is minimax

on Bαp,∞ if p ≥ 2, α ≥ 1/4 or p < 2, α > 1/(2p). The local soft thresholding

procedure built with γ = 2/(1 + 4α) is minimax on Bαp,∞ if p ≥ 2, α ≤ 1/4.

Now we study the global thresholding procedures. The soft procedures are

considered (λ = 1 + m2−j/2
√
τ for some constant m > 0). We consider non-

limited procedures, which means that j1 = ∞ and the threshold is chosen as

in Theorem 2. We apply Theorem 2 and use Property 3 giving results on the

inclusions of the Besov spaces in the weak global Besov spaces.

Result 3. The global soft thresholding procedure built with γ = 1 is minimax on

Bαp,∞ if p ≥ 2, α ≥ 1/4 or p < 2, α ≥ 1/p − 1/4. The global soft thresholding

procedure built with γ = 2/(1 + 4α) is minimax on Bαp,∞ if p ≥ 2, α ≤ 1/4.

Lastly, we study the adaptive thresholding procedures (we take γ = 1 and

the thresholds as before) and adaptive minimax rates on Bαp,∞, p ≥ 2. In this

case, the target rate is generalized: take u2(ǫ) = ǫ2 if α ≥ 1/4 and u2(ǫ) =

(
√

| log(ǫ)|ǫ2)8α/(1+4α) if α < 1/4. Note that the following property (proved in

Section 7) holds.

Property 7. Let p ≥ 2 and α > 0. Then Bαp,∞ ⊂ Bα2,∞ ⊂ WG
1 (u), and Bαp,∞ 6⊂

WL
1 (u) if α < 1/4.

Now, using Theorem 6 for r = 8α/(1 + 4α), r′ = 2α/(1 + 4α) < 1/2 and

γ = 1, we have the following.

Result 4. The adaptive soft local procedure is not adaptive minimax on Bαp,∞
for p ≥ 2, α < 1/4. The adaptive soft global procedure is adaptive minimax on

Bαp,∞ for p ≥ 2, α > 0.

6.2. Comparisons between procedures

The parameters of all procedures are chosen to have good minimax properties

(see Sections 4.1, 4.2 and 4.3). Depending on the rate, they are non-adaptive.

Applying Theorem 3, we obtain the following result.

Result 5. If the target rate is ǫ2 or ǫ16α/(1+4α) for some 0 < α < 1/4, the

quadratic procedure is as good as the (non-adaptive) soft global procedure for the

maxiset criterion. The soft local procedure outperforms the quadratic one (and

then also the non-adaptive soft global thresholding procedure) from the maxiset

point of view.
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Now, let u2(ǫ) = (
√

| log(ǫ)|ǫ2)8α/(1+4α) for α > 0 be the best rate achievable

by adaptive procedures on Bαp,∞ when α < 1/4, p ≥ 2. We focus on non-adaptive

procedures and choose γ = 2/(1 + 4α). Applying Theorem 6 with r = 8α/(1 +

4α) = 2 − γ and r′ = 2α/(1 + 4α) < 1/2, we obtain the following result.

Result 6. If the target rate is u2(ǫ), the non-adaptive soft local procedure out-

performs the quadratic one and the non-adaptive soft global thresholding procedure

(that achieves the same performance as the quadratic one) from the maxiset point

of view.

Choosing now γ = 1, we consider adaptive procedures. Applying Theorem

6 with r = 8α/(1 + 4α) > 2 − γ, we obtain the following result.

Result 7. If the target rate is u2(ǫ), the quadratic procedure is the worst method

from the maxiset point of view.

7. Proofs for the Results on Function Spaces

In the sequel, c denotes a positive constant that may change from line to line.

For the sake of simplicity, and without loss of generality, we assume that the num-

ber of non-zero wavelet coefficients of any signal at each level j is exactly 2j . De-

tailed proofs of Properties 2, 4 and 6 are available on http://www3.stat.sinica.edu.

tw/statistica.

7.1. Proof of Property 2.

Inclusions (3.1) are obvious. Inclusion (3.3) is a direct consequence of (3.6)

and of the first part of (3.5). To establish the first part of (3.2), we consider

a sparse sequence (βjk) such that at each level j, only one wavelet coefficient

takes the value j1/42−jβ, with 0 < β < r/(4(2 − r)) = 1/(4 − 2r) − 1/4, while

the others are 0. Using straightforward computations, we easily prove that the

function f =
∑+∞

j=−1

∑

k βjkψjk belongs toWL
2−r,γ but not to WG

2−r,γ. To establish

that the second part of (3.2) holds, we build a dense sequence such that all its

wavelet coefficients at the level j take the value βjk = 2−jβ
√
j, with 1/(2(2 −

r)) + 1/4 < β ≤ min(1/2 + r/(4γ); 1/(2 − r)), which is possible as soon as

γ < 2−r. Using straightforward computations, we easily prove that the function

f =
∑+∞

j=−1

∑

k βjkψjk belongs to WG
2−r,γ but not to WL

2−r,γ .

7.2. Proof of Property 3

Inclusion (3.4) is very simple to obtain since we just omit the terms 1|βjk|≤λ
√
j

and 1P

k β
2
jk≤λ22j/2

√
j in the definition of weak Besov spaces. To prove the last

points, note that if p ≥ 2 and s ≥ 1/4, or if p < 2 and s ≥ 1/p − 1/4, we have
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Bsp,∞ ⊂ B1/4
2,∞ ⊂ W ∗

1,1, where W ∗
1,1 is either the weak local Besov space WL

1,1 or

the weak global one WG
1,1. Moreover, when p < 2 and 1/(2p) < s < 1/p − 1/4,

we have

λ−1
∑

j≥−2 log2(λ)

∑

k

β2
jk1|βjk|≤λ

√
j = λ−1

∑

j≥−2 log2(λ)

∑

k

|βjk|p|βjk|2−p1|βjk|≤λ
√
j

≤ λ−1
∑

j≥−2 log2(λ)

∑

k

|βjk|p(λ
√

j)2−p.

If f is assumed to belong to Bsp,∞, we get for any 0 < λ < 1,

λ−1
∑

j≥−2 log2(λ)

∑

k

β2
jk1|βjk|≤λ

√
j ≤ cλ−1

∑

j≥−2 log2(λ)

2
−jp(s+ 1

2
− 1

p
)
(λ

√

j)2−p

≤ c[log2(λ
−1)]1−

p
2λ2ps−1 ≤ c′,

where c′ is a constant. So, f ∈WL
1,1 and Bsp,∞ ⊂WL

1,1.

7.3. Proof of Property 4

Property 4 is a particular case of Property 6. The proof of the strict inclusion

of the Besov space in the weak local Besov space is similar for the polynomial rate

and for the generalized rate u2(ǫ). We prove strict inclusion for the polynomial

rate. The proof of the links between the Besov space and the weak global Besov

space is more complicated in the case of the generalized rate u2(ǫ), because there

is a question on the power of the logarithmic term. In the next subsection we

prove Property 6, which implies the second statement of (3.5) and the equality

(3.6). Let us prove the first part of (3.5). Using Property 3, the inclusion is valid

for any 0 < r < 2 and any 0 < γ ≤ 2 − r. To prove strict inclusion, consider the

sequence (βjk) such that at each level j, nj = ⌊2jm⌋ wavelet coefficients take the

value
√
j2−j(r/(4γ)+m/2) for some constant m ∈]0, (2 − r)/(2γ), with the others

equal to 0 (the notation ⌊2jm⌋ denotes the integer part of 2jm). The function

f =
∑+∞

j=−1

∑

k βjkψjk does not belong to Br/(4γ)2,∞ , but belongs to WL
2−r,γ.

7.4. Proof of Property 6

The first statement is proved with the same argument as was Property 4.

Now consider the case of the weak global Besov space. The following inclusions

are obvious: B2,γ,∞(u) ⊂ WG
γ (u), and B2,γ,∞(u) ⊂ WL

γ (u), if γ ≤ 2 − r. Using

Property 5, we have B2,γ,∞(u) ( WG
γ (u), if γ < 2 − r. This proves (5.4) when

γ < 2 − r. Still considering B2,2−r,∞(u) ⊂ WG
2−r(u), we want to prove that

inclusion is strict when r′ > 1/2. Consider the dense sequence (βjk) such that
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at each level j, and for any k, βjk = 2−jβjα, where

β =
1

4
+

1

2(2 − r)
>

1

2
and

r′

2
< α ≤ 1

2 − r

(

r′ − r

4

)

,

which is possible if and only if r′ > 1/2. The function built with the sequence

(βjk) belongs to WG
2−r(u), but not to B2,2−r,∞(u) and not to WL

2−r(u). Let us

now prove (5.5). We assume that the function f =
∑

j

∑

k βjkψjk belongs to

WG
γ (u)(R) with γ = 2 − r and u(λ) = λr[log(λ−1)]r

′

. Set Bj =
∑

k β
2
jk. Using

the definition of the weak global Besov space, we have that

∀ λ > 0, ∀ j ≥ −2(2 − r) log2(λ), Bj1Bj≤λ22j/2
√
j ≤ R2 u(λ). (7.1)

Then, for any given λ, we study the behavior of Bj when Bj > λ22j/2
√
j. Let us

set, if r′ < 1/2, m(r, r′, R) such that

R2

(

1

4 − 2r

)r′

=
[

−2(2 − r) log2(m(r, r′, R))
]

1
2
−r′

.

Then determine, if there exist indexes j such that

∃ λ ∈]0;m(r, r′, R)], such that

{

j ≥ −2(2 − r) log2(λ)

Bj > λ22
j
2
√
j,

(7.2)

or, equivalently,

∃ λ ∈]0;m(r, r′, R)], such that

{

2
− 1

(4−2r)
j ≤ λ

λ < (Bj2
− j

2 j−
1
2 )

1
2 .

We deduce that these indexes j must verify

Bj > 2( 1
2
− 1

2−r
)j

√

j = 2−
r

4−2r
j
√

j. (7.3)

Let j0 denote such an index and take λ0 = (Bj02
−j0/2j−1/2

0 )1/2. Using (7.3), we

have

log2(λ0) =
1

2
log2(Bj02

− j0
2 j

− 1
2

0 ) > − j0
2(2 − r)

.

Since we have j0 ≥ −2(2 − r) log2(λ0), Assumption (7.1) has to be satisfied for

λ0 and j0. Then

Bj01
Bj0

≤λ2
02

j0
2
√
j0

≤ R2u(λ0) ⇐⇒ Bj0 ≤ R2u(λ0)

⇐⇒ Bj0 ≤ R2λr0
(

log2(λ
−1
0 )

)r′
,
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which yields that

Bj0 ≤
[

R2
( 1

4 − 2r

)r′] 2
2−r

2−j0
r

4−2r j
4r′−r
4−2r

0 ,

which contradicts (7.3). Note that for any m(r, r′, R) we also obtain a contradic-

tion if

r′ =
1

2
and R2

( 1

4 − 2r

)
1
2 ≤ 1.

We deduce that there exists no index j such that (7.2) is true. It means that for

any 0 < λ ≤ m(r, r′, R), for any j ≥ −2(2− r) log2(λ), Bj ≤ λ22j/2
√
j. It follows

that, with γ = 2 − r,

sup
λ>0

u(λ)−1
∑

j≥−2γ log2(λ)

∑

k

β2
jk

≤ c

(

sup
0<λ≤m(r,r′,R)

u(λ)−1
∑

j≥−2(2−r) log2(λ)

∑

k

β2
jk1Bj≤λ22j/2

√
j + ‖f‖2

2

)

.

This completes the proof since f is supposed to belong to WG
2−r,2−r.

7.5. Proof of Property 7

We consider the dense function introduced in Section 7.1. with γ = 1.

Exactly as in Section 7.1, we prove that f does not belong to WL
1 (u). Take

β = 1/2 + r/4 with r = 8α/(1 + 4α). Then, if α < 1/4,

sup
j

2pj(α+ 1
2
− 1

p
)
∑

k

|βjk|p = sup
j

2pj(α+ 1
2
− 1

p
)2j2−pjβj

p
2 < +∞

because α+ 1/2 − β < 0. We conclude that f ∈ Bαp,∞ and Bαp,∞ 6⊂WL
1 (u).

Let us prove now that Bα2,∞ ⊂ WG
1 (u). Assume f ∈ Bα2,∞. If α ≥ 1/4 then,

for any λ > 0,

u(λ)−1
+∞
∑

j=−2 log2(λ)

∑

k

β2
jk1P

k β
2
jk≤2

j
2 λ2

√
j

≤ u(λ)−1
+∞
∑

j=−2 log2(λ)

∑

k

β2
jk

≤ u(λ)−1
+∞
∑

j=−2 log2(λ)

2−2jα ≤ cu(λ)−1λ4α.
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If α < 1/4 then, with 2jα = (| log(λ)|λ4)−(1+4α)−1
we get, for any λ > 0,

u(λ)−1
+∞
∑

j=−2 log2(λ)

∑

k

β2
jk1P

k β
2
jk≤2

j
2 λ2

√
j

≤ u(λ)−1

( jα−1
∑

j=−2 log2(λ)

2
j
2λ2

√

j +

+∞
∑

j=jα

∑

k

β2
jk

)

≤ cu(λ)−1
(

2
jα
2 λ2

√

| log(λ)| + 2−2jαα
)

.

Taking the supremum in λ > 0, we conclude that f ∈ WG
1 (u) and then Bα2,∞ ⊂

WG
1 (u).

Remark 3. Note that it can easily be proved that any function considered in

Section 7 belongs to B2,γ′,∞(u) ⊂ L2([0, 1]), when γ′ is large enough.

8. Proofs for the results on the statistical procedures

The results for the maxiset theory are based on a sharp study of the bias of

the estimation procedures. In Section 8.1, we give an upper bound and a lower

bound for the expected quadratic errors due to the procedures. In Section 8.2,

we deduce the proof of the main results stated in Theorem 4 and Theorem 5. In

the following sections, we prove the preliminary results. Arguments for global

thresholding being similar to those of local thresholding, proofs are available on

http://www3.stat.sinica.edu.tw/statistica.

8.1. Preliminary results

We give bounds for the quadratic error of our procedures. It is worth noting

that we do not make any regularity assumption on the function f . First, we state

the results concerning the local thresholding procedure and next we deal with

the global one. The maxisets of the local thresholding estimates are determined

in the following propositions.

Proposition 1. Let τ = κj and let a constant K2 < 1. Then, for κ large enough,

there exists some constant c2 > 0 such that

E(θ̂L − θ)2 ≤ c2

[

2j0ǫ4 + θ ǫ2 +

( j1−1
∑

j=j0

∑

k

β2
jk1|βjk|≤ǫ

√
τ

)2

+

( j1−1
∑

j=j0

∑

k

ǫ2(τ + |µ− τ |)1|βjk |>K2ǫ
√
τ

)2

+

( +∞
∑

j=j1

∑

k

β2
jk

)2]

.
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If µ/τ > c(1−K2
2 ), where c > 1 is a constant, there exists some constant c1 > 0

with

E(θ̂L − θ)2 ≥ c1

[( j1−1
∑

j=j0

∑

k

β2
jk1|βjk|≤K2ǫ

√
τ +

+∞
∑

j=j1

∑

k

β2
jk

)2]

.

Proposition 2. Consider a continuous function u : [0, 1] −→ R+ such that (5.1)

is satisfied. Then, if K2 ≥ 1/2 and 2j0 = ǫ−2γ,

sup
ǫ>0

u(ǫ)−1
∑

j≥j0

∑

k

ǫ2τ1|βjk|>K2ǫ
√
τ ≤

4M

1 − 2−δ
sup
ǫ>0

u(ǫ)−1
∑

j≥j0

∑

k

β2
jk1|βjk|≤ǫ

√
τ .

We deal next with the global thresholding estimate.

Proposition 3. Let τ = κj and take constants K2 < 1 < K1. Then, for κ large

enough, there exists some constant c2 > 0 such that if λ − 1 = m2−j/2
√
τ , for

m ≥ 0,

E(θ̂G − θ)2 ≤ c2

[

ǫ2θ +

( j1−1
∑

j=j0

2jǫ2[(λ− 1) + 2−
j
2
√
τ ]1P

k β
2
jk>K2ǫ2

√
2jτ

)2

+ǫ2θ +

( j1−1
∑

j=j0

∑

k

β2
jk1P

k β
2
jk<K1ǫ2

√
2jτ

)2

+

( +∞
∑

j=j1

∑

k

β2
jk

)2]

.

Moreover, if (λ−1)2j/2τ−1/2 > c(1−K2), where c > 1 is a constant, there exists

some constant c1 > 0 such that

E(θ̂G − θ)2 ≥ c1

[( j1−1
∑

j=j0

∑

k

β2
jk1P

β2
jk<K2ǫ2

√
2jτ

)2

+

( +∞
∑

j=j1

∑

k

β2
jk

)2]

.

Proposition 4. Consider a continuous function u : [0, 1] −→ R+ such that (5.1)

is satisfied. If K2 ≥ 1/2, 2j0 = ǫ−2γ , and if we suppose there exists a constant

m > 0 such that, for any j ≥ j0, λ− 1 ≤ m 2−j/2
√
τ ,

sup
ǫ>0

u(ǫ)−1
∑

j≥j0
2j(λ− 1)ǫ21P

k β
2
jk>K2ǫ2

√
2jτ

≤ 2mM

1 − 2−δ/2
sup
ǫ>0

u(ǫ)−1
∑

j≥j0

∑

k

β2
jk1P

k β
2
jk≤ǫ2

√
2jτ
.

Remark 4. Using the first part of Proposition 1 with µ = 0 and the first part of

Proposition 3 with λ = 1, we easily see that the maxisets associated with the soft



274 VINCENT RIVOIRARD AND KARINE TRIBOULEY

thresholding procedures are included in the maxisets associated with the hard

thresholding procedures. Whether these inclusions are strict remains an open

question.

8.2. Proofs of Theorems 4 and 5

Using Proposition 1, Theorem 4 is obvious. We prove Theorem 5 for local

thresholding estimates. Let θ̂ be θ̂L and

A =WL
γ (u) if j1 = +∞,

A =WL
γ (u) ∩ B2,γ′,∞(u) if j1 = −2γ′ log2(ǫ).

First, let us assume that f ∈ MS(θ̂, u2(ǫ))(R). So, for any ǫ > 0, E(θ̂ − θ)2 ≤
R2u2(ǫ). If K = K2

√
κ < 1, using Proposition 1 with µ = τ ,

( +∞
∑

j=−2γ log2(Kǫ)

∑

k

β2
jk1|βjk|≤Kǫ

√
j

)2

≤
( +∞

∑

j=−2γ log2(ǫ)

∑

k

β2
jk1|βjk|≤K2ǫ

√
τ

)2

≤ c−1
1 E(θ̂ − θ)2 ≤ c−1

1 R2u2(ǫ).

If K = K2
√
κ ≥ 1,

( +∞
∑

j=−2γ log2(ǫ)

∑

k

β2
jk1|βjk|≤ǫ

√
j

)2

≤
( +∞

∑

j=−2γ log2(ǫ)

∑

k

β2
jk1|βjk|≤K2ǫ

√
τ

)2

≤ c−1
1 R2u2(ǫ).

Recalling that

E(θ̂ − θ)2 ≥ c1

( +∞
∑

j=j1

∑

k

β2
jk

)2

,

we obtain MS(θ̂, u2(ǫ)) ⊂ A(R′) with (R′)2 = c−1
1 R2 max(M2K2δ−4, 1). Since u

satisfies (5.1), if f ∈ A(R′), with K =
√
κ ≥ 1 and still using Proposition 1,

( +∞
∑

j=−2γ log2(ǫ)

∑

k

β2
jk1|βjk|≤Kǫ

√
j

)2

≤ (R′)2M2K4−2δu2(ǫ).

So, using Proposition 2, f belongs to MS(θ̂, u2(ǫ))(R), with

R2 = c2

((

4M

1 − 2−δ

)2

+ 1

)

(R′)2M2K4−2δ.
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This completes the proof. Similarly, combining Proposition 3 and Proposition 4,
one obtains Theorem 5 for the global thresholding procedure.

8.3. Notations

In the sequel, to provide upper bounds for many terms, we use exponential
inequalities. And, with an appropriate choice of constants, these terms will
then be negligible. In the study of the local threshold estimate, the exponential
inequality will deal with Gaussian variables. More precisely,

P(|yjk − βjk| ≥ x) = P(|zjk| ≥ ǫ−1 x) ≤ 2 exp(− x2

2ǫ2
),

which is bounded by 2(2−jκ) ∧ ǫκ as soon as x ≥
√

2 log(2)κ (ǫ
√

| log2 ǫ| ∨ ǫ
√
j).

This inequality is valid for every j, k. So, in the sequel, we use the notation
LD(j, ǫ, κ) to denote a large deviation term that depends on j, ǫ and κ. The
value of LD(j, ǫ, κ) may change from line to line, but the constant κ is chosen to
ensure that

lim
ǫ→0

ǫ−2
+∞
∑

j=j0

|LD(j, ǫ, κ)| = 0.

8.4. Proof of Proposition 1

We note θ̂ = θ̂L. Since Eθ̂jk = β2
jk if j < j0, and θ̂jk = 0 if j ≥ j1, the

classical decomposition in variance and bias terms gives

E(θ̂−θ)2 = E

( j1−1
∑

j=−1

∑

k

(

θ̂jk−Eθ̂jk

)

)2

+

( j1−1
∑

j=j0

∑

k

(β2
jk−Eθ̂jk)+

+∞
∑

j=j1

∑

k

β2
jk

)2

.

Study of the upper bound

We have

E(θ̂ − θ)2 ≤ 2

[

E

( j0−1
∑

j=−1

∑

k

(θ̂jk − Eθ̂jk)

)2

+ E

( j1−1
∑

j=j0

∑

k

(

θ̂jk − Eθ̂jk

)

)2

+

( j1−1
∑

j=j0

∑

k

(β2
jk − Eθ̂jk)

)2

+

( +∞
∑

j=j1

∑

k

β2
jk

)2]

.

The variables (θ̂jk − Eθ̂jk)jk are independent and, for any j ≤ j0 − 1 and any k,
E(θ̂jk − Eθ̂jk)

2 ≤ c(ǫ2β2
jk + ǫ4). So, the first term is bounded as follows.

E

( j0−1
∑

j=−1

∑

k

(θ̂jk − Eθ̂jk)

)2

=

j0−1
∑

j=−1

∑

k

E(θ̂jk − Eθ̂jk)
2 ≤ c

j0−1
∑

j=−1

∑

k

(ǫ2β2
jk + ǫ4)

≤ c
(

θ ǫ2 + 2j0ǫ4
)

.
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For j0 ≤ j ≤ j1−1, we use the following lemma of Cai and Low (2005) for µ = τ .

Lemma 1.(Cai and Low (2005)) Let θ̂SLjk be the local thresholding estimate with

µ = τ . Then

∣

∣

∣
E

(

θ̂SLjk − β2
jk

)∣

∣

∣
≤ 2

(

ǫ2τ 1|βjk|>ǫ
√
τ + β2

jk1|βjk|≤ǫ
√
τ

)

var(θ̂SLjk ) ≤ c
(

β2
jk ǫ

2 + ǫ4τ
1
2 exp(−τ

2
)
)

.

We note that, for every j ≥ j0, and for every k,

θ̂Ljk = θ̂SLjk − (µ− τ) ǫ2
(

1|yjk |>ǫ
√
τ − E1|zjk|>

√
τ

)

.

Then, for K2 < 1,

var(θ̂Ljk) ≤ 2
[

var(θ̂SLjk + ǫ4(µ− τ)2var(1|yjk |>ǫ
√
τ )

]

≤ c
[

var(θ̂SLjk ) + ǫ4(µ− τ)21|βjk|>K2ǫ
√
τ

+ ǫ4(µ− τ)2P(|yjk − βjk| > (1 −K2)ǫ
√
τ)

]

≤ c
[

β2
jk ǫ

2 + ǫ4(µ− τ)21|βjk|>K2ǫ
√
τ + LD(j, ǫ, κ)

]

,

∣

∣

∣
E(θ̂Ljk − β2

jk)
∣

∣

∣
= c

∣

∣

∣
E(θ̂SLjk − β2

jk) − ǫ2(µ− τ)E(1|yjk|>ǫ
√
τ ) + LD(j, ǫ, κ)

∣

∣

∣

≤ c
∣

∣

∣
E(θ̂SLjk − β2

jk)
∣

∣

∣
+ ǫ2|µ− τ |1|βjk|>K2ǫ

√
τ ] +

ǫ2|µ− τ |P(|yjk − βjk| > (1 −K2)ǫ
√
τ ) + LD(j, ǫ, κ)

≤ c
[

ǫ2(|µ− τ | + τ)1|βjk|>K2ǫ
√
τ + β2

jk1|βjk|≤ǫ
√
τ + LD(j, ǫ, κ)

]

.

It follows that

E

( j1−1
∑

j=j0

∑

k

(

θ̂jk − Eθ̂jk

)

)2

≤ c

[

ǫ2θ +

( j1−1
∑

j=j0

∑

k

|µ− τ |ǫ21|βjk|>K2ǫ
√
τ

)2]

,

( j1−1
∑

j=j0

∑

k

(β2
jk − Eθ̂jk)

)2

≤ c

[( j1−1
∑

j=j0

∑

k

(|µ− τ | + τ)ǫ21|βjk|>K2ǫ
√
τ

)2

+

( j1−1
∑

j=j0

∑

k

β2
jk1|βjk|≤ǫ

√
τ

)2]

.

The result follows.
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Study of the lower bound

We focus on the bias terms. Obviously,

E(θ̂ − θ)2 ≥
( j1−1

∑

j=j0

∑

k

(β2
jk − Eθ̂jk) +

+∞
∑

j=j1

∑

k

β2
jk

)2

.

Let K1 > 1 and K2 < 1 be positive constants. For any j0 ≤ j ≤ j1 and any k,

the following expansion holds:

E(β2
jk−θ̂jk) = E(β2

jk−θ̂jk)
[

1|βjk|≤K2ǫ
√
τ+1K2ǫ

√
τ<|βjk|≤K1ǫ

√
τ+1K1ǫ

√
τ<|βjk|

]

= β2
jk1|βjk|≤K2ǫ

√
τ + E(β2

jk − θ̂jk)1K2ǫ
√
τ<|βjk|≤K1ǫ

√
τ

+E(β2
jk − θ̂jk)1|βjk|>K1ǫ

√
τ + LD(j, ǫ, κ).

First, we get

E((β2
jk − θ̂jk)1|βjk |>K1ǫ

√
τ )

= E
(

(β2
jk − θ̂jk)

[

1|yjk |>ǫ
√
τ + 1|yjk|≤ǫ

√
τ

])

1|βjk|>K1ǫ
√
τ

≥ LD(j, ǫ, κ) + E
(

(β2
jk + µ ǫ2 − y2

jk)
[

1 − 1|yjk |≤ǫ
√
τ

])

1|βjk|>K1ǫ
√
τ

= LD(j, ǫ, κ) + (µ− 1)ǫ2 1|βjk|>K1ǫ
√
τ ≥ LD(j, ǫ, κ),

since µ > 1. Next, we have

E(β2
jk − θ̂jk)1K2ǫ

√
τ<|βjk|≤K1ǫ

√
τ

≥ E
(

(β2
jk − θ̂jk)1|yjk|>ǫ

√
τ

)

1K2ǫ
√
τ<|βjk|≤K1ǫ

√
τ

≥ E
(

(β2
jk − y2

jk + µǫ2)1|yjk|>ǫ
√
τ1β2

jk−y2jk+µǫ2<0

)

1K2ǫ
√
τ<|βjk|≤K1ǫ

√
τ

+LD(j, ǫ, κ).

Note that

y2
jk − µ ǫ2 − β2

jk > 0

|βjk| > K2ǫ
√
τ

}

=⇒ |yjk| >
√

K2
2 +

µ

τ
ǫ
√
τ ,

implying E(β2
jk−θ̂jk)1K2ǫ

√
τ<|βjk|≤K1ǫ

√
τ ≥ LD(j, ǫ, κ) as soon asK1 <

√

K2
2 + µ

τ .

Therefore, we obtain E(β2
jk − θ̂jk) ≥ β2

jk1|βjk|≤K2ǫ
√
τ + LD(j, ǫ, κ), leading to

E(θ̂ − θ)2 ≥ c

( j1−1
∑

j=j0

∑

k

β2
jk1|βjk |≤K2ǫ

√
τ +

+∞
∑

j=j1

∑

k

β2
jk

)2

,



278 VINCENT RIVOIRARD AND KARINE TRIBOULEY

where c is a positive constant, this completes the proof of the lower bound.

8.5. Proof of Proposition 2

Let j0 be defined by 2j0 = ǫ−2γ for some γ > 0. Since K2 ≥ 1/2, for any

ǫ > 0,
∑

j≥j0,k
ǫ2τ1|βjk |>K2ǫ

√
τ ≤

∑

j≥γ log2(ǫ−2)

∑

k

ǫ2τ
∑

x≥−1

12xǫ
√
τ<|βjk|≤2x+1ǫ

√
τ

≤
∑

x≥−1

2−2x
∑

j≥γ log2(ǫ
−22−2(x+1))

∑

k

β2
jk1|βjk|≤(ǫ2(x+1))

√
τ .

If for any ǫ > 0,

u(ǫ)−1
∑

j≥γ log2(ǫ
−2)

∑

k

β2
jk1|βjk|≤ǫ

√
τ ≤ S,

where S lies in R+ ∪ {+∞}, then

sup
ǫ>0

u(ǫ)−1
∑

j≥j0

∑

k

ǫ2τ1|βjk|>K2ǫ
√
τ ≤ sup

ǫ>0

∑

x≥−1

2−2xS
u(ǫ2x+1)

u(ǫ)
≤ 4SM

1 − 2−δ
,

which implies the result.

8.6. Proof of Proposition 4

Using similar arguments to those of Proposition 2, and recalling that τj =

2j/2
√
τ , we have for any ǫ > 0,

∑

j≥j0
2j(λ− 1)ǫ21P

k β
2
jk>K2ǫ2τj

≤
∑

x≥−1

2−x
∑

j≥γ log2(ǫ−22−(x+1))

2
j
2
λ− 1√
τ

∑

k

β2
jk1P

k β
2
jk≤(ǫ2

x+1
2 )2τj

.

If there exists m > 0 such that for any j ≥ j0, λ − 1 ≤ m2−j/2
√
τ , then as for

the proof of Proposition 2 it is easy to see that

sup
ǫ>0

u(ǫ)−1
∑

j≥j0
2j(λ− 1)ǫ21P

k β
2
jk>K2ǫ2τj

≤ 2Mm

1 − 2−
δ
2

sup
ǫ>0

u(ǫ)−1
∑

j≥γ log2(ǫ
−2)

∑

k

β2
jk1

P

k β
2
jk≤ǫ2τj .
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