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Abstract: Low, Lewis and Prescott (1999) showed that a crossover design based

on a Williams Latin square of order 4 can suffer substantial loss of efficiency if

some observations in the final period are unavailable. Indeed, if all observations are

missing, the design becomes disconnected. We derive the information matrix for the

direct effects of a Uniformly Balanced Repeated Measurements Design (UBRMD)

in t periods when subjects may drop out before the end of the study, and examine

the maximum loss of information. The special case of loss of observations in the

final period only is examined in detail. In particular we show that a UBRMD in

t ≥ 5 periods remains connected when some or all observations in the final period

are unavailable.
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1. Introduction

Cross-over experiments are widely used for comparing the responses to vari-

ous different stimuli or treatments in areas ranging from psychology and human

factor engineering to medical and agricultural applications; see, for example, the

books by Jones and Kenward (2003), Ratkowsky, Evans and Alldredge (1992)

and Senn (2002). Such experiments extend over a sequence of time periods.

Each subject receives one treatment per period and an observation is made at

the end of the period. The influence of a treatment on the subject’s response may

extend (or carry over) into the period following that in which it is administered.

This is known as a first-order carry-over effect or first-order residual effect. In a

simple statistical model for crossover studies, the response for a given subject in

a given period is regarded as a sum of the effects of the subject, the period, the

treatment given in this period (the direct effect of the treatment), the carry-over

effect from the treatment given in the preceding period, and a random error.

There is an extensive literature that assures us that a carefully designed

crossover study can produce a wealth of information and that the parameters of
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interest can be estimated with high precision; see, for instance, Stufken (1996).

This is based on the implicit, but critical, assumption that the experiment yields

all planned observations. Yet, in many studies such as clinical trials, there is

a substantial probability that some subjects will drop out of the study prior

to completion of their treatment sequence. Low, Lewis and Prescott (1999) ob-

served that a dropout rate of between 5% and 10% is not uncommon and, in

some areas, can be as high as 25%. They give an example of a design in four

periods, based on a Williams Latin square (Williams (1949)), where there is

substantial loss of information if some observations are unavailable in period 4.

Indeed, if all observations in the final period are not available, the design becomes

disconnected, i.e., elementary contrasts are no longer all estimable.

It is important to note that a similar situation may arise in an interim

analysis. When interim results on a cross-over experiment are analyzed, the

interim design may consist of the planned design without the final several periods.

The loss of connectedness is the most severe consequence of the unavailability

of observations. A general study of the loss of connectedness that results from

unavailability of observations was done by Ghosh (1979, 1982). For crossover

designs, Low, Lewis and Prescott (1999) formulated requirements for a planned

design to be robust to dropouts in terms of the properties of the implemented

designs that might result under a “completely-at-random” dropout mechanism

(Diggle and Kenward (1994)). Godolphin (2004) also studied the problem of loss

of connectedness of various designs, including crossover designs.

An experimenter generally starts with a design, the planned design, that

possesses desirable properties, including high efficiency or optimality. If no sub-

ject drops out, the study yields the entire information that was envisioned at

the planning stage. Dropouts, however, lead to loss of information. The imple-

mented design is the design that corresponds to all available observations, and

this design can be identified only at the conclusion of the experiment.

For the case of a Williams Latin Square of order 4 the expected infor-

mation loss for various probability distributions of dropouts was studied by

Low, Lewis and Prescott (1999). In this article, we focus on the maximum infor-

mation loss that may be anticipated. For instance, in a study with four periods

where subjects are expected to remain at least through the first three periods,

dropouts, if any, would occur in the final period only. In this case minimal in-

formation is attained when all subjects drop out in the final period, which gives

the minimal design.

In this paper we assume that the planned design belongs to the class of

Uniform Balanced Repeated Measurement Designs (UBRMDs). This is an im-

portant class of designs that have been studied extensively in the literature and



CROSSOVER DESIGNS WITH SUBJECT DROPOUT 237

are a popular choice in practice. UBRMDs have elegant combinatorial balance

and, under the simple model with additive i.i.d. errors with constant variance,

possess various optimality properties; see, for example, Hedayat and Afsarinejad

(1978), Cheng and Wu (1980), Kunert (1984), Hedayat and Yang (2003), and

Hedayat and Yang (2004). (Refer to Stufken (1996) and Hedayat and Yang (2003)

for additional references). A design is called uniform if (a) for each subject, each

treatment is allocated to the same number of periods, and (b) for each period,

each treatment is allocated to the same number of subjects. Furthermore, a de-

sign is called balanced for carryover effects (balanced, in short) if, in the order

of application, each treatment is preceded by every other treatment the same

number of times and is not preceded by itself.

The goal of this research is to study the maximum loss of information and

the resulting loss of precision of the estimators that result from subject dropout

when the planned design is a UBRMD. Since the maximum loss is attained by

the minimal design, we study properties of this design, including its information

matrix and efficiency. If the maximum loss of information is not deemed to be

large, then the experimenter may conclude that no modification of the plan for

the experiment is needed. On the other hand, if the loss is large, the experimenter

should consider alternative strategies.

We work in the same setup as Low, Lewis and Prescott (1999); in partic-

ular we assume a completely-at-random dropout mechanism. Also, we assume

throughout that a subject who leaves the study does not re-enter. In Section 2 we

derive general formulae for, and study the properties of, the information matrix

of the direct effects of the minimal design when the planned design is a UBRMD,

with subject dropouts occurring in the final m periods only. We examine the

connectedness of the minimal design and, in particular, show that a UBRMD

based on t ≥ 5 treatments remains connected even when all observations in the

final period are unavailable. We also develop measures for the maximum loss of

precision due to subject dropout and the efficiency of the minimal design. In

Section 3 we study the case of one-period dropout in more detail, including the

special case when the planned design is based on Williams Latin squares. Also

in this section, we identify members of the class of UBRMDs for which the loss

of information is small.

The focus of this paper is to study certain properties of UBRMDs in the

presence of subject dropout. For the broader problem of designing a crossover

experiment in the presence of subject dropout one has to choose a planned design

from a class (not necessarily the class of UBRMDs) of highly efficient designs for
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which the loss of information is small, and the corresponding minimal design is

highly efficient.

2. Setup and General Results

Consider a planned design with p periods, s subjects and t treatments. The

simple model for the vector of response variables obtained from the implemented

design can be written as

Y = XSβ +XPα+XDτ +XCρ+ ǫ, (1)

where ǫ is the vector of random error variables, β is a vector of s subject effects,

α is a vector of p time period effects, τ is a vector of t direct treatment effects,

ρ is a vector of t carry-over effects, and the X matrices are the corresponding

design matrices. The treatments are labelled 0, 1, . . . , t − 1. For the purposes of

designing efficient experiments, all effects in the model are assumed to be fixed

effects.

We define the following incidence and replication matrices: NSD = X ′
SXD,

NSC = X ′
SXC , NPD = X ′

PXD, NPC = X ′
PXC , NDC = X ′

DXC , rD =

NDS1s = NDP1p, rC = NCS1s = NCP1p, where the “prime” denotes transpose

and 1a is a vector of a unit elements. Also we define Ja×b = 1a1
′
b, Ja = Ja×a,

Nji = N ′
ij (for i, j = S,P,D,C), rδ

D = diag(rD), and rδ
C = diag(rC ). Moreover,

Ia denotes an a×a identity matrix. We order the responses period by period for

each subject in turn, so that, XP = 1s ⊗ Ip and XS = Is ⊗ 1p.

The joint information matrix for estimating the direct and carry-over (resid-

ual) treatment effects is given by

C =

[

C11 C12

C21 C22

]

, (2)

where C11 = rδ
D +

1

ps
rDr

′
D − 1

p
NDSNSD − 1

s
NDPNPD

C22 = rδ
C +

1

ps
rCr

′
C − 1

p
NCSNSC − 1

s
NCPNPC

C12 = NDC +
1

ps
rDr

′
C − 1

p
NDSNSC − 1

s
NDPNPC .

The information matrices for the direct effects and the carry-over effects, respec-

tively, are

CD = C11 − C12C
−
22C21 , (3)
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CR = C22 − C21C
−
11C12 . (4)

In this article we focus primarily on CD.

Throughout, we assume that the planned design dplan is a UBRMD with p = t

time periods, s = gt subjects, based on t treatments and, in the implemented

design dimp, all subjects complete their allocated treatment sequence in the first

t − m periods (1 ≤ m < t − 1). After the first t − m periods, subjects may

start dropping out of the study completely at random. Since we assume that,

once a subject drops out of the study, the subject will not return, the worst case

scenario occurs when all subjects drop out at period t − m. The design dmin,

composed of the first t−m periods of dplan, is called the minimal design.

For even t, a Williams Latin Square gives a UBRMD, as does any sequentially

counterbalanced Latin Square (see Isaac, Dean and Ostrom (2001), for a survey).

For t odd, a UBRMD cannot be constructed from one Williams Latin square,

but such a design with 2t subjects can be constructed from a pair of squares. In

addition, when t is a composite number, Higham (1998) has shown that there

exists a UBRMD in t subjects, t periods and t treatments. The union of UBRMDs

(identical or distinct) with the same value of t is a UBRMD. Here are some

examples.

Example 1. Three UBRMDs are shown below, where the columns show the

treatment sequences and the rows correspond to the time periods. The design

d2plan is a Williams Latin Square of order 4, while designs d1plan and d3plan consist

of a pair of Williams Latin Squares for t = 3 and t = 5 treatments, respectively.

d1plan

1 2 0 2 0 1

0 1 2 0 1 2

2 0 1 1 2 0

d2plan

0 1 2 3

1 2 3 0

3 0 1 2

2 3 0 1

d3plan

1 2 3 4 0 3 4 0 1 2

0 1 2 3 4 4 0 1 2 3

2 3 4 0 1 2 3 4 0 1

4 0 1 2 3 0 1 2 3 4

3 4 0 1 2 1 2 3 4 0

If m = 1, i.e. subjects may drop out in the final period only, then each array with

the last row deleted gives the corresponding minimal design dmin. It can be veri-

fied that the information matrices of dmin have rank 2, 1 and 4, respectively. So,

as noted by Low, Lewis and Prescott (1999), the minimal design corresponding

to d2plan is disconnected; indeed the only estimable direct treatment contrast in

d2min is τ0−τ1+τ2−τ3. On the other hand the minimal designs corresponding to

d1plan and d3plan are connected, the former has a nonzero eigenvalue 0.125 with

multiplicity 2; the nonzero eigenvalues of the latter are 2.61 and 3.73, each with

multiplicity 2.
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Since UBRMDs with three periods have been studied in Jones and Kenward

(2003) and Low (1995), henceforth we consider t ≥ 4. The following lemma

shows that dmin corresponds to the maximal loss of information. For nonnegative

definite matrices A and B we use A � B to denote the fact that A − B is a

nonnegative definite matrix, the Löwner order.

Lemma 2. C
dplan

D � C
dimp

D � Cdmin

D .

This follows from known general results for linear models; for instance, it is

a consequence of Theorem 2.1 of Hedayat and Majumdar (1985). Lemma 2 says

that dmin has the “smallest information matrix” among all possibilities for dimp.

The matrices, C11, C22 and C12 for dmin are as given in Theorem 4. First, we

need some notation.

The P and U matrices. For j = 1, . . . , t, Pj denotes a t× s matrix with (h, i)

entry 1 if subject i receives treatment h in period j of dplan; it is 0 otherwise.

For j = 0, 1, . . . , t − 1; k = 0, 1, . . . , t − 1, let, Ujk = Pt−jP
′
t−k. Note that, since

dplan is a UBRMD,

Pj1s = g1t, P
′
j1t = 1s. (5)

Also, the entries of Ujk are nonnegative with row and column sums equal to g.

Hence 1
gUjk is a doubly stochastic matrix; in particular Ujj = gIt. The following

lemma gives the properties of these matrices that we need.

Lemma 3. If U1, . . . , UM (not necessarily distinct) are t× t matrices such that

Ui/g is doubly stochastic for each i = 1, . . . ,M , and a1, . . . , aM are nonnegative

real numbers, then for x ∈ Rt with x′x = 1, x′Uix ≤ g for i = 1, . . . ,M , and

x′(
∑

aiUi)
′(
∑

aiUi)x ≤ g2(
∑

ai)
2.

Proof. If we write Wi = Ui/g, then it follows from the properties of doubly

stochastic matrices (see, for example, Bapat and Raghavan (1997, Chap. 2)) that

x′Wix ≤ 1. Also, x′(
∑

aiWi)
′(
∑

aiWi)x = x′(
∑ ∑

aiajW
′
iWj)x ≤

∑∑

aiaj
√

x′W ′
iWixx′W ′

jWjx ≤ ∑∑

aiaj . The lemma follows.

Theorem 4. Let dplan be a UBRMD with t treatments, t time periods, s = gt

subjects, and let dmin consist of the first t−m periods of dplan. Then for dmin,

(i) the information matrix for estimating direct and carry-over treatment

effects is given by (3) and (4) with

C11 =
g[(t−m)2 −m]

t−m
It −

g(t− 2m)

t−m
Jt −

1

t−m

∑∑

j 6=k=0,...,m−1

Ujk, (6)

C22 =
g

t−m
[((t−m)2 − (t+ 1))It − t−1((t−m)2 − (t+ 1) −m(m+ 1))]Jt
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− 1

t−m

∑ ∑

j 6=k=0,...,m

Ujk, (7)

C12 =
g

t−m
[(m+ 1)Jt − tIt] −

m−1
∑

j=0

Uj(j+1) −
1

t−m

m−1
∑

j=0

m
∑

k=0
j 6=k

Ujk (8)

and (ii) if

t ≥ 2m+ 2 (9)

then a g-inverse of C22 is C−
22 = A−1, where

A =
g

t−m
[(t−m)2 − (t+ 1)]It −

1

t−m

∑ ∑

j 6=k=0,...,m

Ujk. (10)

Proof. (i) Since dplan is a UBRMD, every treatment appears s/t = g times

in every period and s times in total. Also, in the order of application, each

treatment is preceded by every other treatment the same number of times and

is not preceded by itself. It follows that for the design dmin,

NDS = Jt×s −
m−1
∑

j=0

Pt−j , NCS = Jt×s −
m

∑

j=0

Pt−j ,

NDP = gJt×(t−m), NCP =
[

0t gJt×(t−m−1)

]

,

rD = g(t−m)1t, rC = g(t−m− 1)1t,

where 0t is a vector with t zero elements. Inserting the above formulae into (2)

and using (5) yields expressions C11, C22 and C12 as in the statement of the

theorem, after some algebra.

(ii) Using the relation C221t = 0t, it can be verified that C22A
−1C22 = C22,

as long as A−1 exists; hence A−1 is a g-inverse of C22. We now show that (9)

guarantees the nonsingularity of A. It follows from the fact that the row sums of
∑∑

j 6=k=0,...,m

Ujk are gm(m + 1), and Lemma 3, that the minimum eigenvalue of A

is

λmin(A) =
g

t−m
[(t−m)2 − (t+ 1) −m(m+ 1)]. (11)

This is positive if (t − m)2 − (t + 1) − m(m + 1) > 0, which is equivalent to

t ≥ 2m+ 2.

From the proof of Theorem 4, (9) guarantees that the A in (10) is positive

definite, and hence it is sufficient for the nonsingularity of A. This condition plays

a critical role in the derivation of bounds for the eigenvalues of Cdmin

D . Also, it can
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be shown that (9) is a necessary and sufficient condition for rank(C22) = t−1. The

next result gives a bound on the eigenvalues of Cdmin

D which is used to study the

loss of precision for the estimators of the treatment contrasts and the efficiency

of dmin.

Theorem 5. Suppose m ≥ 1 and t ≥ 2m + 2 and dplan is a UBRMD with t

treatments, t time periods, and s = gt subjects. Denote the eigenvalues of Cdmin

D

by gθ0 = 0, gθ1, . . . , gθt−1. For r = 1, . . . , t− 1, θr ≥ θL(t,m), where

θL(t,m) =
t

t−m

[

(t− 2m) − t(m+ 1)2

(t−m)2 − (t+ 1) −m(m+ 1)

]

. (12)

Proof. Suppose x ∈ Rt, with x′x = 1, and x′1t = 0, such that Cdmin

D x = gθrx,

r = 1, . . . , t− 1. Then gθr = x′C11x− x′C12A
−1C21x. The maximum eigenvalue

of A−1 is 1/(λmin(A)) where λmin(A) is given by (11). Hence, gθr ≥ x′C11x −
(1/λmin(A))x′C12C21x. If we write,

V = (t−m+ 1)

m−1
∑

j=0

Uj(j+1) +

m−1
∑

j=0

m
∑

k=0
k 6=j,j+1

Ujk,

then −C21 = (t−m)−1[gtIt + V ′ − g(m+ 1)Jt]. So,

gθr ≥ x′C11x− 1

λmin(A)[(t −m)2]
[(gt)2 + gtx′(V + V ′)x+ x′V V ′x]. (13)

The following inequalities can be derived by applying Lemma 3:

x′C11x≥ gt

t−m
(t− 2m)

x′(V + V ′)x ≤ 2g[(t −m+ 1)m+m(m− 1)] = 2gmt (14)

x′V V ′x≤ (gmt)2.

Inserting them into (13) and using the fact λmin(A) > 0, which follows from the

condition t ≥ 2m + 2, we get a lower bound to θr which, upon simplification,

reduces to (12).

The results of Theorem 5 are useful in studying properties of dmin. Con-

nectedness is a basic property of a design. A sufficient condition for dmin to be

connected for direct treatment effects is θL(t,m) > 0. It follows from Lemma 2

that dimp is connected whenever dmin is connected. Corollary 6 follows from (12).

Corollary 6. Suppose dplan is a UBRMD with t treatments, t time periods, and

s=gt subjects. A sufficient condition for the minimal design dmin to be connected

is that

(t− 2m)[(t−m)2 − (t+ 1) −m(m+ 1)] − t(m+ 1)2 > 0. (15)
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For a given m, it follows from (15) that dmin is connected if a polynomial in

t of degree 3, which has leading coefficient 1, is positive. For m = 1, (15) reduces

to t3 − 5t2 + 4 > 0, i.e., t ≥ 5, and for m = 2 it reduces to t3 − 9t2 + 8t+ 12 > 0,

i.e., t ≥ 8. These observations lead to the following result.

Corollary 7. Suppose dplan is a UBRMD with t treatments, t time periods, and

s = gt subjects. For each m ≥ 1, there is a positive integer t∗(m) such that the

design dmin is connected if t ≥ t∗(m). In particular, for m = 1, dmin is connected

whenever t ≥ 5; for m = 2, dmin is connected whenever t ≥ 8.

One way to measure the goodness of a connected design d is by the harmonic

mean of the eigenvalues of the information matrix Cd
D, Hd = (t−1)/trace(Cd

D)+,

where C+ denotes the Moore-Penrose inverse of C. This is the value of the A-

criterion; hence Hd is a measure of the precision of estimators of the direct

treatment contrasts for the design d. It follows from Lemma 2 that Hdmin
≤

Hdimp
≤ Hdplan

. Since dplan is the design that was chosen at the start of the

experiment on the basis of its desirable properties, especially efficiency, it is of

interest to examine the loss of precision in the implemented design dimp with

respect to dplan due to subject dropout. This loss may be measured by

Ldimp:dplan
=
Hdplan

−Hdimp

Hdplan

= 1 − trace(C
dplan

D )+

trace(C
dimp

D )+
.

Clearly, the maximum loss of precision due to subject dropout for dplan is given

by

MLdplan
= Ldmin:dplan

=
Hdplan

−Hdmin

Hdplan

= 1 − trace(C
dplan

D )+

trace(Cdmin

D )+
,

i.e., MLdplan
≥ Ldimp:dplan

.

When dplan is a UBRMD, we get, using Theorem 5,

trace(Cdmin

D )+ =
t−1
∑

r=1

1

gθr
≤ t− 1

gθL(t,m)
.

From Hedayat and Afsarinejad (1978), we obtain for the UBRMD dplan,

C
dplan

D =
gt(t− 2)(t+ 1)

t2 − t− 1
[It −

1

t
Jt,t], trace(C

dplan

D )+ =
(t− 1)(t2 − t− 1)

gt(t− 2)(t+ 1)
.

Therefore we obtain the following result.

Corollary 8. Suppose dplan is a UBRMD with t treatments, t time periods, and

s = gt subjects. An upper bound to the maximum loss of precision due to subject
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dropout is given by MLdplan
≤ UML(t,m) where,

UML(t,m) = 1 − (t2 − t− 1)θL(t,m)

t(t− 2)(t + 1)
, (16)

with θL(t,m) given by (12).

For m = 1 and t ≥ 5, the values of UML(t, 1) for selected values of t are

given in Table 1, where the planned design dplan is a UBRMD. Similarly for

m = 2 and t ≥ 8, the values of UML(t, 2) for selected values of t are given

in Table 2. As one would expect, for fixed m, the bounds decrease with t and

become reasonably small when t is considerably larger than t∗(m). In general,

(16) is conservative. Hence, the prospect of subject dropout may not be a big

concern when t is much larger than t∗(m).

If the UBRMD dplan is chosen to have certain combinatorial structures, the

bound UML(t,m) can be improved. One such structure is considered next.

Type Wm UBRMD. Suppose the subjects of the UBRMD dplan can be parti-

tioned into g sets of t subjects each such that, within each group, every treatment

appears once in each of the periods t−m, t−m+ 1, . . . , t for fixed m ≥ 1. Then

for j, k = 0, . . . ,m, j 6= k,

Ujk = Pt−jP
′
t−k =

g
∑

l=1

Πjkl,

where each Πjkl is a permutation matrix of order t and Pi is defined in Section

2. If for each j, k = 0, . . . ,m, j 6= k and l = 1, . . . , g, the eigenvalue 1 of Πjkl has

multiplicity one, then we say the UBRMD dplan is of type Wm.

If m ≥ 2 an UBRMD of type Wm is also of type Wm−1. Examples of UBR-

MDs of type Wt−1 are UBRMD’s that are cyclically generated, for instance the

Williams Latin Squares and pairs of Williams Latin Squares given in Families 1

and 3 of Hedayat and Afsarinejad (1978), and the class of sequentially counter-

balanced squares described by Isaac, Dean and Ostrom (2001).

It is known that the eigenvalues of a permutation matrix Π of order t are

the roots of unity, ei(2πr/t) = cos(2πr/t) + iSin(2πr/t), r = 0, 1, . . . , t− 1, unless

the permutation can be factored into the product of two or more disjoint cycles,

in which case the multiplicity of 1 as an eigenvalue of Π is larger than one (see,

for example, Davis (1979)). If we set ψr = cos(2πr/t) then, for a UBRMD

of type Wm, the eigenvalues of Πjkl + Π′
jkl are 2ψr, r = 0, 1, . . . , t − 1. Since

Ujk +Ukj =
g
∑

l=1

(Πjkl +Π′
jkl), 1′

tx = 0 and x′x = 1 implies x′(Ujk +Ukj)x ≤ 2gψ1.
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Hence the inequalities (14) may be replaced by

x′C11x ≥ gt

t−m

[

(t− 2m) +
m(m− 1)

t
(1 − ψ1)

]

x′(V + V ′)x ≤ 2gmtψ1

x′V V ′x ≤ (gmt)2 .

If we insert these inequalities into (13) we obtain the following result.

Theorem 9. Suppose dplan is a UBRMD of type Wm for fixed m ≥ 1, t ≥ 2m+2.

Denote the eigenvalues of Cd
D by gθ0 = 0, gθ1, . . . , gθt−1. For r = 1, . . . , t − 1,

θr ≥ θ∗L(t,m), where

θ∗L(t,m) =
t

t−m

[

(t−2m)+
m(m− 1)

t
(1−ψ1)−

t(1 + 2ψ1m+m2)

(t−m)2 − (t+ 1) −m(m+ 1)

]

with ψ1 = cos 2π/t.

Since ψ1 < 1, θ∗L(t,m) > θL(t,m). Hence replacing θL(t,m) by θ∗L(t,m) in

(16) gives a sharper upper bound to the maximum loss of precision due to subject

dropout when dplan is a UBRMD of type Wm, i.e., MLdplan
≤ UML∗(t,m) <

UML(t,m), where

UML∗(t,m) = 1 − (t2 − t− 1)θ∗L(t,m)

t(t− 2)(t+ 1)
.

For m = 1 and t ≥ 5, the values of the upper bound UML∗(t, 1) to the

maximum loss of precision due to subject dropout when dplan is a UBRMD of

type Wm for selected values of t are given in Table 1. For m = 2 and t ≥ 8 the

values of UML∗(t, 2) for selected values of t are given in Table 2.

Table 1. Upper bounds to the maximum loss of precision due to subject
dropout and lower bound to the efficiency of the minimal design whenm = 1.

t 5 6 7 8 9 10

UML(t, 1) 0.87 0.48 0.33 0.25 0.20 0.17

UML∗(t, 1) 0.64 0.40 0.30 0.23 0.19 0.16

EL(t, 1) 0.18 0.66 0.81 0.88 0.92 0.93

EL∗(t, 1) 0.49 0.76 0.85 0.90 0.93 0.94

Table 2. Upper bounds to the maximum loss of precision due to subject
dropout and lower bound to the efficiency of the minimal design whenm = 2.

t 8 9 10 11 12 16

UML(t, 2) 0.90 0.63 0.48 0.39 0.33 0.20

UML∗(t, 2) 0.81 0.59 0.46 0.38 0.32 0.21

EL(t, 2) 0.15 0.50 0.67 0.77 0.82 0.93

EL∗(t, 2) 0.27 0.55 0.69 0.78 0.83 0.94
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We now consider the efficiency of dmin, the design that corresponds to the

worst case scenario. Let D(t, gt, t−m) denote the class of all connected crossover

designs (not necessarily uniform or balanced) in t −m periods and gt subjects,

based on t treatments. dmin belongs to this class. Since for an arbitrary design

d ∈ D(t, gt, t−m), trace(Cd
D)+ ≥ (t−1)2/traceCd

D, a lower bound for trace(Cd
D)+

may be obtained from an upper bound of traceCd
D. The latter bound can be ob-

tained from Theorem 3 of Hedayat and Yang (2004) (which generalized a bound

of Stufken (1991)) as follows,

Max
d∈D(t,gt,t−m)

traceCd
D = gt(t−m−1)− 2(gt − δ∗)

t−m
− (t−m− 1)δ∗2

g(t−m)(t(t−m)−t−1)
,

where δ∗ is the nearest integer to [g(t(t−m)−t−1)]/(t−m−1). Since the choice

δ∗ = [g(t(t−m)− t− 1)]/(t−m− 1) gives an upper bound to the maximum, it

can be shown that traceCd
D ≤ gMTr(t,m), where

MTr(t,m) = t(t−m− 1) − t(t−m− 1) + 1

(t−m)(t−m− 1)
.

A measure of the efficiency of dmin in D(t, gt, t−m) is

EFF dmin

D(t,gt,t−m) =

Min
d∈D(t,gt,t−m)

trace(Cd
D)+

trace(Cdmin

D )+
≥ (t− 1)2

gMTr(t,m)(trace(Cdmin

D )+)
.

It follows from Theorems 5 and 9 that, if we define

EL(t,m) =
(t− 1)θL(t,m)

MTr(t,m)
and EL∗(t,m) =

(t− 1)θ∗L(t,m)

MTr(t,m)
,

then the inequalities EFF dmin

D(t,gt,t−m) > EL(t,m) and EFF dmin

D(t,gt,t−m) > EL∗(t,m)

give lower bounds to the efficiency of dmin when dplan is a general UBRMD and a

UBRMD of type Wm, respectively. Note that both EL(t,m) and EL∗(t,m) take

values in (0, 1).

For m = 1 and t ≥ 5, the values of the lower bounds EL(t, 1) and EL∗(t, 1)

to the efficiency of dmin in D(t, gt, t−1) for selected values of t are given in Table

1. For m = 2 and t ≥ 8, the values of EL(t, 2) and EL∗(t, 2) for selected values of

t are given in Table 2. Since EL(t,m) (or EL∗(t,m)) measures the efficiency of

dmin over all designs in D(t, gt, t−m), not just those that are derived from UBR-

MDs, high values of this efficiency bound suggest that a different starting design,

instead of the UBRMD dplan, would not have resulted in a substantially better

dmin. An UBRMD dplan that has a small value of UML(t,m) (or UML∗(t,m))

and a large value of EL(t,m) (or EL∗(t,m)) for dmin clearly is a good design for

use when there is a possibility of subject dropout.
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3. Further Results for the Case m = 1

In the previous section we derived upper bounds UML(t,m) and UML∗(t,

m) to the maximum loss of precision due to subject dropout MLdplan
. In this

section, we first establish formulae for MLdplan
for two special families of UBR-

MDs. Then we indicate how to select a starting design UBRMD dplan for which

MLdplan
is small. For simplicity, we focus on the case m = 1, i.e., subjects remain

in the study at least through period t−1. We start with definitions of the families

of UBRMDs that we will study.

Class A type W1 UBRMD. Start with a t×t squareW that is a UBRMD with

columns denoting treatment sequences and rows denoting periods. Let Pt(W )

and Pt−1(W ) be the t× t matrices defined in Section 2 corresponding to periods

t and t − 1, respectively, for square W , i.e., the (h, i) entry of Pj(W ) is 1 if the

(j, i) entry of W is h; it is 0 otherwise. Let Π = Pt(W )Pt−1(W )′. If 1 is an

eigenvalue of Π of multiplicity one, then the design dplan that assigns g subjects

to each sequence (column) of W is called a Class A type W1 UBRMD.

Class B type W1 UBRMD. We start with two t × t squares W1 and W2

such that the t × 2t design (W1 W2) is a UBRMD with columns denoting

treatment sequences and rows denoting periods. For δ = 1, 2, let Pt(Wδ) and

Pt−1(Wδ) be the t × t matrices defined as in the previous paragraph, and take

Πδ = Pt(Wδ)Pt−1(Wδ)
′. Suppose 1 is an eigenvalue of Πδ of multiplicity one for

each δ = 1, 2. Suppose also that W1 and W2 are complementary in the sense

Π2 = Π′
1. Then the design dplan that assigns g/2 subjects to each sequence

(column) of W is called a Class B type W1 UBRMD.

Note that, for ease of implementation of the study, the experimenter will

generally assign several subjects to each of a small number of treatment se-

quences (see Jones and Kenward (2003, p.159)). Examples of Class A type W1

UBRMD when t is even are the Williams Latin squares given in Family 1 of

Hedayat and Afsarinejad (1978) with g subjects assigned to each sequence, and

examples of Class B type W1 UBRMD when t is odd are the pair of William

squares given in Family 3 of Hedayat and Afsarinejad (1978) with g/2 subjects

assigned to each sequence.

Theorem 10 Suppose t ≥ 4. (i) If dplan is a Class A type W1 UBRMD then,

for the minimal design dmin that consists of the first t − 1 periods of dplan, the

eigenvalues of Cdmin

D are gθ0 = 0 and gθr, where

θr =
t

t− 1

[

t− 2 − 2t(1 + cos(2πr
t ))

t(t− 3) − 2 cos(2πr
t )

]

, r = 1, . . . , t− 1. (17)

(ii) If dplan is a Class B type W1 UBRMD then, for the design dmin that

consists of the first t − 1 periods of dplan, the eigenvalues of Cdmin

D are gθ0 = 0
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and gθr, where

θr =
t

t− 1

[

t− 2 − t(1 + cos(2πr
t ))2

t(t− 3) − 2 cos(2πr
t )

]

, r = 1, . . . , t− 1. (18)

Proof. Write U = U01 = PtP
′
t−1. Then C11 = (gt(t−2)/(t−1))(It−Jt/t), C12 =

−(1/(t− 1))(gtIt − 2gJt + tU), and C22 = A− (g(t2 − 3t− 2)/(t(t− 1)))Jt , where
A = ((gt(t−3)/(t−1))It−(1/t−1)(U+U ′). Consider the spectral decomposition,

U + U ′ =
t−1
∑

r=0
αrhrh

′
r, with h′rhr = 1, r = 0, 1, . . . , t − 1, h′rhq = 0, for r 6= q;

α0 = 2g, h0 = 1t/
√
t. For r = 1, . . . , t − 1, h′r1t = 0. Let γr = (It + U/g)hr,

r = 0, 1, . . . , t− 1. It can be shown that

Cdmin

D =
gt

t− 1

[

(t− 2)
(

It −
1

t
Jt,t

)

− gt
t−1
∑

r=1

(gt(t − 3) − αr)
−1γrγ

′
r

]

.

Note that, by Lemma 3, αr ≤2g. Hence for t≥4, gt(t−3)−αr≥gt(t−3)−2g>0.
(i) In this case, U = gΠ. For r = 1, . . . , t − 1, (U + U ′)hr = αrhr implies

αr = 2gψr, where ψr = cos(2πr/t). Since γr = (It + Π)hr, γ
′
lγr = h′l(2It + Π +

Π′)hr = (2+2ψr)h
′
lhr. Therefore, if we write γ∗0 = 1/

√
t1t, γ

∗
r = (2+2ψr)

−1/2γr =

(2 + 2ψr)
−1/2 (It + Π)hr, r = 1, . . . , t−1, then {γ∗0 , γ∗1 , . . . , γ∗t−1} is an orthogonal

and normalized basis of Rt, and for r = 1, . . . , t− 1,

Cdmin

D γ∗r =
gt

t−1

[

t−2− t(2 + 2ψr)

t(t−3)−2ψr

]

γ∗r =
gt

t−1

[

t−2− 2t(1 + cos(2πr
t ))

t(t−3)−2 cos(2πr
t )

]

γ∗r ,

which establishes (i).

(ii) Here U = g(Π1 + Π′
1)/2 = U ′. For r = 1, . . . , t − 1, (U + U ′)hr = αrhr

implies αr = 2gψr; γr = (It +U/g)hr = (1+ψr)hr. It follows that, h0, h1, . . . , hr

are orthogonal and normalized eigenvectors of Cdmin

D , and

Cdmin

D hr =
gt

t− 1

[

t− 2 − t(1 + cos(2πr
t ))2

t(t− 3) − 2 cos(2πr
t )

]

hr,

for r = 1, . . . , t− 1. This establishes (ii).

For t = 4 it can be shown that θ1 = 0, θ2 = 2.67, and θ3 = 0. Hence dmin

is not connected. For t ≥ 5 however, it follows from Corollary 7 that dmin is
connected. The following Corollary is immediate.

Corollary 11 Suppose t ≥ 5. If dplan is a Class A or Class B type W1 UBRMD

then the loss of precision due to subject dropout is

Ldimp:dplan
≤ Ldmin:dplan

= MLdplan
= 1 − (t− 1)(t2 − t− 1)

t(t− 2)(t+ 1)

(t−1
∑

r=1

1

θr

)−1

,
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where the θr’s are given by (17) and (18) for Class A and B, respectively.

Theorem 10 also gives a lower bound to the efficiency of dmin in D(t, gt, t−1),

EFF dmin

D(t,gt,t−1) > ELAB(t), where

ELAB(t) =
(t− 1)2

MTr(t, 1)

( t−1
∑

r=1

1

θr

)−1

and where MTr(t, 1) = t(t − 2) − (t − 1)/(t − 2). The difference between the

bounds ELAB(t) and EL∗(t, 1) defined in Section 2 is that in the former (which

applies to Class A or Class B type W1 UBRMD) exact values of the eigenvalues

θr are used while in the latter (which applies to any type W1 UBRMD) these are

replaced by the lower bound θ∗L(t, 1).

Table 3 gives MLdplan
and ELAB(t) for Class A and Class B type W1

UBRMD for selected values of t. Note that the values of the maximum loss

due to subject dropout MLdplan
are substantially lower than the upper bounds

given in Table 1, while the values of the efficiency bound ELAB(t) are higher.

Table 3. Maximum loss of precision due to subject dropout and lower bound

to the efficiency of the minimal design for Class A and Class B type W1

UBRMD dplan when m = 1.

t 5 6 7 8 9 10

Class B A B A B A

MLdplan
0.35 0.30 0.20 0.18 0.14 0.13

ELAB(t) 0.90 0.89 0.97 0.97 0.98 0.98

For g > 1, a Class A type W1 UBRMD consists of g replications of a square

while a Class B type W1 UBRMD consists of g/2 replications of a pair of squares.

The next result implies that the loss due to subject dropout may be smaller if

distinct squares (or pair of squares) are used instead of replications.

Corollary 12. Suppose t ≥ 5. If dplan is the union of g t × t Class A type

W1 UBRMDs or g/2 t× 2t Class B type W1 UBRMDs that are not necessarily

identical, then

Ldimp:dplan
≤ Ldmin:dplan

= MLdplan
≤ 1 − (t− 1)(t2 − t− 1)

t(t− 2)(t + 1)

( t−1
∑

r=1

1

θr

)−1

,

where the θr’s are given by (17) and (18) for Class A and B, respectively.

Proof. We sketch a proof for Class A type W1 UBRMDs; the proof for Class

B type W1 UBRMDs is identical. Suppose dmin =
⋃g

i=1 di, where di is the

minimal design for a Class A type W1 UBRMD design based on t subjects for
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i = 1, . . . , g. It follows from Theorem 2.1 of Hedayat and Majumdar (1985)

that, Cdmin

D � ∑g
i=1 C

di

D . Take B = Cdmin

D + Jt/t, and Bi = Cdi

D + Jt/(gt),

for i = 1, . . . , g. Since each di is connected, the matrices B1, . . . , Bg and B are

positive definite. Clearly, B � ∑g
i=1Bi. It follows that

B−1 �
( g

∑

i=1

Bi

)−1

� 1

g2

( g
∑

i=1

B−1
i

)

,

where the first inequality is well known in matrix theory and the second is given

in Bapat and Raghavan (1997, Thm. 3.11.1). It can be shown that, B−1 =

(Cdmin

D )+ +Jt/t, and B−1
i = (Cdi

D )+ +(g/t)Jt, for i = 1, . . . , g. Hence, (Cdmin

D )+ �
g−2

∑g
i=1(C

di

D )+. This implies,

trace(Cdmin

D )+ ≤ 1

g2

g
∑

i=1

trace(Cdi

D )+ =
1

g2

g
∑

i=1

t−1
∑

r=1

1

θr
=

1

g

t−1
∑

r=1

1

θr
.

The result follows.

For the setup of Corollary 12, it is clear that a lower bound to the efficiency

of dmin in D(t, gt, t− 1) is

EFF dmin

D(t,gt,t−1) >
(t− 1)2

MTr(t, 1)
(

∑t−1
r=1

1
θr

) .

Corollary 12 indicates that the use of distinct Class A or Class B type W1

UBRMDs instead of replications of the same design will not increase the maxi-

mum loss of precision due to subject dropout MLdplan
. There are examples where

MLdplan
actually decreases. In their Example 2, Low, Lewis and Prescott (1999)

studied the case t = 4, s = 24, m = 1 and showed that the use of distinct William

Squares instead of replications of the same square reduces MLdplan
. An example

for t = 6 is given below. The implication is that a UBRMD with more distinct

sequences is likely to perform better under subject dropout.

Consider the “extreme” design de
plan that consists of one subject assigned to

each of the t! possible sequences (s = t!). For the case m = 1, it can be shown

that U01 = ((t − 2)!)[Jt − It] and the information matrix of the minimal design

de
min is

Cde

D =
at(t−2)[(t−2)!]

t− 1

(

It −
1

t
Jt

)

, where a =
t4−5t3+6t2+t−2

t3 − 4t2 + 3t+ 2
.

For de
plan the maximum loss of precision due to subject dropout is,

MLde
plan

= 1 − a(t2 − t− 1)

(t− 1)2(t+ 1)
.



CROSSOVER DESIGNS WITH SUBJECT DROPOUT 251

Numerical studies indicate that this is the smallest value of MLdplan
among all

UBRMDs with t! or fewer subjects. We are currently investigating the nature of

planned designs that attain the minimum and maximum values of MLdplan
, as

well as designs that fall between in these extremes. However, as mentioned earlier

in this section, a small number of treatment sequences is generally preferred, so

it is doubtful that crossover designs with a large number of distinct sequences

will be used widely in practice.

Example 13. Let t = 6 and s = 12g0. The array below consists of two Williams

Latin squares.

Square 1 Square 2

1 2 3 4 5 0

0 1 2 3 4 5

2 3 4 5 0 1

5 0 1 2 3 4

3 4 5 0 1 2

4 5 0 1 2 3

2 5 1 3 0 4

4 2 5 1 3 0

5 1 3 0 4 2

0 4 2 5 1 3

1 3 0 4 2 5

3 0 4 2 5 1

Suppose d1
plan is a design that assigns 2g0 subjects to the first six columns of the

array and d2
plan a design that assigns g0 subjects to each of the twelve columns. If

m = 1, then the maximum loss of precision due to subject dropout are MLd1
plan

=

0.30 and MLd2
plan

= 0.24. The design de
plan can be constructed when g0 = 60.

For this design, MLde
plan

= 0.20.

Since estimation of the residual effects of the treatments is sometimes at

least a secondary focus of experiments, we conclude this section with a brief

consideration of the information matrix for the residual treatment effects of the

minimal design dmin obtained from a UBRMD dplan when m = 1. Note that,

C
dimp

R � Cdmin

R . Also, C
dplan

R = C22 −C21C
−
11C12. Suppose t ≥ 3. Then, it can be

shown that ((t − 1)/(gt(t − 2)))It is a generalized inverse of C11. From (2) and

(4) we obtain,

Cdmin

R =
(gt(t2 − 5t+ 5)

(t− 1)(t− 2)

)[

It −
1

t
Jt,t

]

−
( 2

t− 2

)

[U + U ′]

−
( t

g(t− 1)(t− 2)

)

U ′U +
( g(5t − 4)

t(t− 1)(t− 2)

)

Jt,t.

Using this, it can be shown that if the design dplan is a Class A or Class B type

W1 UBRMD then dmin is connected for residual treatment effects whenever t = 3,

or t ≥ 5. For t = 4, Low, Lewis and Prescott (1999) have shown that if dplan

is a Williams Latin square then dmin is disconnected for the residual treatment

effects.
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