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Abstract: To evaluate the conditional probability of an adverse outcome from a

set of covariates, decision makers are often given a limited number of observations

and, at times, are required to extrapolate outside the data range. To tackle the

extrapolation problem they need to select plausible model(s) and account for various

uncertainties in their predictions.

In this paper I propose a framework that provides a pessimistic (optimistic)

decision maker with probability models that are consistent with his/her outlook.

Viewing the link function in the GLM as a decision weighting function - a key

feature of modern choice models in economics - I characterize the outlook of various

distributions and order them according to their degree of pessimism (optimism).

A complementary statistical inference procedure is presented for predicting con-

strained extrapolated probabilities. The statistical inference accounts for two dif-

ferent model uncertainties: model uncertainty in the data range and model uncer-

tainty beyond the data range. The latter cannot be data driven and is dealt with

using non-parametric models constrained to capture the decision maker’s degree of

pessimism (optimism). The proposed methodology is demonstrated by analyzing

the 1986 Challenger space shuttle disaster and in assessing the merits of various ap-

proaches (e.g., Bayesian, parametric or non-parametric) in handling extrapolation

model uncertainty.

Key words and phrases: Challenger disaster, choice models, decision weighting

functions, extrapolation, model uncertainty, stochastic ordering.

1. Introduction

In the majority of cases where statistical analysis is called for, one encounters

model uncertainty and incomplete data. After all, the true model is rarely known

and it is the exception when the data is gathered from a designed randomized

experiment. It is therefore not surprising that problems caused by model uncer-

tainty and incomplete data have been hot topics of research in modern statistics

resulting in many discussion papers.

Most recently, Copas and Eguchi (2005) considered an asymptotic frame-

work for exploring the bias in likelihood inferences that results from incom-

plete data in the presence of “local” model uncertainty. Similar issues in the
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specific contexts of epidemiological and observational studies were discussed by

Greenland (2005) and by Rosenbaum (2004).

In this paper, the focus is on one of the most extreme cases of model uncer-

tainty and incomplete data - that which occurs when extrapolating probabilities

to the tail of a distribution. The contextual setup is one in which a decision

maker, in the course of a worst-case analysis, must predict the extrapolated

probability of an adverse outcome from a given set of predictor variables.

Worst-case analyses are a common challenge in many organizations. Govern-

ment agencies, like the EPA, FDA or DOD, extrapolate probabilities of potential

disasters to determine strategies and justify regulations. In the business world,

jobs and wealth can be wiped out when the probabilities of future adverse events

are projected wrongly. In general, wherever computer networks are used there

is a reliance on complex algorithms to predict the probability of system failures.

In all of these applications, risk managers face two major challenges: one is se-

lecting a plausible model and the other is accounting for uncertainties in their

predictions. Often, these challenges are made especially difficult because data is

sparse.

The simplest setup for extrapolating probabilities is the classic binary re-

gression, where inferences regarding the probability of a binary variable Y given

the covariates X are captured via the model

P (Yij = 1|Xi) = F (βT Xi) , (1.1)

where F (·), the cdf of a latent variable, formulates the structural assumption

and β is a vector of unknown parameters. Within the GLM framework, (1.1) is

expressed as

F−1(θi) = ηi , (1.2)

where F−1(·) is the link function, ηi = βT Xi and θi = P (Yij = 1|Xi).

To make inferences in (1.1) or (1.2), the usual approach is to select a single

model, F ∗(βT X), that fits the sample data “best”, and then proceed with infer-

ences on the parameters β as if (i.e., conditionally) F ∗(·) is the true structure. It

is standard practice (recommended in most textbooks) to fit one of the following

distributions to the data: logistic, normal, or extreme value – commonly referred

to as the Logit, Probit and Clog-log models, respectively. In other words, the

approach regularly used in a majority of applications addresses the parameter

uncertainty of β (e.g., via confidence intervals) but not the structure uncertainty

of F ∗(·).

This practice of neglecting structure uncertainty was first criticized by

(mainly) Bayesian researchers (e.g., Draper (1995), Chatfield (1995)) and led to

a flurry of publications that use the Bayesian approach (see Clyde and George
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(2004) for a good account). Chatfield (1995) asked “why has mainstream statis-

tics been ignoring [structure] uncertainty?” This he found especially strange since

the errors resulting from structure uncertainty sometimes account for a large pro-

portion of the total uncertainty. He offered two explanations: (1) we have failed

to ask the fundamental question: “how do you choose the models to be considered

in the first place?”; and, (2) the frequentist approach does not adapt easily to

cope with model uncertainty.

The issue of model uncertainty is most pronounced and challenging in ex-

trapolation problems. This is due, in part, to a practical dilemma (PD): often,

different structures F ∗(·) fit the data equally well, yet lead to significantly differ-

ent predictions outside the data range (e.g., Chambers and Cox (1967) or Section

4.2).

In this paper I present a new approach to this challenging problem. For

simplicity, the presentation is in the context of a binary regression with one

numerical factor X, observed in the range (XL,XU ), and the aim is to extrapolate

the probability of P (Y = 1|X = XExtp) where XExtp > XU .

When considering the extrapolation problem above, researchers often begin

with model (1.1). This model implies that a single structure can capture all kinds

of available information. The model thus makes it natural to assume that the

observable relationship continues to hold outside the data range. However, this

is an unverifiable assumption. It is therefore prudent to first replace (1.1) with

the following general model:

P (Yi = 1|Xi = x) = F0(α + βx)I(XL ≤ x ≤ XU ) + F1(x)I(x > XU ) . (1.3)

In (1.3), two very different modeling problems are made explicit, highlight-

ing two different types of structure uncertainty. One (the kind considered by

Draper (1995) and other Bayseians) is uncertainty with respect to F0. The as-

sociated uncertainty is data-driven and can be dealt with, for example, by the

Bayesian model averaging approach (e.g., Raftery, Madigan and Hoeting (1997))

or its frequentist version (e.g., Buckland, Burnham and Augustin (1997)). The

other (unique to extrapolation problems) is uncertainty with respect to F1. In

this case, the modeling cannot be data-driven and thus requires a different ap-

proach.

When the objective is to find a well calibrated fit within the data range, the

Bayesian criticism is compelling: an inference procedure that recognizes vari-

ability in the observations when estimating the parameters of a model but not

when estimating its structure F0 is logically flawed. This flaw may lead “. . . to

inaccurate scientific summaries and over confident decisions that do not incor-

porate sufficient hedging against uncertainty” (Draper (1995), emphasis added).
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However, when the objective is to extrapolate probabilities in F1, any data-based

approach, such as model averaging, is equally indefensible.

The philosophy behind my approach was aptly expressed by P. J. Diggle

(2005): ‘So how do we make progress with the plethora of challenging scientific

problems which are not amenable to investigation through randomized experi-

ments? We build models. And, in so doing, ‘we buy information with assump-

tions’ (Coombs (1964)). In general, assumptions which are based on judgments

by subject-matter scientists have a high rate of exchange against assumptions

which statisticians adopt as a matter of convenience.”

The approach I propose is based on viewing F−1
1 (·) in the same way be-

havioral economists view a decision weighting function, that is, as a function

designed to capture the outlook of a decision-maker. It is well known that deci-

sion makers sometimes rely on considerations external to the data when selecting

F1. For example, in matters of life-or-death, a decision maker will often adopt a

pessimistic outlook to perform a worst-case analysis. It is worth noting that the

notions of a pessimistic or optimistic outlook are completely different from, and

should not be confused with, the notion of a risk averse or risk seeking strategy,

as commonly used in the economics literature. The latter refer to properties of

utility functions while the former are transformations of objective or subjective

probabilities (see Diecidue and Wakker (2001)).

To capture a particular outlook in the selection of a distribution function F ,

scientific context is indispensable. The ideas proposed herein therefore cannot be

couched purely in terms of mathematical constraints. Instead, I follow the long-

standing tradition in statistics in which functionals of F that have contextual

meaning are used in developing non-parametric or semi-parametric frameworks.

Notable examples include the Increasing (Decreasing) Failure Rate distributions

in reliability studies (Barlow and Proschan (1981)), the Increasing (Decreasing)

Odds Ratio models in binary regression (Fygenson (1997)) and the Proportional

Hazards model in survival analysis (Cox (1972)). The functionals of F that are

meaningful in our context are developed in Section 2.

This paper has three main objectives: first, to propose a constrained non-

parametric framework for modeling probabilities with various outlooks; second,

to develop a statistical inference procedure that compliments this framework

and accounts for both structure and parameter uncertainties; and, third, to in-

vestigate, in light of the practical dilemma (PD) above, the merits of various

approaches - Bayesian, parametric and non-parametric - in accounting for model

uncertainty in extrapolation problems.

To avoid controversy over whether models are true, throughout the paper the

word ‘model’ is used to mean a reduced and parsimonious mathematical repre-

sentation of a system with relevance to a specific objective. The non-parametric
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models developed here are designed to capture outlooks with various degrees of

pessimism, thereby allowing one to hedge against understating the probability of

a catastrophe.

In the next section, a (non-parametric) framework for modeling cumulative

probabilities with a given outlook is introduced. The framework is general but

will be motivated for modeling F1 within the extrapolation setup of (1.3). Ex-

tensions to other statistical models are deferred to Section 5. In Section 3, the

statistical methodology for predicting extrapolated probabilities is presented. In

Section 4, the Challenger space shuttle disaster is used to illustrate the under-

lying ideas of the paper. The proposed methodology is used to analyze the pre-

launch data and the merits of various approaches for handling model uncertainty

(i.e., Bayesian, parametric or non-parametric) are examined. The presentation is

such that this section can be read independently of the more technical material.

Section 5 ends the paper with thoughts on important issues and open problems.

Technical theorems and proofs are relegated to Appendices A and B, respectively.

2. A Framework for Selecting Distributions in Extrapolation Problems

Consider a binary regression with one numerical factor X, observed in the

range (XL,XU ). The aim is to extrapolate P (Y = 1|X = XExtp) for XExtp >

XU or, at (1.3), to model F1 where data is absent.

In general, the fewer restrictions imposed on F1, the smaller the structure

uncertainty. In the statistical literature, F1 is taken to be equal to F0 at (1.3) and

one encounters two extreme approaches to its modeling. The most restrictive uses

a single parametric model (e.g., logistic or normal) and the least restrictive uses

a (monotone) non-parametric model. The former maximizes model uncertainty

while the latter completely eliminates it. However, in many applications (e.g.,

Section 4.5) the latter is neither powerful enough nor efficient enough to resolve

practical matters.

It is therefore reasonable to explore alternatives between these two extremes.

One alternative is to depart from a single parametric model and incorporate other

parametric models (e.g., Bayesian Model Averaging). Another is to depart from a

non-parametric model and impose additional qualitative constraints. The latter

promises minimal structure uncertainty - provided the additional constraints can

be justified conceptually.

In the following subsections I identify analytical constraints that capture

a decision-maker’s outlook (e.g., some degree of pessimism). Since constraints

are only meaningful with respect to a family of functions, I first introduce a

class of outlook-revealing transformations (ORT) that are based on measures of

association commonly applied in contingency table analysis.
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2.1. Contingency table analysis

To get to a contingency table analysis from a binary regression setup, con-

sider an idealized scenario in which an experiment can be run on k (possi-

bly infinite) discrete values of the factor X in the interval [XU ,XExtp] (i.e.,

XU ≤ X1 < · · · < Xk ≤ XExtp). The outcome of the experiment (mi) and the

true probabilities (πi) can be summarized in a 2 × k contingency table:

X1 X2 X3 · · · Xk

Y = 1 m1(π1) m2(π2) m3(π3) · · · mk(πk)

Y = 0

Total N1 N2 N3 · · · Nk

Note that πi in the above table is equal to F1(Xi). Therefore, considering dif-
ferent relationships among the πi is equivalent to identifying various qualitative
constraints of F1(·). Contingency table analysis often starts with testing the
following hypothesis:

π1 = π2 = · · · = πk ⇔ Column homogeneity ⇔ no covariate effect.

Once the null hypothesis of Column homogeneity is rejected, one traditionally
proceeds to estimate the strength and direction of the relationship between the
response, Y , and the factor, X, via measures of association. (A measure of associ-
ation, ρ(x, y), between two variables is a population parameter that characterizes
their joint variation.)

Although different measures of association have been proposed for categorical
variables, the most commonly used are attributable risk (AR), relative risk (RR)
and odds ratio (OR). I focus on these three because they have been widely
applied as measures of extra-risk by practitioners in different fields. Since, by
construction, the risk of an adverse outcome is a non-decreasing function of the
exposure level, a given outlook cannot be represented by a monotone constraint
on the risk itself. Measures that describe extra-risk mechanisms therefore provide
natural platforms for capturing decision-maker’s outlooks (i.e., outlook-revealing
transformations).

2.2. Outlook-revealing transformations

To return to a binary regression setup, I re-define the three measures of

association as functionals of a cdf (F ):

(i) ARF (x∗, x) = F (x∗) − F (x);

(ii) RRF (x∗, x) =
F (x∗)

F (x)
;

(iii) ORF (x∗, x) =
F (x∗)

1 − F (x∗)

/ F (x)

1 − F (x)
;

(2.1)
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where x∗ and x are any two fixed values such that x<x∗, F (x)>0 and F (x∗)<1.

The functionals in (2.1) are particularly appropriate for developing a con-

strained non-parametric framework for extrapolation problems because they cap-

ture the strength and direction of the relationship between Y and X without

requiring explicit knowledge of the formula of F .

To see why these functionals qualify as outlook revealing transformations,

consider the case where Y = 1 when an adverse outcome occurs, and where x

and x∗ = x+∆, with ∆ > 0, represent the levels of a risk factor. The attributable

risk, for example, measures the excess-risk from the additional exposure ∆,

ARF (x + ∆, x) = (P (Y = 1|X = x + ∆) − P (Y = 1|X = x)) > 0 for all x,

and a plot of ARF (x + ∆, x) vs. x captures changes in the excess-risk with

increasing exposure x. A neutral outlook would suppose that there is no change

in the excess-risk for more exposed (x + ∆) individuals as compared to less

exposed ones (x). That is, the increase in the risk factor level is inconsequential

(i.e., neutral) to the excess-risk mechanism. A non-decreasing pattern (at least

in some of the x) is intuitively pessimistic because it implies that the excess risk

of more exposed individuals is non-decreasing in the risk factor levels. That is,

an increase in the level of a risk factor has a compounding effect on more exposed

individuals. Similarly, if the changes in the excess-risk were non-increasing (i.e.,

at higher exposure levels, the risk factor is “protective” in the sense that more

exposed individuals accrue less additional risk than those that are less exposed),

this would amount to an optimistic outlook on the excess-risk mechanism. The

same intuition applies for monotone patterns in the two other ORT since they

also reflect the excess-risk mechanism, albeit on a relative scale (see Section 4.3).

2.3. Pessimistic, neutral or optimistic regions of distributions

Given that the ORT in (2.1) are functionals of a cdf, the intuition developed

above can be carried over to characterize the outlook(s) inherent in a distribution.

Note that a single distribution can reflect different outlooks over different inter-

vals of its support. Focusing on only an interval (and not the entire support)

departs from common practice in the study of stochastic orders, but leads to

more general results. Moreover, it increases the likelihood that the derived con-

straints are contextually meaningful and, at the same time, minimizes structure

uncertainty.

Definition 2.1. A distribution function F is inherently pessimistic (optimistic)

on an interval J if its ORT is non-decreasing (non-increasing) in x for all x∗ ∈ J .

F is said to be inherently neutral on J if its ORT is constant in x for all x∗ ∈ J .
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In the above definition, it must be understood that, on some scale, x∗ must

be larger than x by a fixed positive constant in the neighborhood of its boundary

value (e.g., x∗ = x+∆, ∆ > 0 or, x∗ = αx, α > 1). When applying the definition

to characterize a certain family of distributions, an ORT (i.e. a functional that

depicts an extra-risk mechanism) and an appropriate scale must be selected.

A scale would be appropriate if it allows the ORT to discriminate among the

distributions in the considered family such that some of the distributions are

classified as pessimistic and others are classified as neutral or optimistic.

Throughout the rest of the paper, the family F of distribution functions is

considered. This family includes all distributions that are absolutely continuous

with densities that are strictly positive and have at least one continuous deriva-

tive on (−∞,∞). In accordance with the ORT in (2.1) and Definition 2.1, the

focus here is on distributions that can be labeled as AR-, RR- or OR-pessimistic

(optimistic) on an interval J of their support.

In the definition below, ∆ denotes any positive constant. To make the com-

parisons meaningful however, ∆ should either be taken in the neighborhood of

zero or, at least, be small relative to the length of the interval J .

Definition 2.2. A distribution function F ∈ F is inherently AR-, RR- or

OR-pessimistic (optimistic) on an interval J if ARF (x+∆, x), RRF (x+∆, x) or

ORF (x+∆, x) is non-decreasing (non-increasing) in x, respectively, for all x+∆ ∈

J . F is said to be inherently AR-, RR- or OR-neutral on J if ARF (x + ∆, x),

RRF (x + ∆, x) or ORF (x + ∆, x) are constant in x, for all x + ∆ ∈ J .

The above definition provides an ordinal classification of candidate distri-

butions from pessimism to optimism. However, it offers no guidance as to how

to classify distributions within the same category. To make an informed choice

between, for example, two or more pessimistic distributions, it is useful to order

the distributions according to their degree of pessimism (optimism). This is done

in Appendix A. The theorems that appear therein are the foundation for much

of the statistical methodology in Sections 3 and 4. What follows is a summary

of some of the important results derived in Appendix A.

Summary of Results:

1. On the same interval J , when F is RR-pessimistic it is also OR-pessimistic and

AR-pessimistic (i.e., RR-pessimism is the most pessimistic outlook). Other

implications are not possible without further restrictions on F or J .

2. In applications where the subinterval of interest is Jinterest ⊂ (−∞, Median],

F is RR-pessimistic ⇒ F is OR-pessimistic ⇒ F is AR-pessimistic.
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3. The three most commonly used models in binary regressions (i.e., the logit, the

probit and the Clog-log models) often fit the same data equally well (e.g., the

application in 4.2), but actually convey very different, or even opposite, out-

looks regarding the likelihood of adverse outcomes. In particular, the probit

is OR-optimistic, the logit is OR-neutral and the Clog-log is OR-pessimistic.

Therefore, choosing one of these models over another for F1 amounts to taking

a different outlook position when making decisions in worst-case analyses.

3. Modeling and Predicting Extrapolated Probabilities

To develop the statistical methodology for the probabilistic framework pro-

posed in Section 2, the extrapolation model in (1.3) must first be operational-

ized. This requires connecting and matching the structures F0 and F1 in a

single coherent model. For this purpose, I introduce a transition structure

F01, defined on a small interval at the extreme of the observation range (i.e.,

an interval [XU − ǫ,XU ], where ǫ is some positive scalar and XU denotes the

largest observation). This leads to the following inference model for predicting

P (Yi = 1|Xi = x):

F0(x)I(x < XU−

) + F01(x)I(XU−

≤ x ≤ XU) + F1(x)I(XU< x ≤ X∗≤ XExtp) ,

(3.1)

where is I(·) is the indicator function and (XU − ǫ = XU−

< XU < X∗ ≤ XExtp).

The variable XU−

is used as an anchor point in deriving confidence bounds (see

Theorem 3.1 below). The variable X∗ is included to shorten the length of the

interval on which F1 is required to satisfy the qualitative constraint, thereby

minimizing structure uncertainty. In many applications (e.g., Section 4.3), a

decision can be made by extrapolating to X∗<< XExtp.

The particular constraints considered next are imposed on the ORT in (2.1)

and come in a variety of strengths (see Appendix A). These qualitative constraints

are imposed on F1 through non-parametric models that are inherently pessimistic

with respect to one of the three ORT.

The next theorem is essential for conducting a constrained statistical anal-

ysis. It provides sharp lower bounds for P (Y = 1|X = x), x ∈ J∗ = (XU ,X∗]

using two percentiles (xp < xq) of F01 (i.e., F01(xp) = p and F01(xq) = q). To

present the theorem, the following definition is required.

Definition 3.1. Stochastic ordering on J. Consider the random variables W and

X with distribution functions G and F , respectively. W is said to be stochas-

tically larger than X on J = [a, b] if F (a) = G(a) and F (u) ≥ G(u) for all

u ∈ j = [a, b].
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Theorem 3.1. Suppose that on J = [XU−

,X∗], F1 is pessimistic with respect

to an ORT and on J0 = [XU−

,XU ], F01 is stochastically larger than F1, then

g(F1(x)) ≥ sup
p<q

{Ag(q) − (A − 1)g(p)}, XU−

= xp < xq ≤ XU < x ≤ X∗, (3.2)

where 0 < p < q < 1, A = (x − xp)/(xq − xp), and the function g(·) is the

identity, the log or the logit function according to whether F1 is AR-, RR- or

OR-pessimistic, respectively.

Corollary 3.1. Under the conditions of Theorem 3.1, the following are sharp

lower bounds for any percentile Xγ ∈ J∗ = (XU ,X∗]:

Xγ ≤ inf
xp<xq

{Bxq − (B − 1)xp}, XU−

= xp < xq ≤ XU < Xγ ≤ X∗, (3.3)

where B = (g(γ) − g(p))/(g(q) − g(p)) and the function g(·) is the identity, the

log or the logit function according to whether F1 is AR-, RR- or OR-pessimistic,

respectively.

Remarks.

1. For the inequality in (3.2) or (3.3) to be valid, F01 does not have to be equal

to or even of the same pessimistic type as F1. However, if F01 is as pessimistic

as F1, one can obtain tighter bounds in (3.2) and (3.3).

2. In relation to the three most commonly used binary regression models (i.e.,

probit, logit and Clog-log) the probit model will lead to the smallest lower

bound in (3.2) and the Clog-log model to the largest.

3. From the inequalities in (3.2) and (3.3), it is clear that structure uncertainty

due to F0 only comes into play via the percentiles (xp, xq). If various paramet-

ric models fit the data equally well (the practical dilemma (PD) mentioned

in Section (1), then it is highly probable that they yield similar estimates for

(xp, xq). Therefore, uncertainty due to F0 is likely to be inconsequential to

the extrapolation problem (e.g., Section 4.3).

In the next section I derive statistical bounds for any extrapolated probability

F1(x), x ∈ J∗ or percentile Xγ ∈ J∗. These are approximate 100(1 − ρ)% lower

confidence bounds (LCB) or upper confidence bounds (UCB), respectively, that

account for the variability inherent in the data.

3.1. Lower and upper confidence bounds for extrapolation

To input data into the estimation of P (Y = 1|XExtp) or Xγ ∈ J∗ requires

modeling F0 and accounting for data uncertainty. The inequalities in (3.2) and

(3.3) allow for any approach in modeling F0 - parametric, semi-parametric or
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non-parametric. As will be shown in Section 4, the non-parametric approach

can lead to uninformative summaries of the data. Therefore, in what follows,

statistical bounds are derived for F1(x), x ∈ J∗ or Xγ ∈ J∗, where F0 is modeled

parametrically.

The problem of constructing approximate confidence bounds for percentiles

in a binary regression setup has been considered by many authors, usually under

the standard assumption of a logit or a probit model for F at (1.1).

With the exception of one case (where F0 is a logistic and F1 is OR-pessi-

mistic), the derivation of the approximate 100(1− ρ)% LCB for F1(x), x ∈ J∗ or

UCB for Xγ ∈ J∗ is non-standard and requires a constrained maximum likelihood

approach.

While other asymptotic approaches exist (e.g., the delta method), the likeli-

hood ratio method has been found to have good theoretical properties. In partic-

ular, it is invariant under parameter transformations (Cox and Hinkley (1974))

and, in the standard models, it yields coverage probabilities close to their nominal

values (e.g., Alho and Valtonen (1995) and Huang (2001)).

In the proposition below, LL(α, β) denotes the log likelihood function (of the

parameters in F0), LL(α̂, β̂) denotes its maximum under the parameterization of

(α, β),

H(α, β; x, xq, xp) =
x − xp

xq − xp
g(F0(α + βxq)) −

x − xq

xq − xp
g(F0(α + βxp))

and

G(α, β; γ, xq, xp) =
(xq − xp)g(γ) + g(F0(α + βxq))xp − g(F0(α + βxp))xq

g(F0(α + βxq)) − g(F0(α + βxp))
.

Proposition 3.1. Suppose that on J = [XU−

,X∗], F1 is pessimistic with respect

to an ORT and on J0 = [XU−

,XU ], F01 is stochastically larger than F1. Then

the approximate 100(1 − ρ)% LCB for F1(x), x ∈ J∗ is given by

Lx = inf
(α,β)

{H(α, β; x, xq, xp) : 2(LL(α̂, β̂) − LL(α, β)) ≤ χ2
1,1−2ρ} ,

and the approximate 100(1 − ρ)% UCB for Xγ ∈ J∗ is given by

Uγ = sup
(α,β)

{Xγ = G(α, β; γ, xq, xp) : 2(LL(α̂, β̂) − LL(α, β)) ≤ χ2
1,1−2ρ} .

Finding Uγ , for example, is a nonlinear programming problem with a concave

objective function and nonlinear constraint functions. After some algebra, it
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can be shown that a solution must satisfy the following Kuhn-Tucker conditions

(Kuhn and Tucker (1951)):

∂G(α, β; γ, xq , xp)

∂α
− λ

−∂LL(α, β)

∂α
= 0,

∂G(α, β; γ, xq , xp)

∂β
− λ

−∂LL(α, β)

∂β
= 0,

−LL(α, β) +
1

2
(2LL(α̂, β̂) − χ2

2,1−2ρ) = 0,

where λ > 0 is the Lagrange multiplier.

4. Application: The 1986 Challenger Disaster

The decision process that took place prior to the 1986 Challenger disaster

remains typical of contemporary debates in worst case analyses. Data from previ-

ous space shuttles launches has been used several times over the past two decades

to illustrate and assess statistical methodologies for extrapolating the probability

of a catastrophe. Revisiting the data here therefore offers both a historical per-

spective on how statistical methodologies have progressed and aptly motivates

modeling probabilities with a given (pessimistic) outlook.

4.1. Background

On the morning of January 28, 1986, shortly after take-off, the space shuttle

Challenger exploded, killing all seven crewmembers. The catastrophe was due to

a breach in the field joint of a booster rocket, caused by the malfunctioning of

two primary O-rings in the joint.

The decision to launch the Challenger was reached the night before after a

three-hour teleconference between engineers and management. A central question

in the discussion was whether the anticipated launch temperature, 31 degrees,

would allow normal O-ring function. One year earlier, similar O-rings in the

booster rocket of Flight 51-C, which was launched at 53 degrees - the lowest

temperature of any launch up to that time - were found damaged and breached.

This led the engineers to regard low temperatures as dangerous to proper func-

tioning of the O-rings.

The engineers’ position was that the flight should be delayed until the Chal-

lenger’s O-rings’ temperature reached 53 degrees. They argued that, taking all

“bench” test data and flight data into account, the chances of O-ring failure could

only increase with decreasing temperature below 53 degrees.

Management countered that the data did not support the engineers recom-

mendation for delay. They cited a subset of data from bench tests conducted
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below 53 degrees that had shown no O-ring damage, and the successful launch

of flight 61-A, at 75 degrees, in which the O-rings had shown damage. Their

position was that the data failed to show that temperature was a key factor in

O-ring performance.

At the time, a formal statistical analysis of the data was not performed.

Nevertheless, the following information relevant to any such analysis was avail-

able.

(a) The engineers judgment that the probability of erosion may rise monotoni-

cally as temperature decreases.

(b) The number of primary O-ring failures (out of 6) as a function of launch

temperature for each of the previous 23 space shuttles launches.

(c) All previous launches took place between 53 and 81 degrees. Thus, to predict

the probability of failure at the anticipated launch temperature of 31 degrees

requires a sizable extrapolation.

4.2. Review of statistical analyses

The first published analysis (in the statistical literature) on the Challenger

disaster is by Dalal, Fowlkes and Hoadley (1989), who set out to show “. . . how

statistical science could have provided valuable input to the launch decision pro-

cess”. This paper prompted two more landmark analyses, one by Lavine (1991)

and the other by Draper (1995).

All three considered the statistical task of modeling the probability of O-ring

failure (Y = 1) as a function of launch temperature (X), based on a total of 6*23

= 138 independent binary observations, and their associated temperature values

(Figure 1). Since the anticipated launch temperature was 31 degrees, the analyses

focused on providing the best possible prediction forP (Y = 1|X = 31) ≡ p(31).

All three analyses started with the model at (1.1). Dalal, Fowlkes and

Hoadley (1989) adopted a linear logistic model for their inferences. They first

verified, via goodness-of-fit tests and other diagnostics, that the model fit the

data extremely well and that there is no quadratic or other nonlinear relation-

ship between the logit of the probabilities and temperature. (The MLE of the

logistic regression curve is plotted in Figure 1.) To account for parameter uncer-

tainty, they constructed a 90% confidence interval using a parametric bootstrap

procedure, which reduces the variability but, as they noted, is highly model de-

pendent. Their reported 90% confidence interval for p(31) is (0.5, 1).
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Figure 4.1. 1986 Challenger data fit with common parametric models. The
rescaled variable Z = (81-Temperature) is plotted along the x-axis so that
the risk is non-decreasing rather than non-increasing.

Lavine (1991) rejected their approach by showing that there are other models

besides the logit that fit the data equally well (see Figure 1), yet give very different
predictions for very low temperatures. This practical dilemma (see PD, Section

1), he noted, is common to other extrapolation problems, where “. . . the usual
procedures of model selection, model fitting, and diagnostics do not tell the whole
story about the probability of failure at 31 degrees”. Lavine concluded that a

reliable answer could only be based on the engineers’ input that the probability
of O-ring failure may rise monotonically as temperature decreases. Accordingly,

Lavine used a constrained non-parametric framework where p(31) was estimated
to be at least 1/3. He acknowledged that the estimate is highly dependent

on the one flight at 53 degrees and that the range of 2/3 is rather too large.
It is important to note that this range [1/3, 1) does not account for parameter

uncertainty and therefore underestimates the actual range size. When parameter
uncertainty is taken into account (Section 4.5), the range is about [1/10, 1) - much

too wide to be of practical use.
Draper (1995) presented another solution for predicting p(31). It appears

as a demonstration of the discrete model expansion (DME) approach - better

known nowadays as the Bayesian model averaging approach - to account for
structure uncertainty. The DME approach requires that we choose a finite set

L of plausible competing structures and attach priors to each of them. Draper
stated that the sensitivity of the analysis of Dalal, Fowlkes and Hoadley (1989)

indicates each of the following Si structures as a plausible candidate for inclusion
with equal discrete prior probability:

L = {Cloglog(x), logit(x),probit(x), logit(x, s), logit(x, x2), notemp.effect},

where x is temperature and s is leak check pressure. Draper’s analysis highlights

the followings points.
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(a) The posterior distribution differs considerably from the point mass on the

logit(x) model – the implicit framework of Dalal, Fowlkes and Hoadley (1989).

(b) While the model with no temperature effect is not supported, all other models

are plausible.

(c) The total variance, (i.e., variancewithin model + variancebetween models) is

(0.0338+0.0135) = 0.0473, is more than twice the variance of the logit model

while the variance between models is about 1/3 of the total variance.

(d) The 90% confidence interval for p(31) is (0.33, 1).

Table 4.0 summarizes the predictions of p(31) in the above three papers and the

various uncertainties they (try to) account for.

Table 4.0. Summary of the three published solutions for p(31).

Uncertainty Accounted for?

Estimate (F0) (F1) 90% CI

Method of of p(31) Parameter Structure Structure for p(31)

Dalal et al. (1989) 0.90 Yes No No (1/2, 1)

Lavine (1991) ≥ 1/3 No Yes Yes NA

Draper (1995) 0.88 Yes Yes No (1/3, 1)

Note: Both Dalal, Fowlkes and Hoadley (1989) and Lavine (1991) run their analyses with

two erosions at 75 degrees where there should be none. This has little (Dalal, Fowlkes and

Hoadley (1989)) or no (Lavine (1991)) effect on the estimates. Point estimates for Dalal,

Fowlkes and Hoadley (1989) and Draper (1995) are means of the posterior distribution for

p(31).

4.3. Justification for a pessimistic outlook

After reviewing the three analyses above, one must wonder whether any

of them provide a solution that can be considered useful to decision-makers?

Lavine did not think so in his 1991 paper, or in 1995 when he discussed Draper’s

1995 paper. He suggested that “. . .any reduction of the range must come from

modeling, rather than data consideration”.

Section 2 follows up on Lavine’s suggestion and provides a modeling approach

that capitalizes on factors external to the data. In the Challenger case, based on

management position on the eve of the launch, such factors include:

(i) awareness of the potentially disastrous consequences of O-ring failure;

(ii) the belief that the probability for O-ring failure at 31 degrees was very small;

(iii) the belief that p(31) would not be significantly higher than p(53).

Given the high stakes, their limited knowledge, and the engineers position, man-

agement would have wanted to make a worst case analysis and model p(31) with

a pessimistic outlook.
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A pessimistic outlook cannot be conveyed by simply requiring the risk of

catastrophe to be non-decreasing on an interval because this must hold by default

for any interval. Therefore, to convey a pessimistic outlook one needs to consider

non-decreasing constraints on some functional of the risk, such as the extra risk

described by the ORT given in Section 2. This notion of pessimism becomes

even more compelling in situations like the Challenger disaster where there is

the belief that, on the extrapolation interval J∗ = [XU ,XExtp], either (i) the

absolute probability of a catastrophe is very small, or (ii) the increase in that

probability, relative to F1(X
U ), is insignificant. In this case, ORF (x + ∆, x), for

example, measures the “relative-risk” (of a more exposed (x+∆) subject relative

to a less exposed (x) subject) and the plot of ORF (x + ∆, x) vs. x ∈ J∗ depicts

changes in the “relative-risk” mechanism. In general, the smaller the interval

J∗ on which the monotone constraint is required to hold, the easier it is for a

decision-maker to conceive of such a requirement as pessimistic and, at the same

time, the structure uncertainty of F1 is minimized.

The analysis of the pre-launch data using pessimistic structures for F1 in

(3.1) is presented next. The analysis is based on the methodology given in

Section 3, where F0 in (3.1) is modeled parametrically. This methodology takes

full advantage of all the data but introduces maximal structure uncertainty with

respect to F0. Section 4.4 is therefore the opportune place in which to question

the importance, if any, of the structure uncertainty of F0 in the extrapolation

problem. The question is considered with and without accounting for parameter

uncertainty (see Tables 4.2 and 4.3, respectively).

To facilitate the presentation of the analyses in Sections 4.4 - 4.6, I use the

rescaled covariate Z = (81−temperature). Note that on factor Z, the probability

of erosion pz(z) is increasing rather than decreasing and the focus on estimating

pz(50) is equivalent to estimating p(31) .

4.4. Analysis with pessimistic outlooks

Using the factor Z, the model in ((3.1) can be rewritten as

F0(α + βz)I(z <ZU−

) + F01((α + βz)I(ZU−

≤z≤ 28) + F1(z)I(28 <z≤Z∗≤ 50) ,

(4.1)

where (28 − ǫ ≤ ZU−

≤ 28). Note that 28 corresponds to 53 degrees, the coldest

flight temperature observed, and 50 corresponds to 31 degrees, the anticipated

launch temperature for the Challenger.

The main goal of the present analysis is to obtain statistical lower bounds on

pz(50), or statistical upper bounds on some γ-percentile Zγ > 28, in a way that

minimizes the structure uncertainty of F1 (SUF1), and accounts for parameter

uncertainty as well as structure uncertainty in F0 (SUF0).
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4.4.1. The Importance of SUF0

In the statistical framework of Section 3, when parameter uncertainty is

ignored, SUF0 can be a factor only if the candidate models yield different esti-

mates for (zp, zq) in Theorem 3.1. The fact that different parametric models fit

F0 equally well (e.g., Lavine (1991)) suggests that this may not be the case. It

is prudent, therefore, to begin by investigating just how important SUF0 is in

the extrapolation of pz(50) or Zγ > 28. If it is unimportant, then all the obser-

vations can be used to achieve the main goal, which is not to model F0 but to

(pessimistically) extrapolate predictions in the range of F1.

Table 4.1 reports the smallest Z∗ such that pz(Z
∗) ≥ 0.5 or pz(Z

∗) ≥ 0.9.

The case where F0 is modeled non-parametrically (e.g., Lavine (1991)) is included

for comparison. Including such a model, which is free from structure uncertainty,

limits the choices for the percentiles (zp, zq) used in (3.2) or (3.3). Like Lavine

(1991), I used the two most extreme percentiles, corresponding to the second

coldest and coldest launch temperature of 57 and 53 degrees, respectively.

All Z∗ in Table 4.1 are strictly smaller than 50, regardless of the model used

for F0. This means that the upper bounds on the 50th and the 90th percentiles

correspond to a warmer temperature than the expected launch temperature of

31 degrees. Therefore, when parameter uncertainty is ignored, the decision not

to launch at 31 degrees is strongly advocated by all combinations of F1 and F0.

Moreover, since the values of Z∗ are very similar within an ORT, one can conclude

that SUF0 is inconsequential to the launch decision. That the various parametric

models for F0 provide Z∗ values similar to those provided by the non-parametric

model further reinforces this conclusion.

Table 4.1. The smallest Z∗ for which pz(Z
∗) ≥ 0.50 (pz(Z

∗) ≥ 0.90).

Z∗ Z∗ Z∗

F0 and F01 pz(24) pz(28) (F1 is AR- (F1 is OR- (F1 is RR-

(px(57)) (px(53)) pessimistic) pessimistic) pessimistic)

Increasing1 0.1666 0.3333 32.00 31.03 30.34

(41.60) (40.65) (33.74)

Clog-log 0.1908 0.3405 32.37 31.38 30.66 †

(42.95) (42.59) (34.72)

Logistic2 0.1956 0.3326 32.89 31.88 31.06 †

(44.56) (44.15) (35.50)

Probit 0.2003 0.3136 34.60 33.22 † 32.17 †

(48.70) (47.84) (37.41)

1from Lavine (1991). 2from Dalal, Fowlkes and Hoadley (1989). † indicates that, on the

interval [24, 28], F01 (=F0) is not as pessimistic as F1.

Note that parameter uncertainty is not accounted for in this table.
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4.4.2. Upper confidence bounds for the median failure temperature

To achieve the main goal, I account for parameter uncertainty by obtaining

the approximate 90% upper confidence bounds (UCB) for Z0.5 - the median

failure temperature (Table 4.2). These are based on Proposition 3.1, and were

obtained using the FindRoot subroutine in Mathematica.

Readers may be appalled at my choice of such a high percentile. It suggests

that one would tolerate a risk for O-ring failure (and its likely disastrous conse-

quences) that is as likely as getting Tails when flipping a balanced coin! While

the statistical methodology in Section 3 can be applied to any percentile, I chose

the median so that the UCB might lead to an indisputable launch decision.

The results in Table 4.2 can be summarized and interpreted as follows.

1. SUF0 is unimportant.

2. SUF1 and the parameter uncertainty are important.

3. UCB in the last two columns are very similar and are strictly less than 50.

4. The case where F1 is constrained to be AR-pessimistic and F0 is modeled

using the normal distribution (the most optimistic combination considered)

the 90% UCB for Z0.4 is 49.8812.

Thus there could have been only one reasonable decision – not to launch at 31

degrees.

Knowing that SUF0 is inconsequential to the launch decision justifies the

use of a mixed modeling approach (i.e., modeling F1 in (3.1) non-parametrically

but pessimistically, and F0 parametrically) in obtaining the LCB or UCB. This

approach, which is not semi-parametric in the usual sense, should be particularly

advantageous in extrapolation problems with sparse data because it makes use

of all the observations.

Table 4.2. 90% approximate UCB for the upper bound on Z0.5.

F1 F1 F1

F0 and F1 AR-pessimistic OR-pessimistic RR-pessimistic

zp = 24 zp = 27 zp = 24 zp = 24

zq = 28 zq = 28 zq = 28 zq = 28

Probit LR: 54.7126 LR: 52.5553 LR: 43.8385 LR: 40.5974

(49.8812)∗ (49.5924) † †

Logistics LR: 50.9487 LR: 48.4431 LR: 41.6636 LR: 38.8322

(47.2307) †

Clog-log LR: 50.0172 LR: 48.2864 LR: 41.0748 LR: 38.3524

(46.6518) †

Note: The UCB for the cases where F1 is OR- or RR- pessimistic using zp = 27 and zq = 28

resulted in differences of less than a degree from that when zp = 24 and zq = 28 were used

and is therefore omitted. In the third column the numbers in parentheses are the 95% UCB.
∗indicates the value given is for the 90% UCB for Z0.4. † indicates that on the interval [24,

28], F01 (=F0) is not as pessimistic as F1.
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Might there nevertheless be merit in using a non-parametric approach for
modeling F0 and avoiding its structure uncertainty altogether? In Section 4.5,
the standard non-parametric analysis of Lavine (1991) is considered in a manner
which accounts for parameter uncertainty. The final results do not bode well
for such an approach and, in general, cannot be recommended for extrapolation
problems in applications with sparse data.

In Section 4.6, I investigate the possible improvement of using the non-
parametric but pessimistic structure for F1 (and the standard non-parametric
model for F0). To make it more interesting, the merit of the engineers’ recom-
mendation that the flight be delayed until the Challenger’s O-rings temperature
reached 53 degrees is analyzed for the first time. While the analysis reveals that
using the standard non-parametric model for F0 is once again fruitless, using the
non-parametric but pessimistic structure for both F1 and F0 is productive.

4.5. The standard non-parametric analysis

Another way of bypassing the structure uncertainty controversy is to use
a non-parametric model for F in (1.1). Recall that Lavine (1991) estimated
pz(50) to be at least 1/3. This (monotone) non-parametric MLE is based on one
binomial experiment at z = 28 (i.e., 53 degrees) where two failures were observed
among six “independent” trials. This estimate, however, does not account for
parameter uncertainty, which could be problematic in this case.

The main difficulty stems from the fact that not all the data can be used in
deriving the confidence intervals, leading to wide confidence intervals or, equiva-
lently, lower confidence levels. A related problem is the discreteness of the distri-
butions of the statistics used in deriving the confidence intervals. This often leads
to confidence levels more strict than the targeted nominal level. Finally, there is
an ongoing dispute as to the best way of dealing with nuisance parameters - the
conditional approach vs. the unconditional one (Agresti (2001)).

To see how these difficulties play out in the Challenger example, I derive a
lower confidence bound (LCB) for pz(50) where both F0 and F1 are only con-
strained to be monotone (Lavine (1991)). Using the pool-adjacent-violators al-
gorithm (Ayer, Brunk, Ewing, Reid and Silverman (1955)) the constrained non-
parametric MLE are

pz(0) = pz(2) = pz(3) = pz(5) = pz(6) = pz(8) = pz(9) = 0,

pz(11) = pz(12) = pz(13) = pz(14) = pz(15) =
1

30
,

pz(18) = pz(23) = pz(24) =
1

6
and pz(28) =

1

3
.

With only three jumps in the range of the data, it makes most sense to use
the estimated pz(28) as the lower bound for pz(50). To derive the (1− ρ)% LCB
for pz(50), I consider three methods that have been researched extensively.
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1. Clopper-Pearson’s (1934) Exact method where the LCB, PL, is a solution to

the equation

6
∑

k=2

(

6

k

)

P k
L(1 − PL)n−k = ρ.

2. Mid-P Exact method (Berry and Armitage (1995)), where PL is a solution to

the equation

0.5P 2
L(1 − PL)4 +

6
∑

k=2

(

6

k

)

P k
L(1 − PL)n−k = ρ.

3. Wilson’s (1927) Score method with continuity correction (CC) where

PL =
2np + z2 − 1z{z2 − 2 − 1

n + 4npq + 4p}0.5

2(n + z2)
,

where q = (1 − p) and z is the (1 − ρ) percentile of the standard normal

distribution.

With only six observations at 28, the preference for exact methods rather

than asymptotic approximation methods is obvious. We bring the Score method

for comparison since it has a closed form and was found to perform very well

in extensive evaluation studies (e.g., Newcombe (1998)). The results appear in

Table 4.3 where n = 6, p = 1/3, and z = 1.282.

Table 4.3. 90% LCB for pz(50) in Lavine’s Framework.

Method 90% LCB

Clopper-Pearson Exact 0.0925953

Mid-P Exact 0.1265290

Wilson Score with CC 0.0958944

Without further restrictions on F0 or F1, very low values for the LCB should

be expected since only a small fraction of the data (6/138) can be used and no

consideration for a pessimistic outlook (e.g., worst-case scenario) can be included.

Therefore, in general, such an approach cannot be recommended for applications

with sparse data.

4.6. Analyzing the engineers position

None of the analyses surveyed in Section 4.2 examined the merits of the

engineers’ position, which recommended delaying the flight until the Challenger’s

O-rings’ temperature reached 53 degrees. To do so, I now derive the LCB for the

excess-risk of launching the Challenger at 31 degrees as opposed to 53 degrees.
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It follows from Theorem 3.1, that when F1 is AR-, RR- or OR-pessimistic,
one needs first to obtain the LCB for the difference between two proportions, their
ratio and the ratio of their odds, respectively. Were it not for the constraint given
in (3.2), these would have been standard problems. Consider the case where F0

is monotone and F1 is OR-pessimistic. It follows from Theorem 3.1 that the

odds-ratio of interest ORF1(50, 28) is bounded by

max

{

θ(A−1) =
(Odds(28)

Odds(zp)

)A−1
, 1

}

,

where zp < 28 < Z∗ ≤ 50 and (A − 1) = (50 − 28)/(28 − zp).
To see if and when one can obtain an informative LCB (i.e., LCB > 1), all

four possible observed values for zp should be considered. The exact 90% LCB
for the odds-ratios derived via the conditional approach are reported in Table
4.4. Note that the LCB in the first two rows of Table 4.4 are not informative. To

obtain informative LCB, it was necessary to extend the range of F01 to zp < 24
and, as a result, F0 is no longer just monotone but also constrained to be OR-
pessimistic.

Based on the results in Tables 4.3 and 4.4 one cannot, in general, recommend
using a non-parametric monotone model for F0 in applications where extrapola-
tion is the main objective. In many such applications, the number of observations
is limited and one cannot afford to ignore other information or use an approach
that fails to summarize all the data.

Table 4.4. 90% LCB for the odds-ratio where F0 is monotone and F1 is
OR-pessimistic.

zp zq p q θ LCB for θ (A − 1) θ(A−1)

24 28 1/6 2/6 2.5 Exact: 0.215419 5.5000 Exact: 0.000215

Mid-P: 0.34860 Mid-P: 0.00303

21 28 3/18 2/6 2.5 Exact: 0.354035 3.14286 Exact: 0.038257

Mid-P: 0.53426 Mid-P: 0.13943

13 28 2/60 2/6 14.5 Exact: 1.824160 1.46666 Exact: 2.414852

Mid-P: 2.77624 Mid-P: 4.47098

4.5 28 0/54 2/6 60.555 Exact: 4.66987 0.93617 Exact: 4.232364

Mid-P: 8.28032 Mid-P: 7.23516

Note: The values of zp in the last three rows are the midpoints of the intervals where no
jumps occur in the constrained empirical distribution of F0. The estimated odds-ratio in the
last row is obtained by adding 0.5 to each cell in the 2×2 table.

5. Discussion

5.1. Conservatism and pessimistic outlooks

Worst-case analyses are a common challenge in both public and private or-

ganizations. When decision-makers consider worst-case scenarios, a conservative
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approach often is, and arguably should be, preferred. But the word conserva-

tive means different things to different people. In the statistical literature, a

conservative approach can mean modeling without parametric assumptions (e.g.,

Horowitz and Manski (2000)); using lower bounds in evaluating the estimated

variability or efficiency of estimators (e.g., Fuh and Hu (2004)); or choosing the

least favorable distribution in testing procedures (e.g., Lehmann and Romano

(2005)). In the economics literature, a conservative approach can mean using

a risk-averse utility function or adopting a pessimistic outlook, as captured by

a transformation on the outcomes probabilities (i.e., decision weighting func-

tions). The outlook-revealing transformations proposed here anchor a probabilis-

tic framework in the latter spirit, but are derived from measures of association

commonly used in categorical data analysis.

Conservatism in the face of scientific ignorance raises philosophical issues,

such as: Can humanity advance without taking risk? What constitutes a defen-

sible decision when lives are in danger? A statistical model cannot address such

questions directly, but the non-parametric framework introduced here provides a

means for formalizing and capturing the sentiments of decision-makers who must

grapple with such questions.

Some have argued that the Challenger disaster was the result of bad science

because more experiments could have been carried out and a physically based

model could have been advanced. Others would defend the decision to go ahead,

citing the known costs of delay and the irreducible uncertainty in the data at the

time. Using ORT to constrain the analysis, it is now clear that, even without new

data, the conservatively predicted probability for O-ring failure was appallingly

high — even after accounting for both model and parameter uncertainties. In

the future, the use of pessimistic outlooks in reaching a decision can at least pro-

vide a defensible position for decision-makers in cases that result in unfortunate

outcomes.

5.2. Model Uncertainty and Incomplete Data

The notion of model uncertainty is controversial because it depends on what

one presumes to be the meaning of a true (statistical) model and how this model

is related to the model(s) one ends up using. Different views on the subject

are evident from the different approaches researchers use in dealing with model

uncertainty.

The Bayesian approach invokes additional priors on a set of possible struc-

tures that can be supported by the data and/or alternative scenarios (e.g.,

Raftery (1996), Draper (1995), Draper, Saltelli, Tarantola and Prado (2000) and

Clyde and George (2004)) and thereby averages out the models’ uncertainty. In
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this approach, the notion of an objective true model is not necessary. Model
uncertainty is really intrinsic uncertainty in the processes that generated the
data.

The frequentist approach, by contrast, holds that a true model exists but

concedes that one cannot be certain whether the model used is the correct one.
To deal with such a reality, frequentists can buy insurance in the form of a
non-parametric analysis and pay with power and/or efficiency. Alternatively,
they can use semi-parametric models or robust methods. The thinking behind
any of these alternatives is that it is difficult to make useful inferences if the
models under consideration are grossly misspecified (relative to the true model).

Therefore, as a first step, one should quantify any biases that may result from
“small” departures from the true model and/or conduct a sensitivity analysis
on the extra parameters (e.g., Burnham and Anderson (2002), Huber (2003),
Copas and Eguchi (2005), and Greenland (2005)).

Debate as to which approach offers a better solution to the problems caused
by model uncertainty is misplaced when the main objective of the analysis is

extrapolation. Either approach is equally likely to mishandle the most relevant
component of model uncertainty if model (1.1) is considered. The proposed
model in (1.3), through the sub-models F0 and F1, clearly differentiates between
two very different kinds of model uncertainties, each of which requires a different
treatment.

With respect to F0, it is appropriate to ask how to combine model uncer-
tainty with sampling variability. The various ideas - Bayesian or Frequentist
- that appear in research on topics such as model misspecification, model sen-
sitivity, model selection, robustness, ignorability assumptions, model bias and
over-fitting, all have merit. Although these topics are concerned with different
aspects of or causes for the resulting biased summaries, they all consider the pres-

ence of incomplete data and model uncertainty as two aspects of one problem.
With respect to F1, the handling of structure uncertainty cannot be data

driven and should rely on qualitative constraints with contextual meaning. The
models in (1.3) or (3.1) are designed to take full advantage of all the data and
at the same time avoid unverifiable data-related assumptions when selecting F1.
While I used a frequentist approach in my statistical analysis of the model in (3.1),

one can view the selection of a pessimistic outlook for modeling F1 as a prior
choice justified by the absence of data and/or established scientific mechanisms.

In this paper, the focus has been on one of the most extreme cases of in-
complete data- that which occurs when extrapolating probabilities to the tail of
a distribution. In such cases all the observations are completely missing in the
range of interest and thus the classic work by Rubin (1976) on inference with

missing data and many of the well-known methods for incomplete data modeling
(e.g., Little and Rubin (2002)) are not applicable.
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5.3. The default outlook platform

In considering the Challenger data, and in other applications requiring ex-

trapolation, a good case can be made for using the odds-ratio-transformation

(ORF ) as a default in modeling F1. First, this transformation is characterized

through the natural parameter of the Bernoulli distribution (see Theorem A.1).

Second, it provides a qualitative discrimination among the three most commonly

used models in binary regression (see Theorem A.3). Finally, it identifies a unique

boundary distribution, which captures a neutral outlook. A neutral category is

useful, perhaps necessary, in any framework that attempts to characterize out-

looks toward risk taking.

5.4. Extension to other modeling setups

The proposed framework presents a way for making statistical inferences that

account for all major uncertainties if certain qualitative constraints on nonpara-

metric distributions are accepted. The analysis of observational or experimental

data from outlook-constrained distributions will have important implications in

various fields where the focus is on describing and predicting the complex pro-

cesses behind human actions or decisions (e.g., economics, sociology, or psychol-

ogy).

In the economics and literature, for example, a shift to so-called non-expected

utility choice models has taken place in the last two decades. In these models

the classical independent axiom is usually relaxed by incorporating a decision-

weighting function- much like a link function in GLM. Two notable examples

are the rank-dependence model of Quiggen (1981) and the Cumulative Prospect

Theory developed by Tversky and Kahneman (1992). As these models become

increasingly popular, the characterization developed in this paper should have

strong implications in decision analyses. Furthermore, the ordering developed

in Appendix A will also be useful in analyzing situations in which one must

decide when the distribution function F of the prospect X represents a more

risky proposition than the distribution function G of prospect W .

In general, any modeling setup in which at least one component of the model

is based on a cdf will benefit from the proposed framework. Examples include

binary regression, ordinal regression and other setups where GLM are used.

5.5. Topics for future research

5.5.1. Handling multiple predictors

This paper introduces a framework that allows a decision maker to imprint

his/her outlook on the analysis of a worst-case scenario with a single numerical

covariate. The framework is based on ideas requiring that the observed values
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of the covariate can be ordered unambiguously. To extend the framework to

cases with two or more numerical covariates, one might start with the model at

(1.3) and view it as a single-index model. In such a model, the natural ordering

requirement would be imposed on the single index ηi = βT Xi instead of the single

covariate. The ordering of ηi, which is one dimensional, becomes possible after

estimating the unknown parameters in F0. Extension of the model at (1.3) to

more than one covariate then requires the use of a constrained non-parametric

model in ηi (i.e., F1(ηi)) over the extrapolation region of the covariates.

A similar approach is often used in the econometrics literature when test-

ing for the appropriateness of a particular parametric structure F in equation

(1.1). There, it is assumed that the single-index stays the same throughout

the entire region of the covariates regardless of the appropriate structure (e.g.,

Horowitz and Hardle (1994)). In worst-case scenarios for which the covariates

are risk factors, one can expect a higher estimated ηi for higher values of the

covariates, allowing the use of Theorem 3.1 on η̂ with minor modifications. The

complete analysis with multiple covariates that accounts for all uncertainties will

be considered elsewhere.

5.5.2. Small-sample performance

The statistical methodology developed in Section 3 for obtaining lower and

upper confidence bounds appeals to asymptotic approximation. In large samples,

one can expect the LCB to contain F1(x), x ∈ J∗, and the UCB to contain

Xγ ∈ J∗, approximately 100(1−ρ)% of the time. Future research should evaluate

the small-sample performances of this methodology.

5.5.3. Benchmark analysis

A major field of application for the proposed framework is in quantitative

risk analysis. Here the objective is to characterize the probability and severity of

damage to humans caused by a chemical or biological agent. Such risk analysis is

typically conducted on data obtained from animal bioassays in which rodents are

exposed to relatively high doses of the agent. Estimating the risk for common

levels of exposure, which are much lower, then requires extrapolation. A prime

objective of such analysis is to determine the lower confidence bound for the dose

that yields a specific bench-mark risk.

Appendix A.

Throughout what follows, the distribution functions considered are abso-

lutely continuous and their densities are continuous and strictly positive with

at least one continuous derivative on (−∞,∞). In accordance with the ORT in
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(2.1) and Definition 2.1, the focus is on distributions that can be labeled as AR-,
RR- or OR-pessimistic (optimistic) on an interval J .

The following theorem provides the necessary and sufficient conditions for
a distribution to be AR-, RR- or OR-pessimistic (optimistic) on an interval J .

These conditions are essential for ordering distributions across the ORT in (2.1).

Theorem A.1. A distribution function F with density f is inherently
(i) RR−pessimistic (optimistic) on J if, and only if, log(F (x)) is convex

(concave) for all x ∈ J or, equivalently, the reverse hazard rate, f(x)/F (x),
is increasing (decreasing) for all x ∈ J ;

(ii) OR−pessimistic (optimistic) on J if, and only if, log(F (x)/(1−F (x))) (i.e.,
the log-odds), is convex (concave) for all x ∈ J or, equivalently, the modified

hazard rate, f(x)/(F (x)−(1−F (x))), is increasing (decreasing) for all x ∈ J ;
(iii)AR−pessimistic (optimistic) on J if, and only if, F (x) is convex (concave)

for all x ∈ J or, equivalently, the reverse density function f(x) is increasing

(decreasing) for all x ∈ J .

Proof. From Definition 3.1, if F is RR−pessimistic on J , then F (x + ∆)/F (x)

is non-decreasing in x as long as (x+∆) ∈ J , for all ∆ > 0. This is equivalent to
log(F (x+∆)/F (x)) being non-decreasing in x as long as (x+∆) ∈ J . This implies

that d/dx{log(F (x + ∆)} − d/dx{log(F (x)} ≥ 0 ⇔ (f(x + ∆))/(F (x + ∆)) ≥
f(x)/F (x) in x as long as (x + ∆) ∈ J ⇔ f(x)/F (x) is non-decreasing in x ∈ J .

Thus, log F (x) is convex for all x ∈ J . The proofs of parts (ii) and (iii) are
similar and are therefore omitted.

A.1. Ordering distributions using an ORT

To order two or more distributions on the same interval and with the same
ORT, I turn to univariate directional orderings. Here the objective is to place,

in some sense, one distribution to the right of the other. For a good account, see
Shaked and Shanthikumar (1994).

In the discussion, I depart from common practice and require that these
orderings hold only on a subinterval, rather than on the entire support of the

distributions. This departure may lead to different results despite the usage of
similar labels. The following well-known ordering is a good illustration:

Stochastic ordering on J : A random variable W is said to be stochastically
larger than X on J = [a, b] and denoted as X ≤SO/J W , if F (a) = G(a) and

F (u) ≥ G(u) for all u ∈ J = [a, b].
Obviously, in this case F represents a more pessimistic outlook on J than G since

bad outcomes are more likely under F than under G.
The example of stochastic ordering demonstrates how directional ordering

can be used to label one structure as more pessimistic than another. This direc-

tion is pursued and new orderings are proposed based on the ORT in equation
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(2.1) of the paper. The relations among the suggested orderings and their relation

to the stochastic order are presented below.

Definition A.1. Let X and W be two random variables taking values in R with

distribution functions F and G and densities f and g, respectively. Then W is

said to be larger than X

(i) in relative risk order on J and denoted as X ≤RR/J W , if

F (a) = G(a) > 0 and
f(u)

F (u)
≥

g(u)

G(u)
for all u ∈ J = [a, b];

(ii) in odds ratio order on J and denoted as X ≤OR/J W , if

F (a)=G(a)>0 and
f(u)

F (u)(1−F (u))
≥

g(u)

G(u)(1−G(u))
for all u ∈ J = [a, b];

(iii) in attributable risk order on J and denoted as X ≤AR/J W , if

F (a) = G(a) > 0 and f(u) ≥ g(u) for all u ∈ J = [a, b].

The following theorem provides necessary and sufficient conditions for the

above orderings. The conditions are analogous to the conditions in Theorem A.1.

Theorem A.2. Let X and W be two random variables taking values in R

with distribution functions F and G, respectively, such that F (a) = G(a) > 0.

Then,

(i) X ≤RR/J W if, and only if, F (u)/G(u) is increasing in u ∈ J = [a, b]; (A.1)

(ii) X ≤OR/J W if, and only if, (F (u)/(1−F (u)))/(G(u)/(1−G(u))) is increas-

ing in u ∈ J = [a, b];

(iii)X ≤AR/J W if, and only if, F (u) − G(u) is increasing in u ∈ J = [a, b].

Proof. From Definition A.1, when W is larger than X in relative risk order

on J , then F (a) = G(a) > 0 and f(u)/F (u) ≥ g(u)/G(u) for all u ∈ [a, b].

This is equivalent to d/dx log F (u)/G(u) ≥ 0 for all u ∈ [a, b] ⇔ F (u)/G(u) is

non-decreasing in u ∈ [a, b]. The proofs of parts (ii) and (iii) are similar and are

therefore omitted.

Remarks.

1. The condition in (A.1) appears in Lehmann and Rojo (1992) as a technical

condition. Moreover, the corresponding relative risk order, on the entire sup-

port, appears in Shaked and Shanthikumar (1994) under the name of reverse

hazard order but with no connection to the relative risk order or the proposed

outlooks framework.
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2. To the best of my knowledge, the ordering X ≤OR/J W and X ≤AR/J W ,

including the necessary and sufficient conditions given here, do not appear

elsewhere.

3. It follows from Theorem A.2 that, when F (a) = G(a) > 0, then

(i) X ≤RR/J W ⇒ X ≤OR/J W ⇒ X ≤SO/J W ;

(ii) X ≤RR/J W ⇒ X ≤AR/J W ⇒ X ≤SO/J W .

Note, therefore, that each of the orderings introduced here implies a stronger

ordering than that of the stochastic order and thus conveys a higher degree

of pessimism.

4. If, on the interval J = [a, b], F and G also satisfy F (b) + G(b) ≤ 1, then

X ≤RR/J W ⇒ X ≤OR/J W ⇒ X ≤AR/J W ⇒ X ≤SO/J W.

This section closes with an important characterization of each of the three

most commonly used models in binary regression analyses (i.e., the logit, the

probit and the Cloglog). In the theorem below, MN denotes the median of the

normal distribution, which corresponds to the probit model. Note that the results

for the logit and the Clog-log models hold for any subinterval J ⊂ (−∞,+∞).

Theorem A.3. On the subinterval J ⊂ (−∞,MN ], we have:

(i) the probit is the only model among the three where the underlying distribution

is OR-optimistic;

(ii) the logit is the only model among the three where the underlying distribution

is OR-neutral;

(iii) the Clog-log is the only model among the three where the underlying distribu-

tion is OR-pessimistic.

Proof. Part (i) of the theorem is quite involved and appears as Corollary 1 in a

technical report that can be obtained from the author. Part (ii): for a distribution

function F to be OR-neutral on R it has to be both OR-pessimistic and OR-

optimistic on R. From Theorem A.1 part (ii), Ψ(x) = d/dx log(F (x)/(1−F (x)))

must be both non-decreasing and non-increasing on R. That is, log(F (x)/(1 −

F (x))) is linear in x ∈ R. It follows from Theorem 2.1.5 of Galambos and Kotz

(1978, p. 27) that the logistic family is completely characterized by this property.

Part (iii): without loss of generality, take α = 0 and β = 1. Note that

f(x)

F (x)(1 − F (x))
=

ex

F (x)
and φ(x) =

d

dx
log

ex

F (x)
= 1 −

f(x)

F (x)
.

When −∞ < x ≤ ∞, φ(x) ≥ 0 since F (x)− f(x) ≥ 0 and, as x → −∞, φ(x) = 0

since limx→−∞ f(x)/F (x) → 1.

In summary: The three most commonly used models in binary regressions,

which often fit data equally well (e.g., the application in 4.4), actually convey
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very different and opposite outlooks regarding the likelihood of adverse outcomes.
Therefore, choosing one model over another for F1 when extrapolating onto an
interval J , amounts to taking a different outlook position when making decisions
in worst-case analyses.

Appendix B.

Proof of Theorem 3.1. Consider the case where F1 is AR-pessimistic on J .
From Theorem A.1 part (iii) it follows that F1(x) is convex in x ∈ J . Therefore,
there exists a line α + βx such that F1(x) ≥ α + βx for all x ≥ xq where α and
β are the solutions of F1(xp) = α + βxp and F1(xq) = α + βxq. Solving these
equations gives β = (F1(xq) − F1(xp))/(xq − xp) and α = F1(xp) − βxp. With a
little algebra,

α + βx =
x − xp

xq − xp
F1(xq) −

x − xq

xq − xp
F1(xp) = AF1(xq) − (A − 1)F1(xp) .

From the assumption that F01 is stochastically larger than F1 on J , comes the
inequality

AF1(xq) − (A − 1)F1(xp) ≥ AF01(xq) − (A − 1)F01(xp) .

The proofs for when F1 is OR-pessimistic or RR-pessimistic on J are similar
and therefore omitted.

Proof of Corollary 3.1. Equation (3.2) is derived by inverting the equation
(3.3) of Theorem 3.1.

Proof of Proposition 3.1. Under the conditions that, on J = [XU−

,X∗], F1 is
pessimistic with respect to an ORT and, on J0 = [XU−

,XU ], F01 is stochastically
larger than F1, it follows from Corollary 3.1 that Xγ is bounded from above by

G(α, β; γ, xq , xp) =
(xq − xp)g(γ) + g(F0(α + βxq))xp − g(F0(α + βxp))xq

g(F0(α + βxq)) − g(F0(α + βxp))
.

Let Pi = P (Yi = 1|X = xi;θ) with θ = (θ1, θ2, . . . , θt)
T ∈ Ω, where the

parameter space Ω is an open subset of t-dimensional Euclidean space. Consider
the following common regularity conditions.
C1: limn→∞ nj/n = ci (0 < ci < 1) for all i = 1, 2, . . . ,K, and,
C2: K must be at least as large as the number of parameters in the model, where

K denotes the number of different X values in the data.
C3: The information matrix Σ−1 = ((σls)) defined by

σls =
k

∑

i=1

ci
∂Pi

∂θl

∂Pi

∂θs

Pi(1 − Pi)
, (l, s = 1, 2, . . . , t)

is positive definite.
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It is not hard to show (Cox and Hinkley (1974)) that, under C1-C3, the likelihood

ratio statistic is asymptotically a χ2
t distribution where t is equal to the number

of parameters in the model.

Using standard arguments on a constrained parameter space (Rao (1973,

p. 419)), the approximate (1 − ρ)% UCB for Xγ ∈ J∗ = (XU ,X∗] is given by

Lγ = sup
(α,β)

{Xγ = G(α, β; γ, xq, xp) : 2(LL1(α, β) − LL(α, β)) ≤ χ2
1,1−2ρ} .

Note that χ2
1,1−2ρ is used instead of χ2

1,1−ρ because a one-sided rather than a

two-sided confidence limit on Xγ is required (Fleiss (1973, pp. 20-21)).
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Fygenson presents a new approach to extrapolation problems in the face of

model uncertainty; the presentation is made in the context of a binary regression.

Let Y denote the binary variable and X a numerical covariate. Assume the

observed covariate values are contained in (XL,XU ), the problem is to estimate

P (Y = 1|X = XExtp), where XExtp > XU .

Instead of using (1.3) in Fygenson, which is at the crux of his approach,

we would like to propose an alternative approach that considers a Bayesian bi-

nary regression model with a prior induced by Bernstein polynomials. Bernstein

polynomials have been shown to be a useful modeling tool in Bayesian shape-

restricted inference by Chang, Hsiung, Wu and Yang (2005) and Chang, Chien,

Hsiung, Wen and Wu (2007), because priors introduced by Bernstein polynomi-

als can have large support, select only smooth functions, and easily incorporate

geometric information into the prior.

Let ϕi,n(t) = Cn
i ti(1 − t)n−i for t ∈ [0, 1]. Let Fbn

= F(n, b0,n, . . . , bn,n, t) =
∑n

i=0 bi,nϕi,n(t/τ), with bn = (b0,n, . . . , bn,n), (n, bn) ∈ B =
⋃∞

n=1({n} × R
n+1),

and 0 ≤ t ≤ τ . We note that Fbn
is a Bernstein polynomial with coefficients

b0,n, . . . , bn,n. It is readily seen that if b0,n ≤ b1,n ≤ · · · ≤ bn,n, then Fbn
(·) is an
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increasing function with b0,n = Fbn
(0) ≤ Fbn

(τ) = bn,n. Let In = {Fbn
| bn ∈

△n+1}, where △n+1 = {0 ≤ b0,n ≤ · · · ≤ bn,n ≤ 1}. We will work with
⋃∞

n=1 In.

We now assume that

P (Yjk = 1|Xk = x) = F (x), (7.1)

for some F in I, the set of all increasing continuous functions on [0,τ ] with values

in [0,1]. Here k = 1, . . . ,K and j = 1, . . . ,mk. By considering a probability

measure on I, we have a Bayesian binary regression model. It is clear that

I ⊃
⋃∞

n=1 In. A probability measure π can be introduced on I as follows. Let πn

be a conditional density on △n+1 and p a probability mass function on {1, 2, . . .};

define π(n, bn) = p(n)πn(bn), which is a probability measure on
⋃∞

n=1({n} ×

△n+1). Identifying a Bernstein polynomial with its order and coefficients, we

can regard π as a probability on
⋃∞

n=1 In, hence on I. Priors of this form are

referred to as Bernstein priors. We note that the conditional density πn(·) is a

critical part of the prior.

For inference purpose, we can use MCMC to sample the posterior density ν

of the parameter (n, bn); it is proportional to

K
∏

k=1

mk
∏

j=1

(Fbn
(Xk))Yjk(1 − Fbn

(Xk))
1−Yjkπn(bn)p(n).

We now consider the problem of extrapolation under (1) in two situations.

In the Bayesian decision theory framework, one starts with a loss function that

summarizes the outlooks of the decision maker, and uses the corresponding Bayes

estimate to extrapolate the probability for decision making. In this situation, we

will see in the following that Bernstein priors offer the flexibility to model a

suitable tail behavior for extrapolation.

In the more vague non-decision-theoretic Bayesian approach, one might ig-

nore the loss function and consider the posterior mean or median as the estimate.

In this case, we will see that a Bernstein prior represents a convenient tool to

incorporate one’s subjective belief or subject-matter knowledge in the model for

inference. We note that relevant discussions on statistical inferences and Bayesian

decision theory can be found, for example, in Berger (1985).

We now illustrate the use of a Bernstein prior in the context of the 1986

Challenger data. According to Fygenson, the following information can be used

to conduct statistical analysis before the decision to launch the Challenger on

January 28, 1986.

(a) The engineering judgment that the probability of erosion rises monotonically

as temperature decreases.
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(b) The number of primary O-ring failures (out of 6) as a function of launch

temperature for each of the previous 23 space shuttles launches.

(c) All previous launches took place between 53 and 81 degrees. Thus, to predict

the probability of failure at the anticipated launch temperature of 31 degrees

requires a sizable extrapolation.

Let X denote the temperature and X̃ = (81 − X)/50. Let Y = 1 indi-

cate O-ring failure. Before January 28, 1986, the 6 × 23 = 138 independent

binary observations are taken at 16 different temperature levels specified by

(X̃0, X̃1, · · · , X̃15)=(0.00, 0.04, 0.06, 0.10, 0.12, 0.16, 0.18, 0.22, 0.24, 0.26, 0.28,

0.30, 0.36, 0.46, 0.48, 0.56). The task is to estimate P (Y = 1|X = 31) = P (Y =

1|X̃ = 1).

The Bernstein prior can be specified as follows. Let p(1) = e−α + αe−α,

p(n) = αne−α/n! for n = 2, . . . , n0−1, and p(n0) = 1−
∑n0−1

n=1 p(n). We note that

larger α and n0 make the prior less informative. Let q1 be Uniform(q11, q12) with

support containing F (0), and q2 be Uniform(q21, q22) with support containing

F (1); generate a0 from q1 and an from q2. Let a1 ≤ a2 ≤ · · · ≤ an−1 be the order

statistics of a random sample from Uniform(a0, an); the conditional distribution

of π on △n+1 is defined to be that of (a0, a1, . . . , an). Here q11, q12, q21 and q22

are defined as follows.

Since P (Y = 1|X̃) ≤ 1, we let q22 = 1. Since the empirical probabilities

P (Y = 1|X̃ = x) = 0 or 1/6 for x = 0.00, 0.04, . . . , 0.22, we set q11 = 0 and

q12 = 1/6.

We now specify q21. Consider the largest, say five, X̃’s that have shut-

tle launches, 0.30, 0.36, 0.46, 0.48, and 0.56, and the corresponding empiri-

cal probabilities P (Y = 1|X̃), respectively 0, 1/6, 1/6, 1/6, 1/3. These give

the five data points (0.30, 0), (0.36, 1/6), (0.46, 1/6), (0.48, 1/6), (0.56, 1/3), de-

noted (x1, p1), . . . , (x5, p5). For i > j, let Sij = (pi − pj)/(xi − xj) denote

the slope between (xi,pi) and (xj ,pj). Since the belief is that the O-ring fail-

ure probability increases with X̃ , it is reasonable to define q21 in terms of the

empirical probability at X̃ = 0.56, P (Y = 1|X̃ = 0.56) = 1/3, and the Sij.

We take q21 = 1/3 + (1 − 0.56) × S for some S in {Sij | 1 ≤ j < i ≤ 5} =

{0.00, 0.83, 0.93, 1.04, 1.28, 1.67, 2.08, 2.78}.

This suggests that, in the case of Bayesian decision theory, we may let q21 =

1/3 to ensure model flexibility. In the case of the non-decision-theoretic Bayesian

approach, we take q21 = 1/3 for an optimistic outlook, q21 = 1/3 + (1 − 0.56) ×

0.83 = 0.72 for a neutral outlook, and q21 = 1/3 + (1 − 0.56) × 1.28 = 0.90 for a

pessimistic outlook.

On the basis of these pessimistic, neutral and optimistic outlooks, the prior

distributions are generated using the Bernstein prior with α = 10, n0 = 20

and the corresponding q21; for each prior, the posterior mean is calculated using
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100,000 MCMC iterations with a burn-in period of 10,000 iterations. Based
on these means, we can compute the expected numbers of O-ring failures in a
given launch. Figure 1 reports the expected number of failures (out of 6) at
different temperature with dotted, dashed and solid lines for pessimistic, neutral
and optimistic outlooks, respectively; circles are the observed data points.

In summary, we find the Bayesian model with a Bernstein prior to be a useful
alternative for this type of problem.
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Figure 1. 1986 Challenger data fit with a Bayesian binary regression model
with prior induced by Bernstein polynomials.
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Cheng-Der Fuh1,2 and Inchi Hu3

1National Central University, 2Academia Sinica
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We would like to thank Professor Fygenson for an important and interesting

paper. The proposed approach addresses both parametric and structural un-
certainties in statistical models. In order to enrich the topic, we would like to

comment on four possible applications and extensions.

High Quantile. In Theorem 3.1, it is assumed that F1 is convex in the
interval J for AR. For RR and OR it is convex after taking log and log-odds

transformations, respectively. For commonly used models, such as logit and

probit, this implies that J is located before the inflection point of F1(·). Suppose

that the probability we want to extrapolate is after the inflection point, that is,
F1(·) is concave in J . Does this mean that we cannot use logit and probit models

anymore? Note that in VaR (value at risk) and pyrotechnics, the probabilities

that we would like to predict are all very close to one. Perhaps we can map these
probabilities to those very close to zero to circumvent the problem. However, J

is then located to the left of the interval in which we have observations. Do the

arguments in the proof of Theorem 3.1 still work in the same way? Further, if J
straddles the inflection point, we note that no monotone transform of the data

can alleviate the problem.

Degradation Analysis. When examining the reliability of high tech prod-
ucts, we are interested in estimating a low quantile in order to provide a proper

warranty time. If a manufacturer produces 1,000,000 items and 1% of them fail

before the warranty time, then 10,000 customers will buy a product that does
not achieve the announced quality and this will tarnish the reputation of the

manufacturer.

High tech products are usually very reliable and hence failures are rare.
Degradation analysis is one of the methodologies used to overcome the difficulty of

assessing the reliability of highly reliable products in limited time. The essential

idea is to assess the lifetime T is based on the equation P (T ≥ t) = P (D(t) ≤ τ),
where D(t) is the actual degradation measure at time t, and τ is the threshold

assuming that D(t) is increasing in t.

The physical or chemical property of the degradation measurement is some-
times very complicated and it is not easy to find the functional form of D(t).

Empirical models provide an alternative solution. After degradation data is

collected we can find an empirical model that fits the data well. However, degra-

dation analysis is basically an extrapolation and the result is highly dependent
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on D(t). Corollary 3.1 provides a lower bound for the lower quantile with xp and

xq estimated from the empirical model. An interesting question is whether we

can apply the result in the case of predicting the quantile (median for instance)

of T.

Importance Sampling. In importance sampling, a tail event, which cor-

responds to extrapolation in the paper, becomes a central event under the al-

ternative distribution. It may be possible to view the extrapolation problem

as an importance sampling problem, where the value we would like to extrapo-

late corresponds to an interpolation problem under the alternative distribution.

In principle, the variance, and hence the confidence bounds for the tail event,

can be worked out via the likelihood ratio under the alternative distribution.

Maybe the constrained optimization problem in Theorem 3.1 and Corollary 3.1

can be transformed into one that involves the likelihood ratio under importance

sampling.

Sequential Design. In computerized adaptive testing (CAT), when con-

structing an individualized test, the ability (θ) estimate is updated after the

administration of each item, and the next optimal item is selected from an item

bank until a prespecified number of items is administered. Items are selected to

match the examinee’s estimated θ according to an item response theory (IRT)

model (probit or logit model) that is assumed to describe an examinee’s response

behavior. The standard approach has been to next select the item with the

maximum Fisher information at the examinee’s current estimated ability level.

This method is the so-called recursive maximum likelihood estimation (R-MLE)

method, cf., Lord (1980, pp.151-153).

Although R-MLE has been studied and used mostly in item response theory,

the uncertainties of the likelihood function due to model misspecification and

measurement errors, especially at early stages, makes it less than statistically ef-

ficient. The paper raises the interesting question of whether there is an analogous

theory and method for this sequential design problem.
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Peter McCullagh

University of Chicago

This paper tackles the classical problem of extrapolation, i.e., of predicting

the response Y ∗ at a point x∗ in the covariate space remote from previous ex-

perimental or observational values. The problem arises in various areas such as

the estimation of risk to individuals exposed to low levels of arsenic in water, the

estimation of risk to individuals exposed to pesticides in fruit and vegetables,

or the estimation of risk from exposure to second-hand cigarette smoke. The

more spectacular area of application is the prediction of major catastrophes or

cataclysmic one-time events. It is a truism that all incorrect predictions of the

latter type (Y2K, Second coming,...) are made before the non-event and soonest

forgotten; the great majority of correct predictions (Challenger, Chernobyl, Ka-

trina, 9/11,...) are made after the event. Despite this sorry record, or perhaps

because of it, the prediction of catastrophes has widespread appeal that is hard

to resist. And who is better equipped to prognosticate than a statistician?

Without a mathematical model there is no framework to tackle the prob-

lem. With a stochastic model p the task is easy: the conditional distribution

p(y∗ |data, x∗) is used to compute the prognostic probability for any desired event

at x∗. With a parametric statistical model {pθ} and a prior distribution π, the an-

swer p(y∗ |data, x∗) is obtained in the same way using the mixture p =
∫

pθdπ(θ).

In the absence of a prior distribution, the approximation pθ̂(y
∗ |data, x∗) is fre-

quently used, sometimes in a modified form making allowance for errors of esti-

mation.

Where is the problem? The first problem is that all useful models are based

on assumptions that are compatible with the data but unverifiable from the data.

Furthermore, two models that are equally consistent with the data may give very

different predictions on extrapolation. The second problem is that statisticians,

Bayesian or otherwise, are seldom sufficiently confident of their models to trust

their predictions on extrapolation. The solution offered by Fygenson for binary
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extrapolation is to select a few model classes on the basis of their outlook or

degree of pessimism on extrapolation. Fygenson’s elaborate partial order of pes-

simism, may be effective for administrative and managerial purposes where risk

calculations are important and the costs highly asymmetric. But in such cases,

the real problem is to strike a balance between costs and benefits, so both cost

and benefit should be quantified and included as key components in the model.

For that reason I found Fygenson’s outlook less than satisfying.

Classical parametric models for binary regression with a real-valued covariate

x are based on three structural assumptions: (i) independence of components;

(ii) monotonicity of the probability pr(Y = 1;x) = F (βx) as a function of x;

(iii) limits of zero and one as x → ±∞. In practice, the choice for F seldom

deviates from logit, probit or complementary log-log. Structural uncertainty is

a regrettable term because the structure is probabilistic, and no model leaves

room for uncertainty in probabilities. Fygenson’s use of the terms structure

and structural uncertainty refers solely to the choice of F in (ii), the remaining

structural components, independence, monotonicity and limits, being ignored or

taken for granted. If it were true as claimed that Lavine’s (1991) non-parametric

model is ‘free from structure uncertainty’, the model would be useless. In fact,

Lavine’s model assumes both monotonicity and independence, without which

prediction would be impossible. Certainly it is reasonable to use a mixture of

plausible response functions for extrapolation, but it does not seem reasonable

in the Challenger example for the limit to be exactly zero at very high tempera-

tures, or exactly one at very low temperatures. Furthermore, independence might

be questioned if information were made available about the date or method of

manufacture of individual O-rings. All of these are part of the model structure

whether or not they have an appreciable effect on prediction at 31◦C.

Given that the paper starts out with a principled Bayesian tone, the arbi-

trariness of the subsequent development seems strange. It is important logically

to separate the probability of a catastrophic event from the cost of that event.

Whether or not it is easy to assess, the cost should have no bearing on the

probability, but the cost may have a big bearing on the decision reached. My

impression is that the conflation of these themes in the paper leads to confusion.
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In is indeed a pleasure to be invited to discuss Professor Fygenson’s paper.

When my colleague, Xuming He, first brought this work to my attention, I can

still remember remarking on the courage of someone who would try to tackle the

seemingly impossible problem of extrapolation. As I read the paper there were

several bright ideas that I found appealing. First, I was familiar with the fact

that if one takes a relatively restrictive but still nonparametric class of cdf’s and

places a small number (say two) linear restrictions on the distributions, then the

range of the values of such constrained distributions at a fixed point can be rather

small. Furthermore the bounds on the range can often be easily determined by a

(simple) finite dimensional optimization. A specific version of this for arbitrary

scale mixtures of normal distributions appears in Efron and Olshen (1978), and

represents a generalized version of the method of moment spaces that goes back

to work in the 1950’s (if not earlier; see Karlin and Studden (1966) for example).

The earliest statistical application I am familiar with is the optimal regression

design result of Elfving (1952). In a joint paper with John Collins (1981), we

applied the ideas in some problems in robustness theory, and also generalized the

result of Efron and Olshen. Thus, I was not surprised to find that reasonable

bounds could be established by defining an appropriately restricted nonparamet-

ric family of tail distributions, and then fixing these distributions to agree at two

points nearer the center of the data where parametric models might be felt to be

adequate. Nonetheless, the development of what seemed to be quite reasonable

approaches to defining the family of tail distributions and the narrowness of the

interval at the rather extreme extrapolation in the Challenger data were truly

remarkable and impressive to me.

Despite my amazement, however, a closer inspection of the paper did suggest

some questions, and one set of misgivings. On the applied side, I was surprised

at the narrowness of the confidence bounds on the median temperature for the

Challenger data. These bounds suggested little more variation at extrapolated

values than for observed temperatures. Specifically, I did a quick analysis of

the Challenger data using the R-function glm and found the confidence intervals
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for the response at the two fitted points to be rather wide. This is just what I

would have expected in a problem with the somewhat small sample size of the

Challenger data (17 binomial(6) observations). It would seem that any reasonable

range of these interpolated values would lead to much more additional variation

than suggested in the paper. On the purely theoretical side, I wondered whether

the word “pessimistic” was really appropriate, and if so was how conservative was

the definition. That is, I wondered if there was a more objective way to calibrate

the amount of “pessimism” in the various assumptions. Section 1 presents my

naive approach to these issues, with mathematical details given in Section 2.

Section 3 proffers some closing comments on the approach and the Challenger

Data.

1. Estimation Variability and Calibration

My misgivings above suggest the value of a more formal exploration of the

size of confidence bands for the extrapolated fitted response probability in the

Challenger data. It seemed difficult to me to optimize over the classes of “pes-

simistic” tail distributions defined in the paper, and so I chose to consider scale

mixtures of some some familiar distributions. Specifically, I decided to take three

possibilities for the family of tail distributions, all of which are defined on (0, ∞):

scale mixtures of a negative exponential distribution, scale mixtures of a logistic

distribution for log(z), and scale mixtures of a normal distribution for log(z).

Here z is the variable (81-temp) (as in the paper). In each case, I fixed the distri-

butions to agree with values of the conditional distribution of the response, given

that it exceeds (z = 24), given by the glm solution for the logistic binary response

model at z = 26 and z = 28. I then sought to extrapolate the probability of a

“failure” event at z = 52.

Since this does differ from what Professor Fygenson did, some explanations

are in order. First, while Professor Fygenson’s focus on the median temperature

is not at all unreasonable (a “quantile” person like myself can hardly criticize

it), the failure probability at z = 52 seems more direct and immediately inter-

pretable. The use of the scale mixture families also has some advantages: for fixed

parameter values, the extrapolation bounds have closed form expressions in the

negative exponential and logistic cases, and for the normal they are the result of

a very simple numerical solution for the zero crossing of a one-dimensional mono-

tonic function on a fixed interval. Thus, it is especially easy to find confidence

bounds on the fitted value at z = 52. So laziness can provide some justification

(if nothing else seems convincing). These families are also relatively restrictive

but still nonparametric classes (in the sense that the mixing distributions are

arbitrary, and thus the families are infinite-dimensional). As a consequence, they
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might help to provide some of the calibration I sought in the second question

above.

My basic approach is as follows. First, I fit the Challenger data using the

“default” logistic regression of the R-function, glm, which gave the parameter

estimates α̂ = −5.75 and β̂ = 0.170. From this model, I fit the response at

z = 24, 26, 28 and considered the conditional distribution of Z∗ ≡ Z−24 |Z > 24.

This provided a cdf, F ∗ for Z∗ on the interval (0, ∞) with

F ∗(2) ≡ r1 =
fit(26; α̂, β̂) − fit(24; α̂, β̂)

1 − fit(24; α̂, β̂)
, (7.2)

F ∗(4) ≡ r2 =
fit(28; α̂, β̂) − fit(24; α̂, β̂)

1 − fit(24; α̂, β̂)
. (7.3)

For each of the scale-families above, I then considered arbitrary scale mix-

tures that matched r1 and r2 (at z∗ = 2 and z∗ = 4) and predicted the probability

at the take-off temperature, which corresponds to z∗ = 26. I then minimized over

all scale-mixing distributions matching r1 and r2, and thus calculated a (family-

wise) lower bound L̂i for the probability of “failure” at z∗ = 26. Here, i = 1, 2, 3

denotes each of the three families above (negative exponential, logistic-in-log,

and normal-in-log). The details for these calculations are provided in Section 2.

These families provided lower bounds somewhat below the “pessimistic” bounds

of Professor Fygenson (see Table 1).

To assess the statistical variability of these bounds, I considered two meth-

ods for sampling the logistic regression parameters (α and β). One was to use

the asymptotic normal approximation with mean (α̂, β̂) and covariance matrix

given by the R-function summary.glm. The other invoked the bootstrap, based

on resampling the 17 (z, Y ) pairs, where z is the temperature, and Y is the cor-

responding binomial observation in the Challenger data set. In each of these two

situations, I took 1,000 random samples, and for each sample, recalculated the

lower bounds Li. I then produced a lower confidence bound on the lower bound,

either using the lower 0.05 or 0.10 quantile for samples from the asymptotic nor-

mal distribution, or using the appropriate bootstrap value: L̂i − 2L∗
i (q), where

L∗
i (q) is the upper q = 0.95 or q = 0.9 quantile of the bootstrap distribution for

the lower bound. These values are listed in Table 1.

Table 1. Lower Bound at z = 26, with confidence bounds.

L at est. Samp 0.05 Samp 0.1 Boot 0.05 Boot 0.1

neg exp 0.457 0.208 0.241 0.337 0.365

logis(log) 0.428 0.211 0.247 0.158 0.198

norm(log) 0.430 0.215 0.248 0.158 0.191
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From Table 1, it is clear that the lower confidence bounds for these scale-

mixture families offer little improvement over naive nonparametric approaches.

Any reasonably conservative assessment based on these tail assumptions must

conclude that the data does not support any informative extrapolation at z∗ =

26. Of course, these tail models differ from the “pessimistic” classes in the

paper. However, I would have expected the scale mixture families to be somewhat

smaller than the classes of “pessimistic” distributions introduced by Professor

Fygenson. For example, the negative exponential scale mixtures are simply the

family of Laplace Transforms that integrate to one. These distributions must be

“completely monotone” (see Feller (1966, Sec. XIII.4)), which requires bounds

on all derivatives (and not just the first or second).

As a consequence of the results in Table 1 above, either Professor Fygen-

son’s “pessimistic” families are much smaller than the scale mixtures, or the

somewhat complex minimizations needed for the lower confidence bounds of the

paper may not have been computed with sufficient accuracy. I believe that the

latter possibility may be occurring. In this regard, extensive experience with

attempts to optimize functions that lack convexity (or concavity) leads me to be

cautious about the two-stage optimization in the paper that requires an initial

optimization over mixtures to find the pessimistic bound and then constrained

optimization over the bivariate confidence set to obtain the confidence bound.

In any event, the scale-mixture classes here do seem to calibrate the analysis in

the paper: it is very hard to imagine that a pessimistic statistician (or engineer)

would consider the scale mixtures as unduly broad alternatives; and thus the

variability suggested by these families must be a conservative lower bound on

the statistical variability of any approach deserving the name “pessimistic”.

Finally, I would like to remark on the relative value of the asymptotic and

bootstrap samples for assessing confidence. For discrete models, the naive boot-

strap is known to lack any additional accuracy beyond the first-order asymptotics

(for example, see Hall (1992, p.90)). The fact that the bootstrap samples from

only 17 binomials exaggerates the effect caused by discreteness. Figure 1 gives

scatter plots for the asymptotic and bootstrap samples (in the first two plots).

The last plot is for the bootstrap samples in the lower right cluster. Given these

pictures, the discrepancies in Table 1 are hardly remarkable, and my personal

feeling is that the asymptotic sample is providing somewhat more accurate as-

sessments.

2. Minimization over Scale Mixtures

Consider the problem of minimizing F (x3) subject to constraints, F (x1) = q1

and F (x2) = q2 over a convex set of distribution function: specifically over the

scale mixture classes of Section 2. The Corollary to Theorem 4 in Collins and
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Figure 1. Scatter plots for asymptotic and bootstrap samples.

Portnoy (1981, p.575) provides a straightforward monotonicity condition, under

which the optimization is attained at a distribution for which the mixing distri-

bution is a convex combination of two fixed point masses. In the problem here,

where x3 is larger than x1 and x2, the distribution minimizing F (x3) over scale

mixtures of the form

F (x) =

∫

G0(sx) dH(s) (7.4)

takes H to be a combination of a point mass at infinity and a point mass at s∗;

viz.,

F ∗(x) = p + (1 − p)G0(s
∗x) . (7.5)

The result is given in Efron and Olshen (1978) for normal scale mixtures, and

the condition is shown to hold for this class and for negative exponential scale

mixtures (for which (7.4) is just a Laplace transform) in Collins and Portnoy

(1981). For scale mixtures of the logistic distribution, the condition can be

shown to hold after a rather tedious but straightforward analysis involving the

second derivatives of the logistic function. The specific solution is then found

by solving the two constraint equations, F (xi) = ri, for i = 1, 2 , for p and s∗.

Specifically, from (7.5), these equations are

(1 − p) + pG0(s
∗ x1) = r1 or p(1 − G0(s

∗ x1)) = 1 − r1 (7.6)

(1 − p) + pG0(s
∗ x2) = r2 or p(1 − G0(s

∗ x2)) = 1 − r2 . (7.7)

Eliminating p gives

1 − G0(s
∗ x1)

1 − G0(s∗ x2)
=

1 − r1

1 − r2
, (7.8)



PROBABILITIES WITH OUTLOOKS 53

from which s∗ can be found. Either equation in (7.6) or (7.7) can now be used

to find p, and the Lower bound (at x3) can be computed as

L ≡ (1 − p) + pG0(s
∗x3) . (7.9)

For the cases here, denote the constrained probabilities at s = 2 and s = 4

by r1 and r2 given by (7.2). For the negative exponential case, (7.8) and the

corresponding p become

1 − r1

1 − r2
=

exp(−2 s∗)

exp(−4 s∗)
= exp(2 s∗) , p =

(1 − r1)
2

1 − r2
,

and the lower bound at z∗ = 26 is easily seen to be

L∗
1 = (1 − r2)

(

1 − r2

1 − r1

)11

.

For logistic scale mixtures at log(z), (7.8) and a bit of algebra gives

0 = −(r2 − r1) − (1 − r1) exp(s∗ log(2)) + (1 − r2) exp(s∗ log(2))2 ,

from which we can solve for a∗ ≡ exp(s∗ log(2)) and p as

a∗ =
1 − r1 +

√

(1 − r1)2 + 4(1 − r2)(r2 − r1)

2(1 − r2)
, p = (1 − r1)(1 + a∗) .

It is not hard to see that only the positive square root works. Thus, the

lower bound at z∗ = 26 is

L∗
2 = 1 −

(1 − r1)(1 + a∗)

1 + (a∗)13
.

For the normal scale mixtures at log(z), the situation is not quite so simple.

Here, (7.8) is

1 − Φ(s log(2))

1 − Φ(s log(4))
=

1 − r1

1 − r2
. (7.10)

It is easy to see that the left hand side of (7.10) is strictly monotonic in

s, and can be solved numerically uniquely (and quickly) using the R-function,

uniroot. Having found s∗, p∗ = (1−r1)/(1−Φ(s∗ log(2))), and the lower bound

becomes L∗
3 = 1 − p∗(1 − Φ(s∗ log(26))).

3. Conclusions

1. I am very impressed by the approach taken by Professor Fygenson to define

nonparametric classes of tail distributions that are small enough so that con-

servative extrapolation can still be used. While I applaud Professor Fygenson’s
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effort to define “pessimism”, I believe the classes of scale mixtures are no less

appealing. In general, I believe it would be extremely difficult for the typical

scientist (or statistician) to calibrate the degree of pessimism represented by any

specific class. I would recommend that a variety of such classes be examined be-

fore assessing the efficacy of the extrapolation, and the simplicity of the solutions

for scale mixtures would seem to be a valuable selling-point. The results here

corroborate Professor Fygenson’s conclusion that a range of classes of tail distri-

butions provide somewhat similar results, and that consideration of a relatively

small number of such classes might very well provide sufficiently conservative

assessments even for “pessimistic” analysts. Nonetheless, the analysis here sug-

gests that attempts to extrapolate rather far into the tail with rather limited

data are not likely to be very successful.

2. While the relative small size of the Challenger data appears to preclude little

improvement over the naive “monotonic” assesment (viz., that the probability at

z∗ = 26 is not larger than that at the largest observed value, z∗ = 4), the method

would clearly be much more effective for larger sample sizes. Assuming that four

times as many observations would halve the difference between the lower bound

at the parameter estimates and the lower confidence bounds, the approach would

provide some improvement over naive nonparametric bounds. Very large sample

sizes must indeed reduce the statistical variability to a negligible value, permit-

ting the “pessimistic” bounds to provide useful assessments of the variability of

extrapolations.

3. The extrapolation problem for the Challenger data is in fact rather artificial.

The “failures” counted by the binomial responses were in fact not catastrophic

ones. The real scientific question is whether greater probability of the kind of

event measured in the data had any bearing on the failure of the O-ring at the

shuttle launch. In fact, even knowing that the O-ring failed catastrophically at

the cold take-off temperature does not establish a connection between the events

of the data and the launch event. This connection was, I believe, never firmly

established. While the data set is intriguing, one must be careful not to take

unwarranted lessons from such analyses. In this sense, it would have been very

useful to see some examples of more applicable extrapolation problems for binary

response data sets of the sort more typically encountered by statisticians (and

for which scientific implications might be clearer).

4. One major question that seems to beg an answer is whether (or how) the

approach here can be applied more broadly in statistics. At least, extensions to

simple linear regression would seem to be called for. In this regard, Professor

Fygenson’s assessment that the method only applies when the response function

is a distribution function seems overly pessimistic. The results of Collins and
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Portnoy (1981) can be applied to the class of bounded monotonic functions (and

not just distribution functions that go from 0 to 1); and scale mixtures of such

a function would seem to provide some reasonable sets for which the range of

variation might be small enough to provide effective extrapolation. The present

(rather limited) examples are promising, but application to more realistic ex-

trapolation problems still lies ahead. At least at this point, we finally have some

optimistism that pessimism may offer a useful path to progress.
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COMMENTS

Vance Berger, Shu Zhang and Yan Yan Zhou

National Cancer Institute, University of Maryland, College Park

and California State University, East Bay

Fygenson correctly points out that model uncertainty and prediction uncer-

tainty always accompany statistics research. We select whichever model fits the

data best and treat it as the true structure from which the data were drawn
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(model uncertainty). The ease with which models are extrapolated makes it

tempting to proceed as if this same model applies outside the data range, but

this leads to prediction uncertainty. Consider, e.g., a problem that might face

math students learning the basics of arithmetic sequences. The first six terms

of a sequence are given to be 1, 2, 3, 4, 5, 6; what is the next term? Without

even considering the context, the reflex answer would always be 7. Note that this

problem may be posed as a special case of the problem considered by Fygenson,

as the covariate X would be the place in the sequence, and the outcome Y would

be the value. One clearly sees that Y (X) = X for X = 1, 2, 3, 4, 5, 6, so one

concludes that this pattern will continue when asked to supply a prediction, if

you will, of Y (7). But now consider the context. Suppose that we toss a single

die six times and observe 1, 2, 3, 4, 5, 6. Clearly, in this context, Y (7) cannot be

7, regardless of what the past may have led us to believe.

The simple, yet profound, tautology governing our ignorance is that one can-

not know that which one cannot know. This truth will not change, no matter how

much we want to know, or pretend that we can know, or find statisticians (or oth-

ers) willing to tell us what we want to hear regarding our ability to know. Failure

to recognize this profound tautology can potentially produce overly optimistic re-

sults in medical research. Consider, e.g., Berger’s (2000, Sec. 2.2) corollary to

the Heisenberg uncertainty principle, which states that ”one cannot observe a

patient without altering that patient’s response, especially if the patient is aware

of being observed”. If one binary covariate is the indicator of participation in a

medical study, then the covariate takes the value 1 for each patient studied, and

the value 0 for each patient to whom the results are to be extrapolated. How do

we know how safe we are in this extrapolation, especially without a true random

sample?

As another example, consider what it means to validate a surrogate endpoint,

regardless of the specific methods used in the validation process. Generally,

we conduct a series of trials, collecting both the surrogate endpoint (perhaps a

measure of tumor shrinkage in cancer patients) and the clinical endpoint it would

replace (perhaps survival time). We note that in all (or most, many, or some) of

these trials, it appears possible to predict the true endpoint from the surrogate

with the help of some statistical model. Armed with this knowledge, we are now

prepared to do without the clinical endpoint in the next study.

The binary response value, Y , represents the extent to which the clinical

endpoint can be predicted from the surrogate, and the covariate, X, is the indi-

cator of whether or not the clinical endpoint is collected. Often it will happen

that the clinical endpoint will be collected in earlier trials, but not in later trials,

as validation studies generally precede studies in which the surrogate endpoint is

actually used in place of the clinical endpoint. Because of potential confounding,
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this can be problematic. Suppose, e.g., that enthusiasm early in the drug devel-

opment program causes the investigators to pay special attention to the patients,

and that this special attention then translates into additional ancillary care that

improves patient health but would not be available once the enthusiasm wears

off. Now suppose that the experimental treatment causes an improvement in the

surrogate endpoint but has no effect on the clinical endpoint. Then the valida-

tion trials might lead one to conclude that the surrogate endpoint is validated.

Later, when the clinical endpoint is not collected and the extra ancillary care

is gone, only the surrogate would improve, but we would never know that we

were being misled. We recognize the need for caution when surrogate endpoints

replace clinical endpoints, yet the “usual” method seems rather optimistic.

Optimism is also present when prior estimates of variables are taken as gospel

for sample size calculations, or when we fail to reject certain distributional as-

sumptions and then assume them to be true. Fygenson characterizes the uncer-

tainty inherent in extrapolation, and identifies pessimistic distributions. These

pessimistic distributions might be quite relevant to several aspects of clinical

trial research. A responsible physician may not take a pessimistic outlook when

testing a treatment, but would certainly want to rule out the possibility of bad

outcomes, and this means considering the worst-case situation. Fygenson pro-

poses a worst-case analysis that can be used as a guideline for assessing the

impact of extrapolation beyond the range of the observed data. Of course, we

may be dealing with a misnomer, because what is called ”worst-case” is actually

worst among only a specific class of models. Nevertheless, Fygenson’s method,

possibly generalized to include a broader set of models, can be quite useful for

many aspects of clinical trial research.
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COMMENTS

Jose M. Bernardo

Universidad de Valencia

In the spirit of the RSS discussion papers, let me begin with a bold statement:

I believe your approach is really misguided. You begin by formulating the decision

aspects of the problem, but then you simply ignore the basic elements of decision

theory.

There are many variations in the axiomatic systems for decision making (see

e.g., Bernardo and Smith (1994, Chap. 2) for a review), but they all basically

agree in their implications: one should describe the decision makers preferences

with a loss function, the available information with a probability distribution,

and one should minimize the expected loss. Even if you start form a frequentist

viewpoint (the concept of admissibility) you are led, with Wald, to conclude that

any admissible procedure must be one that minimizes some expected loss.

The possibly pessimistic attitude of the decision maker belongs to the loss

function, not to the probability model. Thus, if a major disaster can occur, this

is assigned a large (but finite) loss and the decision maker’s optimal strategy will

be to take preventive action, even if the probability of the disaster is small; there

is no need to make ad hoc modifications of the probability structure. That is

supposed to describe the data behaviour, and has nothing to do with a possibly

pessimistic attitude of the decision maker. It may well be that you need new

models to guarantee a sensible tail behaviour, and the discussion by Professor

Hsiung provides an example of how this might be done, but one does not mix

subjective loss elements into the construction of the probability model.

Some would argue that decision makers often violate the axioms of decision

theory in practice. This is surely true, but this does not invalidate the theory.

Decision theory is a normative theory which dictates how reasonable decision

making should be done, not a descriptive theory of how people make decisions.

Decision theory should not try to mimic what people do, just as geometry does

not try to mimic how people produce (often wrong) surface measures. You may

certainly question the axioms themselves, but then you would need to provide a

better axiom system. And in any case, I wonder if any serious decision maker

would be prepared to claim that he/she could knowingly violate, say, the Savage

Sure Thing Principle, and pretend that there are occasions where a > b under H

and also a > b under not H, but yet a < b.

On a different point, Professor Fygenson justifies his use of maximum-likeli-

hood procedures on their good asymptotic behaviour. This is surprising when
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he has focused on problems with typically sparse data. One obviously needs

inference procedures that are good for very small samples..., but of course a

Bayesian analysis is needed to do that and, as Professor McCullagh has earlier

mentioned, this paper certainly does not fall close to the Bayesian paradigm.
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COMMENTS

Atanu Biswas

Indian Statistical Institute

Fygenson (2008) essentially proposes estimation of a tail probability in the

distribution of failures. Admittedly, tail probability estimation is one of the most

difficult problems in statistics, and moreover here the problem is considered in the

absence of any data in the tail. Thus, the procedure rests on suitable assumptions

on the tail, termed the outlook by Fygenson (2008).

Prior to the launch of Challenger, there were 23 launch data, each having

6 O-rings, including 10 failures among 6 × 23 = 138 independent observations.

The temperature varying between 53−81◦F, the data can be easily fitted by a

linear logistic model (Dalal, Fowlkes and Hoadley (1989)) or some other models

(Lavine (1991)), but the prediction beyond the above-mentioned range will be

different for different models.

Lavine (1995) observed that if the flight data launched at 53◦F was excluded

from the analysis, given a logistic model, the temperature effect is not statistically

significant. Dalal and Hoadley (1991) observed that this data point at 53◦F,

though influential, could have resulted from the model obtained in an influential

analysis after deleting that data point. It is then a very important question

whether or not a logistic (or clog-log or probit)-type model should be adopted

for predicting probability distribution at 31◦F, or whether one should ignore the

temperature (by considering the data at 53◦F as outlier). Here we suggest a

data-dependent adaptive approach. One can carry out a standard test procedure

for testing whether the data at 53◦F is an outlier or not. The P-value (P) is

certainly an amount of evidence in favor of “no effect of temperature”. We

find a probability µ such that (i) µ ↑ P , (ii) µ(0) = 0, (iii) µ(1) = 1, (iv)
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µ(0.05) = 0.5. Then, we obtain two confidence intervals (pTL(31), pTU (31)) and

(pNTL(31), pNTU (31)) by considering temperature (logistic or any such model)

or not (that is, 138 independent and identically distributed Bernoulli data). The

data-dependent confidence interval is then (pL(31), pU (31)), where pL(31) = µ×

pNTL(31) + (1 − µ)pTL(31) and pU (31) = µ × pNTU (31) + (1 − µ)pTU (31). This

is a pre-Challenger analysis.

Suppose, prior of the launch of Challenger, we consider the data at 53◦F

for modeling. Then any reasonable model − pessimistic, average or optimistic

− leads to a large probability of failure at 31◦F. For the case of the Challenger,

NASA managers had known that contractor Morton Thiokol’s design of the solid

rocket boosters contained a potentially catastrophic flaw in the O-rings since

1977. Moreover, Thiokol engineers were very concerned that abnormally cold

temperatures would affect the O-rings. Maybe the pessimistic outlook is not bad

in such a delicate issue, especially in the presence of such engineering concern.

Given that the Challenger had an O-ring failure, we contemplate an even more

pessimistic model. All the post-Challenger analyses based on the pre-Challenger

data are driven by the fact that Challenger failed at 31◦F. To prove that the

launch of Challenger was a wrong decision, people adopt an outlook that is

(Challenger-)data-driven.

People should somehow quantify their outlook or belief. Some sort of

(Bayesian) model averaging may be the best approach to such a situation.

In the pre-Challenger era, based on the data of the earlier 23 launches in

the temperature range [53, 81], a logit or probit or clog-log is a good fit, and the

estimate of p(53) is close to 0.3. Assume that prior to the launch of Challenger,

the engineers believed that p(31) = 0.4. Then the experimenter could consider a

smooth curve within [31, 53] such that p(53) = 0.3, p(31) = 0.4, p(t) ↓ t, and that

there is a smooth transition in the range [53, 53−ε]. Alternately, if the engineers

believed in a high value of p(31), say p(31) = 0.8, then they could consider a

smooth curve accordingly. Thus one has only a non-statistical perception or

outlook of the engineers, and no data to validate it. Statistics is a data science

and, in the absence of any data in the range [31, 53], there is not much Statistics

here, except possibly setting p(53) = 0.3. Either of these pessimistic or optimistic

outlooks is acceptable to a statistician in the pre-Challenger era.

In the post-Challenger era, all the analyses of the pre-Challenger data aiming

at projecting p(31) is based on the 23 launch data before Challenger and on the

fact that Challenger has failed. Extrapolation, outlook or perception, whatever

be the appropriate term, is driven by the fact that Challenger failed. Although

this is not formally a (Challenger-)data driven outlook in the mathematical sense

(as in a conditional model or maybe something like a posterior in the Bayesian

sense), it is some sort of ad-hoc (data-driven) outlook.
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Consider a hypothetical scenario that it is the post-Challenger era, and that

none of the 6 O-rings of the Challenger has failed. I am quite sure that peo-

ple would now opt for an optimistic outlook (that is p(31) is small), driven by

this hypothetical success story of Challenger. Thus, the concept of outlook is

somewhat data-driven if there is any data, and mostly ad-hoc if there is no data

(where the statistician perhaps has no role to play).

One can as well bring the statistician formally into the business using a

Bayesian model as follows. Suppose we have k possible choices of p(31), namely

c1, . . . , ck, such that p(53) ≤ c1 ≤ · · · ≤ ck, with prior probabilities 1/k each,

which is the pre-Challenger outlook for p(31). The post-Challenger outlook de-

pends on the number of O-rings failures (say m). Then the posterior probability

of p(31) = ci is cm
i (1 − ci)

6−m/
∑4

j=1 cm
j (1 − cj)

6−m, which is the new outlook.

This is the outlook (with m = 1) after January 28, 1986.
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COMMENTS

David Draper

University of California, Santa Cruz USA

This interesting and stimulating paper concerns decision-making in the face

of uncertainty and takes the Challenger space shuttle disaster as its case study.

The main technical issue in that applied example is estimating the probability of

O-ring failure at a temperature (31◦F) that involves a substantial extrapolation

away from the bulk of the data available on the night before take-off: previous
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shuttle launches had all occurred at temperatures ranging from 53−81◦F. Fy-

genson makes the good point that it may be unwise to rely on the extrapolation

uncertainty inherent in a single parametric model, or even in an ensemble of

such models (via Bayesian model averaging, for instance), as a good estimate of

the full extent of uncertainty about what data would be observed at covariate

values far from the observed range, and he develops an elaborate and interest-

ing methodology for coping with the problem in a novel way. (It’s particularly

interesting to discover, in Fygenson’s language, that in the class of GLM link

functions the probit is odds ratio (OR)-optimistic, the logit is OR-neutral, and

the complementary log-log is OR-pessimistic.) When I wrote about the Chal-

lenger case study some time ago (Draper (1995)) I focused on inference, not

decision-making; this is a welcome opportunity to revisit the example from the

latter point of view.

In his Section 5.4 Fygenson states that “In the economics literature ... a

shift to so-called non-expected utility choice models has taken place in the last

two decades,” but good old-fashioned Bayesian maximization-of-expected-utility

(MEU) seems to me to be perfectly adequate to the task of deciding whether to

launch, as follows. Let the two actions under consideration be a1 = {launch at

31◦F (now)} and a2 = {launch at 53◦F or higher (later)}, which were the two

principal options being discussed the night before the launch. Then the utilities

involved can be expressed as in this table, with the quantities u11, u12 and u∆ all

taken to be positive:

Catastrophic

Failure Not

a1: Launch at

31◦F (now)
−u11 u12

a2: Launch at

≥ 53◦F (later)
−u11 − u∆ u12 − u∆

Here −u11 represents all the negative consequences of catastrophic failure

of the shuttle (lives lost, damage to the space program, and so on), −u∆ is the

additional dis-utility of delay, and u12 represents all of the positive consequences

of a successful launch (the scientific value of the mission, the gain in prestige for

the space program, and so on). (You could include additional columns represent-

ing unknown “states of nature” on the night before the possible launch that are

intermediate between catastrophic failure and total success, but this would not

change the basic conclusion I’m headed toward.) A moment’s reflection is suffi-

cient to notice that, in this real-world context, u12 is substantially greater than

u∆ and u11 is substantially greater than u12, so let u11 = c1 u∆ and u12 = c2 u∆
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for some c1, c2 > 0; for me (putting myself in the place of the decision-makers on
the night before the possible launch), c1 and c2 would be on the order of 100 and
10, respectively. Finally, let pt stand for the probability of catastrophic failure
if the launch occurs at temperature t. Then action a2 would be preferable to a1

under MEU iff

E[U(a2)] = −p≥53(u11 + u∆) + (1 − p≥53)(u12 − u∆)

> E[U(a1)] = −p31 u11 + (1 − p31)u12,

and when u1i = ci u∆ is substituted in (for i = 1, 2), all of the utility values
cancel and the optimal decision is to delay the launch if

p31 − p≥53 >
1

c1 + c2
.

With c1 and c2 on the order of 100 and 10, respectively, or any other reasonable
values (given the real-world implications of the rocket blowing up), so that (c1 +
c2)

−1 is on the order of 0.01, it does not take more than a glance at Figure 4.1 in
Fygenson’s paper and the observation that the probability of catastrophic failure
is a monotone increasing function of the probability of failure of a single O-ring
to see that the launch should be delayed. I’m confident that the methodology
Fygenson developed in this paper will be highly useful in solving a wide variety
of future problems, but I’m less confident that his machinery was needed here to
see whether the Challenger should have been launched.
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COMMENTS

Mark S. Kaiser and Daniel J. Nordman

Iowa State University

Professor Fygenson has produced a thought-provoking paper that contains
many particulars worthy of consideration. We confine ourselves to an examina-

tion of the concept of pessimistic and optimistic outlooks, and the way that this
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concept translates into the behavior of response curves for binomial generalized

linear models. Such response curves are connected with distribution functions,

and we believe the pessimistic/optimistic notion can be formulated in terms of

entire distributions, rather than only on specified intervals as done in the pa-

per. This greatly simplifies the conceptual basis for consideration of both desired

behavior in extrapolation and uncertainty in model forms.

1. Tolerance Distributions and Link Functions

We wish to cast this discussion in the context of traditional short-term toxi-

city tests that have a statistical structure identical to the one used in the paper.

In particular, short-term toxicity tests produce sets of binomial outcomes at dif-

ferent levels of a covariate, generally a toxic substance. A typical analysis would

be conducted using a generalized linear model with binomial random component

and a chosen link function (e.g., logit, probit, or complementary log-log, just

as in the paper). In this context, there is a correspondence between the link

function chosen and the assumed distribution of “tolerances” in the population

of organisms being tested. The tolerance of an individual organism is defined to

be that value of the covariate such that the organism will not respond (e.g., not

die) for any value less than the tolerance, but will respond (e.g., will die) at any

value of the covariate greater than or equal to the tolerance. As is well known,

link functions for binomial random component models correspond to inverse dis-

tribution functions of standardized tolerance distributions. For example, under

a (standardized) tolerance distribution F , the probability that an organism dies

at a (standardized) exposure level x is µ = F (x) or, in terms of the link function,

g(µ) = x so that g = F−1. We may use F as the parent distribution to define a

location-scale family with parameters ξ and σ (i.e., µ = F{(x − ξ)/σ}) whereby

g(µ) = −ξ/σ + x/σ is linear in the covariate; note that the location parameter ξ

may represent mode rather than expectation in the resultant family of tolerance

distributions. For brevity, we consider only standardized forms of tolerance dis-

tributions in this discussion. The relation between link function and tolerance

distribution is given in the paper as expressions (1.1) and (1.2), so this structure

also implicitly forms the starting point for the presentation of Fygenson.

2. Pessimism/Optimism and Distributions

The basic notion of pessimistic versus optimistic outlooks underlies a good

deal of the approach to extrapolation taken in the paper. We consider these

notions in terms of what the paper calls attributable risk (AR) because this is

the most direct measure of the probability of an adverse outcome, the central

concern in problems of the type considered. We do not find the contrast be-

tween pessimistic and optimistic distributions presented in the paper entirely
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convincing. Fygenson defines only portions of distribution functions as repre-

senting pessimistic or optimistic structures, related to convexity or concavity of

the function over certain intervals of the line (Definition 2.1 and Theorem A.1).

Any distribution with a continuous unimodal density on the entire line must then

contain both pessimistic (convex) and optimistic (concave) portions, so that it

seems odd to proclaim a distribution as one or the other. The fact that many

distributions contain both types of behavior then motivates construction of a

piecewise model as given by expression (3.1) of the paper. While the component

distributions of model (3.1), namely F0, F01 and F1 are all restricted to be ab-

solutely continuous with densities having at least one continuous derivative (see

below Definition 2.1), we did not see restrictions imposed that guarantee the en-

tire model determines an absolutely continuous distribution function. This might

not be a great issue if all one is concerned with is extrapolation from a regres-

sion function for a single value of the covariate, but it would seems lacking as

a conceptualization of an overall problem involving tolerance distributions (and

densities).

We think of pessimism and optimism as a continuum (with no absolute

zero) that may go by either name, and that distributions might be classified

only in a relative manner, such as F is more pessimistic (or less optimistic)

than G. Thus, the pessimistic versus optimistic contrast defined by Fygenson

would be replaced entirely by his notion of degree of pessimism (or optimism) as

reflected in stochastic orderings, and detailed in Appendix A of the paper. The

question becomes, then whether there exist useful classes of distributions that

allow stochastic ordering over the entire line, that may be used to define link

functions in generalized linear models with binomial random components, and

that may be estimated on the basis of observed information. We demonstrate in

the next section that at least one such class of distributions can be identified.

The comparison of distributions based on stochastic ordering should be con-

ducted only after the distributions have been “matched” in one or more aspects

of their behavior. Without such matching, stochastic ordering may become a

relatively uninteresting result of differing parameter values. For example, logis-

tic distribution functions with different location parameters but the same scale

parameter are simply translations along the real line. This fact is what underlies

the definition of relative potency in parallel line bioassays (e.g., Finney (1978)),

but is a rather trivial case of stochastic ordering as it relates to the behavior of

distributions.

3. Parameterized Link Functions

An alternative approach to accounting for uncertainty in link functions (and

hence also tolerance distributions) is to make use of a parameterized family of
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links. To our knowledge, the use of families of parameterized link functions was

first suggested by Pregibon (1980) who used such families to form alternatives

for testing the adequacy of a specific “hypothesized” link. This idea was also

used in the analysis of toxicity tests by Aranda-Ordaz (1981). We consider only

the simplest among a number of possible families of link functions for binomial

responses, given by Pregibon (1980) as

g(µ|λ) = log

[

(1 − µ)−λ − 1

λ

]

, (7.11)

where µ is the expected value of a binomial random variable (written in terms of

proportions), that is, the probability of a response at level x of some covariate. In

the paper, this is the combination of expressions (1.1) and (1.2). For the present

we consider only λ > 0 in (1). The family of standardized tolerance distributions

implied by this link function are given by

Fλ(t) = 1 −
1

{λ exp(t) + 1}
1
λ

, (7.12)

with corresponding densities

fλ(t) =
exp(t)

{λ exp(t) + 1}1+ 1
λ

; −∞ < t < ∞. (7.13)

If λ < 0 in (1) through (3), the effect is that the support of the density (3) is

restricted to t < − log(−λ) and is thus determined by the value of λ.

In the terminology of Fygenson, the distributions (2) are pessimistic for t < 0,

which is the mode, and optimistic for t > 0. But we also have the following.

Result 1. If Fλ1 and Fλ2 are two distribution functions of the form (2) such

that 0 < λ1 < λ2, then Fλ1(t) > Fλ2(t) for all −∞ < t < ∞.

That is, a random variable with distribution Fλ2 is stochastically larger than

a random variable with distribution Fλ2 over its entire sample space, and both

distributions essentially match in the lower portion of the real line (i.e., limt→−∞

Fλj
(t) = 0).

Proof. Fix t and define a function h(λ) ≡ log[1+ λ exp(t)], λ > 0. It suffices to

show [1 + λ2 exp(t)]1/λ2 < [1 + λ1 exp(t)]1/λ1 or, equivalently, that h(λ2)/λ2 <

h(λ1)/λ1. Now, the function h(·) is strictly concave in λ so that, with λ1 < λ2,

the chord over (0, λ1) must have greater slope than the chord over (0, λ2), that

is,
h(λ2) − h(0)

λ2
≤

h(λ1) − h(0)

λ1
.
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Since h(0) = 0 the result follows.

This stochastic ordering is illustrated in Figure 1 for six different values of λ

ranging from 0.005 to 2.5. Smaller λ correspond to steeper (i.e., leftmost) curves.

What is important is that, through the link function (1) and the corresponding

distributions (2), we have arrived at an ordering over the entire line so that there

is no longer any need to restrict functions to particular intervals and construct a

response curve as in model (3.1) of the paper. The implication is that the notions

of pessimistic versus optimistic distributions as convex or concave over various

intervals can be replaced with Fygenson’s degrees of pessimism (or optimism) for

entire distributions. More pessimistic (or less optimistic) distribution functions

pick up probability more rapidly than less pessimistic (or more optimistic) ones,

as illustrated in Figure 1.

We point out that the stochastic ordering over the entire line allowed by the

distributions of (2) is different than the effect of changes in “slope parameters”

for a generalized linear model with a given fixed link. As mentioned previously,

the slope corresponds to a scale parameter in tolerance distributions. The effect

of scale changes is illustrated for a logit link in Figure 2. Here, changes in scale

produce stochastic orderings that differ in direction on either side of the mode of

0 for all of these distributions. Thus, the link function parameter λ in (1), (2),

and (3) produces a different effect in terms of Fygenson’s pessimism/optimism

than does a slope (scale) change in a model with fixed link.

That more pessimistic (less optimistic) distributions accumulate probabil-

ity more rapidly is clear from Figure 1, but it is illustrative to visualize this

phenomenon in terms of density functions for tolerance. Density functions cor-

responding to the curves of Figure 1 are presented in Figure 3, where smaller

values of λ correspond to densities with more rapid declines to the right of the

mode.
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Figure 1. Distribution functions for a variety of λ.
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Figure 2. Logistic distribution functions for a variety of scale parameters.
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Figure 3. Density functions corresponding to the distributions of Figure 1.

In terms of toxicity tests, or item failure as in the shuttle rocket example, the

interpretation of tolerance distributions for different values of λ relative to our

modified concept of pessimism/optimism is quite intuitive. All of the distribu-

tions in Figures 1 and 3 represent populations of organisms (or test items) with

about the same proportion of “highly susceptible” individuals. But more pes-

simistic distributions represent situations in which “total failure” occurs more

rapidly after the mode, while less pessimistic distributions reflect populations

with “highly resistant” individuals as well as highly susceptible ones.

Relative to the problem of extrapolation, the value of λ will make little

difference in how well data at the low end of the response range can be fitted with

a model (this is the practical dilemma of Fygenson), but will give quite different

predictions at the upper end of the response range. What is needed to distinguish

among the possible values of λ are data at the low end of responses up to about
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the modal value. Such data provide the information necessary to determine
the “steepness” of the response curve, which corresponds to the rate at which
probability is accumulated in the distribution function, and hence the degree
of pessimism/optimism the data would suggest. In fact, maximum likelihood
estimates of link function parameters such as λ in (1) can be easily computed,
simultaneously with all other model parameters, using an algorithm similar to
that often employed with traditional generalized linear models (Kaiser (1997)).

The maximum likelihood algorithm just mentioned is a Newton-type algo-
rithm and so also produces the full information matrix for all model parameters,
including the link function parameter λ. As a result, one has (i) incorporated
uncertainty into the response function through the unknown parameter λ, (ii)
estimated that portion of the model form on the basis of observed data, (iii)
quantified uncertainty in the estimated value, and (iv) also quantified the effect
of that uncertainty on uncertainty about estimates of the other model parame-
ters. Of course, all of this is true only within the class of link functions defined
but, in problems for which the response function form is of scientific interest in
its own right, this approach might have considerable merit.
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1. Introduction

The author wishes to thank Fygenson (2008) for a very interesting and well-

developed approach to a hard problem, predicting the Challenger disaster. In

order to more fully appreciate the functioning of Fygenson’s (2008) proposed

method it would be interesting to see application to more case studies and sim-

ulation from models with known parameter values. It would also be interesting

to see simulation with some data under extreme conditions artificially removed.

A Bayesian approach that translates prior opinion and bench test data into

prior data points is described in the next section. Such an approach could be used

with various models and provide comparisons to methods of Fygenson (2008) and

others.

2. Prior Information as Prior Observations

Let the observed data from variables (X,Y ) be denoted by (x, y) = {(xi, yi),

i = 1, . . . , n}, where X is continuous and Y is binary. Let F be the CDF for Y

given X. Imagine that one can express prior belief by adding artificial data to the

set of observations (x, y). Let (xa, ya) = {(xj , yj), j = 1, . . . ,m} be the artificial

observations. The values xa could be values of interest, or ones for which some

opinion can be formulated. The values ya then are thought to have arisen from

the model F given values of X = xa.

Consider the values of X to be fixed. If F is defined by a linear logistic

regression model and the data points (observed and artificial) are all mutually

independent, then the posterior distribution for logistic regression parameters

given the observed data is proportional to the likelihood (involving the observed

data) times the prior distribution (involving the artificial data):

P (α, β|y) ∝ P (y|α, β)g(α, β)

=

n
∏

i=1

e(α+βxi)yi

1 + eα+βxi

m
∏

j=1

e(α+βxj)yj

1 + eα+βxj

=
e

P

k(α+βxk)yk

∏

k(1 + eα+βxk)
,

where the index k in the last line extends through both the observed and artificial

data (k = 1, . . . , n + m).

Choosing a prior distribution that matches the form of the likelihood simply

means choosing a conjugate prior distribution. Thinking of the prior distribution

as representing or arising from prior observations is a common approach. Exam-

ples can be found in Gelman, Carlin, Stern and Rubin (2004) for Bernoulli data
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(p.40), normal data (p.79), multinomial data (p.93), linear regression models

(pp. 383-384), generalized linear models (p.421), and mixture models (pp. 465-

466).

A sample from the posterior distribution of the logistic regression parame-

ters given the observed data and prior observations can be generated using the

Metropolis algorithm. A convenient jumping distribution is a bivariate normal

distribution centered at the current value (α, β) with variance given by the esti-

mated variance (inverse of the negative of the matrix of second partial derivatives,

or observed Fisher information) from the augmented likelihood. Each pair of sam-

pled parameter values corresponds through the inverse logistic transformation to

a function for predicted probability based on temperature.

3. Initial Data Analysis

The Challenger data are available online (Asuncion and Newman (2007))

and consist of 23 rows corresponding to the 23 earlier shuttle flights. There

were six O-rings measured on each flight and a total of seven failures. Prior

information could potentially come from many sources. The engineers thought

that the chance of O-ring failure would be at least as high at 31 degrees as at

53 degrees. Management did not think the risk any higher than in previous

launches. Imagine having prior data from six O-rings. As a compromise based

on these assessments, one could imagine three failing and three not failing at 31

degrees F. There also were bench test data at 50, 75, and 100 degrees and some

tests at below 50 degrees. O-ring failure occurred at 50 but not at 75 and 100.

Below 50 degrees there apparently was not a failure. Imagine having data on

four additional O-rings with a failure at 50 degrees and non-failures at 50, 75,

and 100.

Table 1 contains estimates based on the observed and imaginary prior data.

The 95% posterior intervals are based on 50,000 draws from the posterior dis-

tribution. The three successes at 31 degrees in priors 1 and 3 greatly reduce

the predicted probability of failure while greatly increasing the uncertainty at 31

degrees. The one failure at 50 degrees in prior 2 increases the predicted prob-

ability of failure while reducing the uncertainty at 31. The one failure at 50 in

prior 3 does not compensate for the three successes at 31 when predicting for 31

degrees. In summary, the outcome is very sensitive to prior assumptions and the

use of the model with prior observations gives a clear description of the impact of

alternative specifications. It is clear that heaping prior observations on a desired

outcome will make it likely. The recommendation is to be clear as to the content

of prior observations and study sensitivity to reasonable alternatives.
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Table 1. Estimates and predictions using logistic regression. Standard errors
are in parentheses.

Data Estimate Prediction at 95% Intervals at

of β 31◦F 53◦F 31◦F 53◦F

Observed -0.1795 (0.0582) 0.9628 (0.0655) 0.4607 (0.1962) (0.4324, 0.9994) (0.1054, 0.6292)

Observed, -0.0996 (0.0249) 0.6342 (0.1795) 0.1624 (0.0539) (0.2775, 0.9102) (0.0760, 0.2970)

Prior 1

Observed, -0.1822 (0.0531) 0.9659 (0.0533) 0.3398 (0.1268) (0.5724, 0.9991) (0.1324, 0.6053)

Prior 2

Observed, -0.1028 (0.0249) 0.6705 (0.1697) 0.1751 (0.0554) (0.3235, 0.9198) (0.0859, 0.3059)

Prior 3

Prior 1 has 6 data points: 3 failure and 3 success at 31 degrees.

Prior 2 has 4 data points: 1 failure at 50 and 3 successes at 50, 75 and 100.

Prior 3 has 10 data points: 6 from prior 1 and 4 from prior 2.

4. Expanded Mixture Model

As pointed out in Lavine (1991), more data at high temperatures under a

parametric model implies increased precision at low temperatures, which might

or might not make sense. The work of Fygenson (2008) acknowledges this possi-

bility by allowing different distributions to govern different sections of the range

of X. In terms of a parametric model, this suggests using a mixture model

(McLachlan and Peel (2000)). Conditional on the x-values, the yi’s could be

assumed to have been generated independently from a mixture of logistic regres-

sions:

P (yi = 1|xi, α1, β1, α2, β2, π)

= P (yi = 1|xi, α1, β1)π + P (yi = 1|xi, α2β2)(1 − π)

= e(α1+β1xi)yi(1 + eα1+β1xi)−1π + e(α2+β2xi)yi(1 + eα2+β2xi)−1(1 − π). (14)

It is assumed that xi is positive, 0 ≥ β2 > β1, and 0 < π < 1. Since yi = 1 indi-

cates failure, and failure is more likely at low temperatures, the second mixture

component with larger β has higher probability of failure and is relevant for low

temperature launches.

Instead of specifying a prior distribution for the logistic regression coefficients

one could consider, as before, expressing prior belief by adding artificial data to

the set of observations (x, y).

Further prior information can be included through definition of some obser-

vations as coming from mixture component one (α1, β1) and others from mixture

component two (α2, β2). Let z = (zi, i = 1, . . . , n + m) be a binary indicator for

membership in mixture component 1. The index i pertains to both the observed

data (x, y) and the artificial data (xa, ya). In the Challenger example, one could

set the z-value to 1 for the case with the largest x-value (high temperature).
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One could also set the z-value to 0 for the artificial data point with the smallest

x-value (low temperature).

A common choice for a prior distribution on π is a Beta(ǫ1, ǫ2) distribution,

with ǫ1 and ǫ2 small positive values. In the application, ǫ1 = ǫ2 = 1.

A special case of this model would set β1 = 0, which corresponds to constant

probability of failure across temperatures. Although not realistic for low temper-

atures, this assumption might be reasonable at moderate to high temperatures,

which should be more likely to be relevant in mixture component one.

5. Second Data Analysis

A model with constant probability for high temperatures and a logistic re-

gression component for low temperatures is fit to the Challenger data. Further

prior information in the form of a Beta distribution is placed on the probability

of failure in mixture component one. The reason for including this extra prior

information is that if there are no cases with failures (or no cases with successes)

assigned to a mixture component during an iteration of data augmentation, then

the conditional distribution of the probability of success would not be a proper

distribution; that is, the usual data augmentation algorithm would fail. Since the

probability of failure is expected to be very low, a Beta(0.1, 0.9) prior distribu-

tion is used. Since there is a mix of successes and failure at low temperatures no

extra prior information was placed on the second component’s logistic regression

parameters.

Values of zi are assigned for a number of cases. Observations with tempera-

ture below 55◦F were placed into mixture component two, whereas those above

72◦F were assigned to mixture component one. The eighty-four observations

between these two points were initially unassigned.

Table 2 contains the results for the three versions of augmented data. Un-

der this model the observations at high temperatures have little impact on the

coefficients of the second mixture component. As a result, the intervals in Table

2 for predictions at 31◦F are wider than in Table 1. For predictions at 53◦F the

intervals are much wider as well. Under all the scenarios the decision to launch

at 31◦F is not supported. Indeed, the chance of distress of an O-ring for a launch

at 53◦F seems not insignificant.

Without further prior information, the original data set and the augmented

data set with very few cases pre-assigned to mixture components encountered

problems in estimation. The cause of the problem was allocations of observations

to mixture components such that observations in one mixture component had no

failures or there was a complete break in the second mixture component in the

range of temperature between successes and failures. These problems are caused

by the sparsity of data and small number of observed failures in the data.
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Table 2. Estimates using a mixture of a Bernoulli model and a logistic regression

model.

Data 95% Intervals at Probability of Estimated size

31◦F 53◦F failure in of components

component one One Two

Observed, (0.1814, 0.8709) (0.1755, 0.5880) (0.0000, 0.0232) 115.59 28.41

Prior 1

Observed, (0.0729, 0.9999) (0.1456, 0.7340) (0.0000, 0.0446) 116.07 25.93

Prior 2

Observed, (0.1945, 0.8497) (0.1987, 0.6021) (0.0000, 0.0221) 119.16 28.84

Prior 3

Priors are as in Table 1.

Points over 72◦F are assigned to component 1; those under 55◦F are assigned to component 2.

6. Summary and Discussion

Fygenson (2008) has addressed the hard problem of expressing uncertainty

for extrapolations in an innovative way. A Bayesian approach that expresses

prior information through artificial observations also could be considered. It is

demonstrated that prior information can be included in parametric models as

prior observations. It is further demonstrated that a mixture of distributions can

be fit to these data. The results are very sensitive to both the prior assumptions

and model choices.

Dalal, Fowlkes, and Hoadley (1989) and others consider the full problem of

predicting catastrophic failure instead of only distress of O-rings. In future work

it would be interesting to compare procedures under a range of simulated and

actual data conditions.

Other work that seriously considers use of information from other rocket pro-

grams is Martz and Zimmer (1992). A further approach would involve modeling

the amount of erosion due to heat in O-rings as a function of launch temperature

and leak check pressure and predicting erosion at 31 degrees. One could further

incorporate scientific evidence relating the likelihood of gas blowby to the extent

of erosion. Hierarchical models (six O-rings per launch) also could be considered.
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Abstract: Fygenson (2007, hereafter F07) proposed an interesting framework that
provides a pessimistic (optimistic) decision maker with probability models. From a
Dempster-Shafer (DS) perspective (Dempster (2007)), here we provide an invited
discussion on F07.

Key words and phrases: The Dempster-Shafer theory.

1. Introduction

In statistical analysis, it is important to discuss both uncertainty due to

model choice and uncertainty about parameters that must be estimated given

a model. Such a discussion is sorely needed when scientists grow more serious

about statistical methods and scientific inference. This has motivated me, as an

applied statistician, to take a closer look at the different schools of thoughts on

statistical inference. In particular, I was intrigued by Fisher’s attitude toward

statistical inference, his understanding of the problem of statistical inference, and

the innovative idea behind the mathematical formulation of his fiducial argument,

then by the subsequent Dempster-Shafer (DS) theory (Dempster (1966), Shafer

(1976), Dempster (2007) and references therein). Our more detailed overview on

Fisher’s fiducial argument and the DS theory is in Liu and Zhang (2007).

The pessimism/optimism aspect of Fygenson’s work is somewhat reminis-

cent of the DS theory, as the latter typically provides “data-driven” probabili-

ties/plausibilities for assertions of scientific interests. In words, the probabilities
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and plausibilities of the DS theory provide useful reference points for further

personal adjustment if decision makers see a need for incorporating their pes-

simism/optimism outlooks. Due to technical differences between DS and Fy-

genson in the use of Bayesian and frequentist methods, the above comments on

the connection between pessimism/optimism and probabilities/plausibilities are

necessarily at a non-technical level.

To follow this discussion, the readers will need to read Dempster (2007),

which “outlines a contemporary view of the DS theory that is not part of the

standard curriculum in statistics, but may become so in a few years” (Arthur

P. Dempster, private conversation). Due to the need for omitting many tech-

nical details for lack of space, I shall provide in this contribution simple re-

sults, which are related directly to probabilities/plausibilities and indirectly to

pessimism/optimism, in a preliminary DS analysis of the Space Shuttle Pre-

Challenger data. Following Fygenson, I focus on the case with the calculated

temperature at space shuttle launch time as the single covariate. My purpose

here is to illustrate that DS analysis can be a conceptually straightforward way

to address both parameter uncertainty and model uncertainty, although the anal-

ysis presented is not meant to settle the uncertainty surrounding the Challenger

disaster (for more discussion on the reliability of the shuttle, see, for example,

Feynman (http://www.fotuva.org/feynman/challenger-appendix.html)).

2. Parameter Inference

As formulated in Dempster (2007), DS analysis starts with state spaces of

real-world variables of interest and a DS model. The DS output for any assertion

has three components (p, q, r) with p + q + r = 1, where p is the probability for

the truth of the assertion, q is the probability against the truth of the assertion,

and r is the residual probability that is understood as the probability of “don’t

know”. The combined probability p+r is called the plausibility for the assertion.

The corresponding Bayesian output would have p + q = 1, that is, r = 0. The

“don’t know” component introduced in DS provides a flexible way for the data

analyst to realistically quantify his/her uncertainty. The decision maker can use

DS results directly or, for example, eliminate the “don’t know” by fusing the DS

results further with his/her personal prior information and pessimistic/optimistic

outlook.

For a simple example, we consider inference about the long run probability of

success, P , of Bernoulli trials from a sample consisting of X successes and n−X

failures. Given the observed data, in a DS analysis the observer’s uncertainty

about P is regarded as the same as knowing that P lies between the X-th and
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(X +1)-th among n ordered draws from the uniform on (0, 1). This is illustrated

below with the O-ring failure counts for each observed temperature value.

The data consists of the observed O-ring failure counts at each of the 16

observed temperature values t1 = 53, . . . , t16 = 81. Figure 1 shows the O-

ring failure counts for 23 pre-Challenger space shuttle launches, each involving

6 field-joint primary O-rings. For example, there were four launches made at 70
◦F; the corresponding O-ring failure data at 70 ◦F consists of the observations

(0, 6), (0, 6), (1, 6), and (1, 6). Under the assumption that the O-ring failure data

are independent binomial counts, DS inference about the failure probability at

70 ◦F can be made based on the binomial count X = 0 + 0 + 1 + 1 = 2 with

probability P and size (the number of Bernoulli trials) n = 6+6+6+6 = 24. We

note that an alternative model could start with different P values for different

launches.
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Figure 1. The O-ring thermal-distress data (Dalal, Fowlkes and Hoadley

(1989)): Field-joint primary O-rings.

Let ni be the total number of observed O-rings, and let Xi be the number

of observed O-ring failures at ti for i = 1, . . . , 16. The DS model for the cor-

responding failure probability Pi is characterized by the associated (a)-random

interval [Li, Ui], where Li and Ui are the Xi-th and (Xi +1)-th order statistics of

a sample of size ni from the standard uniform distribution U(0, 1). For example,

the (p, q, r) for the assertion {Pi ≤ P0} with a fixed P0 is computed as follows:

p = Prob(Ui ≤ P0), q = Prob(Li > P0), and r = Prob(Li ≤ P0 < Ui). Thus

given Pi ∈ [Li, Ui], the posterior event {Ui ≤ P0} is evidence for the assertion
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{Pi ≤ P0}, {Li > P0} is evidence against the assertion, and {Li ≤ P0 < Ui}

provides an instance of “don’t know”.

It is suggested by the observed data shown in Figure 1 that the failure

probability is decreasing in temperature. The observed number of incidents at

70 ◦F raises the question of the existence of outliers. For a simple DS answer to

this question, we aggregate the data over the temperature interval (60, 70) and

use a simple binomial model with failure probability P (70−) for the aggregated

data. Similarly, we denote by P (70) the failure probability at 70 ◦F. The assertion

of interest is A = {P (70) ≤ P (70−)}. Based on the two independent binomial

counts associated with the O-ring failure probabilities P (70) and P (70−), the

DS (p, q, r) output for the assertion A is (0.05, 0.70, 0.25). Given the fact that

the data at t = 70 is the extreme case picked up visually, and that the amount

of “don’t know” component is r = 0.25, in what follows we do not treat the data

at t = 70 as an outlier. We note that one may be more interested in the DS

comparison of P (70) based on the data at t = 70 alone and the corresponding

probability from a sensible DS model based on the data without the observations

at t = 70. The sensible way along this path would involve the issue of multiple

testing. This gets quickly beyond what can be discussed here.

3. Modeling Building and Model Uncertainty

Exploratory data analysis (EDA) has proved to be a useful tool for building

statistical models for data. For extrapolation problems, as emphasized by Fy-

genson, care must be taken because a model fitting the observed data well may

hide the uncertainty in both the trend and variability. Thus, instead of a single

model, a class of plausible models needs to be considered in such a situation so

as to reflect our uncertainty about extrapolated probabilities outside the data

range.

To explore plausible parametric models, the Gibbs sampler was implemented

to generate 10,000 a-random intervals for Pi, i = 1, . . . , 16, with the assumption

that the O-ring failure probability is decreasing in temperature. The details of

implementing the Gibbs sampler are omitted here. The marginal 50% and 95%

DS intervals, as the DS counterpart of repeated-sampling confidence intervals and

Bayesian credible intervals, were computed based on the posterior draws. More

specifically, the lower end of the 95% DS interval is the (lower) 2.5% quantile of

the lower end of the a-random interval for Pi, while of the upper end of the 95%

DS interval is the 97.5% quantile of the upper end of the a-random interval. These

intervals are shown in Figure 2 using the “DS box-and-whisker” plots in both

the original probability scale and t-link scales with various numbers of degrees

of freedom (df). The t-link with 7 or 8 degrees of freedom can be viewed as an

approximation to the logistic-link (see, for example, Albert and Chib (1993) and



PROBABILITIES WITH OUTLOOKS 79

Liu (2004)). Of course, the t-link with an infinite number of degrees of freedom

is the probit link. It is thus seen from Figure 2 (c) and (d) that linear and

quadratic logistic and probit regression models are plausible. It is interesting to

see that Figure 2 (b) indicates that the possible quadratic trend in temperature

in the observed data range can be corrected via (or, more precisely, confounded

with) a t-link with small numbers of degrees of freedom, given that the main

assertion of interest is about the lower O-ring failure probability at 31 ◦F, since

the corresponding upper probability is close to one for almost all sensible models.

These DS-box plots also show that the data at 70 ◦F has certain effects on the

lower failure probabilities over the interval from 65 to 69 ◦F.

Based on our EDA, which in a certain sense extends the idea of John Tukey’s

EDA, we consider the simple sampling model Xi|(ni, Pi) ∼ Binomial(ni, Pi), with

Pi = ptν (α + βti) ((ν, α, β) ∈ Ων × Ωα × Ωβ = {1, 2, 4, 8, 16,∞} ×R×R)

-3
0

-1
0

-1
-3

-4

TemperatureTemperature

TemperatureTemperature

(a) (b)

(c) (d)

P
ro

b
a
b
il
it
y

q
t(

P
ro

b
a
b
il
it
y
,
d
f=

1
)

q
t(

P
ro

b
a
b
il
it
y
,
d
f=

8
)

q
t(

P
ro

b
a
b
il
it
y
,
d
f=

In
f)

0
.0

0
.4

0
.8

3

4

1
0

0

12

3030

3
0

3030

4040

4040

5050

5050

6060

6060

7070

7070

8080

8080

Figure 2. DS box-and-whisker plots using the marginal 50% (boxs) and 95%
(whiskers) DS intervals obtained based on the monotonicity assumption on
Pis: (a) Pi for i = 1, . . . , 16, (b) the Cauchy-link, (c) the t-link with 8 degrees
of freedom, which is approximately logistic, and (d) the probit -link.

for i = 1, . . . , 16, where ptν denotes the cdf of the student-t distribution centered

at zero with unit scale and ν degrees of freedom. The posterior a-random set for

inference about (ν, α, β) is a stack of polygons in the two-dimensional space of

(α, β) with ν in a subset of {1, 2, 4, 8, 16,∞} as the stack index.
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The posterior a-random set can be simulated using the Gibbs sampler. Pre-

liminary results are promising and are expected to be reported elsewhere.
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D0. Overview

I would like to begin by expressing my delight with the large number of con-

tributions from such a diverse group of researchers. I thank all the discussants

for reading the paper and preparing insightful comments. I am especially hon-

ored that Professors Portnoy and McCullagh made the long trip to deliver their
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critiques in person. Their presentations in the meeting and those of Professors

Fuh and Hsiung, were pleasant, astute and pertinent.

I am also deeply grateful to the editorial board of Statistica Sinica and to

their trustees for the opportunity to present the first discussion paper in what

I am sure will be a distinguished tradition, and for the great hospitality they

extended to me in Taiwan. The paper was greatly improved by the constructive

critiques of the editors and referees. What shortcomings remain are entirely my

own.

As it is not feasible to address all points raised by the discussants, my re-

sponse focuses on themes common to multiple discussants that touch upon the

most fundamental issues in the paper.

First, several discussants, including Portnoy and McCullagh, questioned the

notion of “pessimism” in the paper for its apparent arbitrariness. Bernardo

found the framework misguided and suggested that pessimism (optimism) can

and should be defined within the classical decision framework. Other discussants,

particularly Chang, Chien, and Hsiung, offer a Bayesian analysis that captures

some form of pessimism using a Bernstein prior. I address these issues in Sec-

tion D1. I would like to emphasize here, however, that I am not advocating

abandonment of the classical decision framework. My intension is rather to pro-

vide additional modeling capabilities for cases where catastrophes are likely and

extrapolations are required to make decisions. In economics, a movement to

similarly extend the classical framework began about 20 years ago and rose to

prominence in the last decade.

Several discussants, most notably Portnoy, raise technical issues. Others,

especially Fuh and Hu, and Kaiser and Nordman, asked for/proposed ways in

which certain results can be extended. These are addressed in Section D2.

Another common theme among many discussants was the Challenger exam-

ple. I fully agree with those that suggest other applications must be considered

to properly test drive the proposed framework. I am grateful to Fuh and Hu

for bringing to my attention potential applications in the areas of Value at Risk

Models, Pyrotechnics, Degradation Analysis, Importance Sampling and Sequen-

tial Design. In Section D3, I describe another important application, that of

Low-Dose Extrapolation.

Many discussants (Biswas; Chang, Chien and Hsiung; Draper; Larsen; Liu)

propose alternative analyses of the O-ring data in the Challenger example. In

the paper, these data were considered mainly to facilitate the comparison with

Lavine (1991) and Draper (1995), who use them to illustrate proper handling of

various aspects of model uncertainty.

In the end, I concur with Draper’s statement that “it does not take more than

a glance at Figure 4.1 in Fygensons paper and the observation that the probability
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of catastrophic failure is a monotone increasing function of the probability of

failure of a single O-ring, to see that the launch should be delayed.”

D1. Choice Models and Related Concepts in Economics

To clarify the relationship between my framework and classical decision the-

ory, and to justify the notion of outlooks (i.e., pessimism and optimism) as I use

it, a brief summary of the leading choice models and their developments is called

for. The interested reader will find a more in-depth treatment (e.g., about the

different axioms) in Diecidue and Wakker (2001). In the summary that follows, I

focus on choice models that are commonly applied in economics and other social

sciences, where maximization of expected utilities plays a key role in decisions.

Choice models are often described within the following generic setup: a de-

cision maker (DM) faces a prospect or a lottery (p1, x1; p2, x2; . . . ; pn, xn) whose

real outcomes xi have probabilities pi that sum to 1. When the vector of prob-

abilities, p ≡ (p1, . . . , pn), is known (objectively or subjectively), the decision is

labeled a choice under risk. Otherwise it is labeled a choice under uncertainty.

To facilitate the presentation, I describe the developments of choice models under

risk, although most statistical modeling problems are more closely aligned with

choices under uncertainty. To evaluate the prospect (p1, x1; p2, x2; . . . ; pn, xn), it

is often assumed that the DM is using the following general weighting model:
∑

πi (p) · U(xi). (1)

Here, U is a utility function that captures the DM’s value or preference with

respect to the various outcomes, and π is a decision weighting function that cap-

tures the DM’s belief or outlook with respect to the outcomes’ probabilities. Note

that utility functions, which represent benefit or satisfaction, are complementary

to loss functions. Furthermore, πi can be seen as the DM’s belief about the likely

occurrence of xi, possibly involving a misperception of its probability, or his/her

assessment of the relative importance of xi, in which case he/she may deliberately

choose a weight other than pi. The latter case is what I had in mind in proposing

pessimistic/optimistic models in the paper.

To earn the label of “rational”, a DM’s reasoning must satisfy, at a minimum,

three requirements: Completeness, Transitivity and Monotonicity. Viewed in

terms of the utility function, these requirements (roughly) imply that U is a

consistent and strictly monotone function (i.e., xi is preferred to xj if and only if

U(xi) ≥ U(xj)). However, over the last 35 years or so, it has been observed that

people often violate some of these rational requirements. Accordingly, researchers

have begun to explore ways to modify the classical choice model.

To derive the classical expected utility (EU) model from (1), we need to add

the Independence requirement- also known as the sure-thing principle (Savage
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(1954)). Under this requirement, the decision weight πi for outcome xi depends

only on its probability pi and not on any of the other outcomes or their proba-

bilities. Then, model (1) becomes

∑

φ (pi) · U (xi), (2)

where φ (pi) ≥ 0 and
∑

φ (pi) = 1. It can be shown that this last condition

(i.e.,
∑

φ (pi) = 1) implies that in (2) we must have φ (pi) = pi, yielding the

classical EU model (i.e.,
∑

pi · U (xi)). Therefore, to have choice models with

non-linear weighting functions φ (pi), it is necessary to relax the Independence

requirement and allow the weighting function to depend on the probabilities of

other outcomes (i.e., φ (p)).

One such example is the rank-dependence model of Quiggin (1982), which

has become the most celebrated of the “non-expected” utility models. Rank-

dependence was also used by Tversky and Kahneman (1992) to modify their

original Prospect Theory (Kahneman and Tversky (1979)) and create the Cu-

mulative Prospect Theory (CPT). (The first author received the 2002 Nobel

prize in Economics for the above work and for having integrated insights from

psychological research into economic science). In what follows, we see that the

word “cumulative” captures well the rank-dependence idea of Quiggin. Interest-

ingly, McCullagh (1980) in the paper “Regression Models for Ordinal Data” uses

a similar idea to capture the ordinal scale of a response variable in his proposed

models.

D1.1. Rank-dependence for decisions under risk

The rank-dependence requirement allows a DM to weigh an outcome not only

with respect to its probability, but also with respect to how good the outcome

is in comparison to the other possible outcomes. Formally, the rank-dependence

assumption implies that the decision weight πi of getting outcome xi depends only

on its probability pi and its rank. Ranks are given by a distribution function that

assigns to each outcome the probability of receiving that outcome or anything

worse. It effectively orders the outcomes from worst to best, assigning a value of

zero to anything below the worst outcome, and a value of one to anything above

the best outcome. Thus, the rank of the ith best outcome x(i) is captured by its

value in the distribution function, F
(

x(i)

)

.

To get to the Rank-Dependence Utility (RDU) model from (1), consider

(without loss of generality) a prospect (p1, x1; p2, x2; . . . ; pn, xn) in which x1 ≤

x2 ≤ . . . ≤ xn, and πi = φ (p). The probability-weighting function φ (·) is strictly

increasing with φ (pn) = πn and

πi = φ (1 − F (xi−1)) − φ (1 − F (xi)) , i ≤ (n − 1). (3)
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(Note that the RDU model can be formulated with the following dual probability

weighting function π∗
i = φ (F (xi)) − φ (F (xi−1)).)

The Cumulative Prospect Theory model is a sign-rank-dependence model. It

generalizes the RDU model by introducing two different probability weighting-

functions, one for gains and one for losses (i.e., π+ and π− , respectively).

Many studies try to derive and estimate decision weights of ordinary people in

specific situations (e.g., Abdellaoui (2000) and Gonzalez and Wu (1996, 1999)).

Empirically, it has been observed that ordinary people use decision-weighting

functions that are concave for small probabilities and convex for moderate and

high probabilities. This phenomenon is one of two reasons that I defined outlooks

inherent in a distribution only on an interval of its support. The other reason

was to minimize structural uncertainty - for more on this subject see Section D2.

D1.2. Risk aversion under the EU model

An important aspect of classical decision theory (which revolves around the

maximization of expected utility) addresses the question of how two different

DMs, with two different utility functions, react to the same prospect. A crucial

concept for comparing DMs with different utilities is risk attitudes. For example,

risk aversion is an attitude (not an outlook) that causes a DM to avoid uncertainty.

Not all DMs share the same attitude and, even if they do, it might not to be to

the same extent.

A risk-averse attitude is reflected in the properties of a DM’s utility function

U . A DM is labeled risk averse (risk tolerant) if he/she uses a concave (convex)

utility function U . The DM who uses a linear utility function is labeled risk

neutral. Moreover, a DM with U1 is said to be more risk averse than a DM with

U2 if U1 = g(U2), where g(·) is an increasing and concave function (Pratt (1964)

and Arrow (1974)).

D1.3. About outlooks: pessimism vs. optimism

In the economics literature, pessimism or optimism are distinct from (and

not to be confused with) risk averseness or risk tolerance. In the paper, this

distinction is key because the objective is to introduce a statistical framework in

which the unknown probabilities are constrained (non-parametrically) to capture

outlooks. Moreover, it is important to note that pessimistic or optimistic out-

looks cannot be incorporated within the classical EU model because they require

nonlinear probability-weighting functions in (1). This fact was first noted by

Savage at the end of Chapter 4 in his book (Savage (1954)).

To clarify the meaning of a pessimistic outlook in economics, refer to the

RDU model and consider a prospect where the ith best outcome x(i) occurs

with probability pi, has a rank F (x(i)), and a probability-weighting function
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πi (p̄) = φ (pi + (1 − p̄)) − φ (1 − p̄) , i ≤ (n − 1) where p̄ = F (x(i)). (Note that

πi (p̄) is the same as πi in (3).)

A pessimistic outlook would require that the decision weight πi (p̄) decreases

when the rank of x(i) increases (i.e., when p̄ goes up, the probability of an outcome

worse than x(i) also goes up). Therefore, a DM adopts a pessimistic outlook if the

decision weight function πi (p̄) he/she uses is decreasing in p̄. It is straightforward

to see that πi (p̄) is decreasing in p̄ if and only if πi (·) is convex. In a similar

fashion, a DM is an optimist (i.e., has an optimistic outlook) if and only if the

decision weight function he/she uses is concave. These definitions imply that a

DM who evaluates a prospect using the classical EU model (i.e., πi (p̄) = pi )

is adopting a neutral outlook (but not necessarily a risk neutral attitude, which

would require a linear utility function U in (1)).

The notions of pessimism and optimism appeared in Quiggin (1982) and have

been developed by Yaari (1987) in his dual theory to the classical EU model. In

the economics literature, pessimism (optimism) is formally characterized by a

convex (concave) probability-weighting function.

For completeness, it bears mentioning that similar definitions for pessimistic

and optimistic outlooks were proposed for choices under uncertainty. By relaxing

the Independence requirement to that of rank-dependence (as we did for decisions

under risk), we get Schmeidler’s (1989) Choquet Expected Utility (CEU) model.

In this framework, a DM is labeled a pessimist (optimist) if the, so-called, capac-

ity ω (·) he/she uses is convex (concave). (Note that ω (·) is convex if and only if

ω (A ∪ B) + ω (A ∩ B) ≥ ω (A) + ω (B).)

The simplest way to arrive at the various notions of outlooks as used in the

paper is to consider the following binary regression setup with one risk factor

(X):

P (Y = 1|X = x) = F (α + βx) and β > 0. (4)

In the paper, the (generic) model (4) was taken as the point of departure (in the

same way we started with model (1)). Indeed, neither model is primitive in the

sense that both require some initial assumptions. In the GLM framework, model

(4) can be written as:

F−1 (px) = α + βx , (5)

where px ≡ P (Y = 1|x).

To answer the question of how should a professional DM pick F−1 (or F )

to reflect a particular outlook, consider two cases: 1) F is known (choice under

risk) or 2) F is unknown (choice under uncertainty). When F is known, a GLM

framework that provides for a DM’s outlook can be written as

φ
(

F−1(θ)
)

= φ(x) , (6)
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where φ(·) plays the same role in (6) as in (3). In particular, a DM would have

a neutral outlook if φ(·) is the identity function (or a linear function) and a

pessimistic (optimistic) outlook if φ(·) is convex (concave). When F is unknown
(and there are no observations), φ(F−1(·)) in (6) can be treated as one unknown

transformation. However, then a different approach is required to answer the

above question. The paper put forward one such possibility.

To define three categories of outlooks for a distribution function F without

invoking relativity to other distributions (as was done in Appendix A of the pa-

per) it is important to note that, by definition, F , which captures risk in model
(4), is non-decreasing. Therefore, the paper explored the notion of an extra-

risk mechanism, which, in a binary regression setup, leads naturally to various

measures of association. By referring to the most commonly used measures of

association, the hope was that the resulting outlooks would have an intuitive ap-

peal and that it would be easier for researchers to identify increasing (decreasing)

patterns than convex (concave) patterns. (Note that Theorem A.1 of Appendix
A in the paper provides the equivalent conditions for Definition 2.2 in terms of

convexity and concavity.)

Admittedly, there is some degree of arbitrariness in using a particular mea-

sure of association. I would argue, however, that a good case was made for using

the odds-ratio in a binary regression setup (see Section 5.3 in the paper).

D2. On Some Other Technical Issues

In this section, I begin by addressing some relevant probabilistic issues and

then shift focus to some of the statistical issues raised by multiple discussants.

D2.1. Increasing Risk, Ordering of Distributions and Closure

There are situations in which a DM must decide when the distribution func-

tion F of the prospect X represents a more risky proposition than the distribution

function G of prospect Y . In the economics literature, Rothschild and Stiglitz
(1970, 1971) were the first to provide a comparative definition of increasing risk

and related properties. In the statistics literature, some forms of ordering were

proposed even earlier, the most familiar example being the usual stochastic or-

der. In economics, this ordering is called first-degree stochastic dominance and it

is less important than so-called second-degree stochastic dominance, which com-

pares two distributions with equal means so as to determine which is more likely
to take on “extreme” values. In statistics this is known as convex (concave) or-

dering. Note that if X is smaller than Y in convex order, then the variance of X

is smaller than the variance of Y and, as such, prospect X can be viewed as less

risky than prospect Y despite yielding the same expectation.

Importantly, in both economics and statistics all orderings are considered

with respect to the entire support of the distributions in question. In the paper,
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the framework put forward is more general in that one can extend the interval

J to include the entire support. Extending the intervals to the entire support in

the context of the new types of ordering (e.g., OR-order and AR-order) and de-

termining their relation to other known orderings (see Shaked and Shanthikumar

(2006)) is currently under investigation. Initial investigations (with Shaked) sug-

gest that the implications are non-trivial in both directions (i.e., looking on the

new ordering with respect to the entire support, or considering the known order-

ing only on subintervals of the support).

The question of whether the class of scale mixture families is smaller than

the class of “pessimistic” distributions put forth in the discussion is intriguing.

A partial answer emerges from noting that, in the case of an OR-pessimistic

(optimistic) distribution, neither of the equivalent conditions in Theorem A.1

(allowing only symmetric distributions) is invariant under mixture. For exam-

ple, there exist pairs of logistic distributions such that their 50% mixture is

neither OR-pessimistic nor OR-optimistic. But, from Theorem A.3 it follows

that the logistic distribution is OR-neutral, (i.e., it is both OR-pessimistic and

OR-optimistic at the same time). With respect to the logistic distribution, it is

important to note that it is the only unimodal distribution that does not have a

change in its OR-outlook. All other unimodal distributions (with support on the

entire real line) change their outlook category due to the unimodality. This can

be seen as another reason for defining the various outlooks only on a subinterval

rather than across the entire support.

Another important question concerns the extendability of the results in The-

orem 3.1, Corollary 3.1, and Proposition 3.1 to applications that require left ex-

trapolation to extremely low probabilities. Low-dose extrapolation is one area of

application requiring such results. Indeed, under the constraints of AR-pessimism

and OR-pessimism, I have already derived upper as well as lower bounds for ex-

tremely low (e.g., 10−6) probabilities - details are available on request.

D2.2. On model, structure, form and parameter uncertainties

The importance of model uncertainty, which includes (depending on the

model) structure and/or form and/or parameter uncertainties, to statistical in-

ferences needs no further argument. McCullagh finds the use of structural un-

certainty in the paper “a regrettable term because the structure is probabilistic,

and no model leaves room for uncertainty in probabilities. Fygenson’s use of the

terms structure and structural uncertainty refers solely to the choice of F”.

In Draper’s 1995 seminal paper on the topic, two very different uncertainties

are considered. Both are attributes of the variability inherent in the observations

when used to pick the form of F and/or to estimate the parameters of the model.
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In this sense, a non-parametric approach to F creates no form uncertainty. More-

over, assuming a particular non-parametric constraint “prior” (e.g., pessimistic

outlook), or any prior for that matter, also creates no form uncertainty - but it

does create structure uncertainty because it is a probabilistic assumption. Not

being a Bayesian statistician, my “priors” require justification and I hope that

Section D1 suffices. I am particularly grateful to Draper for his remark that

“Fygenson makes the good point that it may be unwise to rely on the extrapo-

lation uncertainty inherent in a single parametric model, or even in an ensemble

of such models (via Bayesian model averaging, for instance)”. The number of

times I have been hit over the head for not using Bayesian model averaging for

the extrapolation problem is just too painful to admit! Nevertheless, using a

non-parametric pessimistic constraint is still a probabilistic assumption and, in

an effort to minimize its impact (i.e., minimizing structure uncertainty) on the

final analysis or decision, I suggest the following steps.

1. Minimize the length of the interval for which the assumption is required.

2. Decide, a priori, for which probability (or quantile) the decision would be

acceptable by all.

In keeping with these suggestions, the paper focuses on inference of the median

“lethal” temperature (though the results apply equally well to any smaller quan-

tile). In the case of the O-ring data, for all pessimistic models considered, the

interval J did not have to be stretched out to 31 degrees (i.e., Z = 50).

Professor Portnoy wonders why the lower bounds on the probability of FZ(50)

are so high and whether parameter uncertainty was fully and correctly accounted

for.

Lower bounds on FZ(50) deduced from the values in Table 4.1 are indeed

much higher than the bounds in Professor Portnoy’s Table 1. (I find this sur-

prising but have no explanation to offer.) However, it should be noted that the

widths of the lower confidence bounds in the two tables are not directly compara-

ble. Table 4.1 displays confidence bounds for a quantile whereas Table 1 reports

bounds for a probability.

To facilitate comparison, I present the required bounds in Table D below.

These bounds were derived by fitting a logistic regression to the observations (i.e.,

for F0) and by constraining F1 to be AR-pessimistic. When applying Theorem

3.1 and Proposition 3.1 of the paper, I used the same parameter estimates used

by Professor Portnoy (i.e., α̂ = −5.75 and β̂ = 0.170). The results in Table D

indicate that the widths of the lower confidence bounds on FZ(50) from the two

approaches are comparable.

We all agree that the right way to account for parameter uncertainty is

to use a proper confidence interval procedure. From my reading of the statistics
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literature, the likelihood ratio method can be highly recommended, despite being

an asymptotic procedure. To justify its use in cases where extrapolation of

probabilities is the main objective, it is necessary to revisit model (1.3) of the

paper. In this model, parameter uncertainty has little to do with F1 (in the region

of extrapolation) and everything to do with F0 (in the region of observations).

The latter is taken to be one of the common models (e.g., logistic or normal)

and its parameters are estimated using all the observations. In the Challenger

example there are 138 observations to account for parameter uncertainty- is this

number too small to justify the use of the likelihood ratio method?

Table D. Lower Bounds and Lower Confidence Bounds on FZ(50).

Estimated 90% (approx.) 95% (approx.)

lower bound LCB LCB

zp = 24, zq = 26 0.818 0.422 0.319

zp = 24, zq = 28 0.889 0.449 0.336

zp = 26, zq = 28 0.950 0.470 0.350

D3. Concerning the Low-dose Extrapolation Problem

Low-dose extrapolation is common in risk evaluation of carcinogens. Regu-

latory agencies are often forced to base their risk evaluations on bioassay data

because, for many carcinogens, human data on the effects of long-term exposure

to very low doses are not available. In bioassays, animals are exposed to much

higher doses than humans are likely to be exposed to, and for much shorter time

intervals. Thus, reliance on bioassay data poses two fundamental problems. One

is the problem of species conversion: effects on animals need to be converted

into implications for people. The other is the problem of low-dose extrapolation

(within a species): effects of very low doses must be extrapolated from the much

higher dose levels used in the bioassay.

To set safety standards, regulatory agencies (e.g., the EPA) traditionally

employ the benchmark dose (BMD) method with a default model of low-dose-

linearity. They claim that this approach is inherently “conservative”, leading to

safe doses (SD) that are protective of the publics health. These SD often corre-

spond to doses for which the upper bound on the projected lifetime incremental

risk is 1 in 1,000,000. However, for carcinogens that are directly or indirectly ben-

eficial, these SD may be unpractical and/or excessively protective of the public’s

health.

Applying the framework introduced in the paper, I have written a technical

report evaluating just how conservative the current BMD method is and pro-

viding, for the first time, a lower bound on the projected lifetime incremental

risk from a SD. The lower bound complements the upper bound provided by
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the current BMD method and will hopefully enable more productive risk/benefit
analyses. The derivation of these results invokes the classes of AR-pessimism and
OR-pessimism. It turns out that among the parametric models that are available
from the EPA’s software (called BMDS) for fitting the dose-response curves, all
types of outlooks (i.e., pessimistic, neutral or optimistic) are represented. The
methodology is illustrated by analyzing the same renal cancer incidence data
used by the EPA in 2001 to evaluate the carcinogenicity of and set the SD for
chronic exposure to bromate.
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