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Abstract: Let µ be a p-dimensional vector, and let Σ1 and Σ2 be p × p positive

definite covariance matrices. On being given random samples of sizes N1 and N2

from independent multivariate normal populations Np(µ, Σ1) and Np(µ, Σ2), re-

spectively, the Behrens-Fisher problem is to solve the likelihood equations for esti-

mating the unknown parameters µ, Σ1, and Σ2. We prove that for N1, N2 > p there

are, almost surely, exactly 2p+1 complex solutions of the likelihood equations. For

the case in which p = 2, we utilize Monte Carlo simulation to estimate the relative

frequency with which a typical Behrens-Fisher problem has multiple real solutions;

we find that multiple real solutions occur infrequently.

Key words and phrases: Behrens-Fisher problem, Bézout’s theorem, maximum like-

lihood estimation, maximum likelihood degree.

1. Introduction

Let µ ∈ R
p be a p-dimensional vector, and let Σ1 and Σ2 be p × p posi-

tive definite (symmetric) matrices. Consider independent multivariate normal

populations, Np(µ,Σ1) and Np(µ,Σ2), from which we have been given random

samples X1, . . . ,XN1 and Y1, . . . , YN2 , respectively. On the basis of the given

data, the famous Behrens-Fisher problem (Behrens (1929) and Fisher (1939)) is

to estimate the parameters µ, Σ1, and Σ2 by means of the method of maximum

likelihood.

It is well-known that the corresponding system of likelihood equations can-

not be solved explicitly, and that has led many to propose alternative solutions

to the Behrens-Fisher problem (Anderson (2003, p.187)). More importantly, the

Behrens-Fisher problem is an early example of a hypothesis testing problem in-

volving exponential families of densities and for which the resulting sufficient

statistics, when the parameters are restricted to the parameter space determined

by H0, fail to be complete (Linnik (1967)). In such a situation, nuisance param-

eters exist, and the construction of an exact size-α test is a difficult problem.
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Consequently, the literature on the Behrens-Fisher problem is substantial,
reflecting the intense interest which the problem has generated since its inception.
Indeed, the problem has generated an extensive philosophical discussion, as well
as many efforts to derive solutions which are optimal for statistical inference
(Wallace (1980), Kim and Cohen (1998) and Stuart and Ord (1994)). In this
paper, we determine the number of solutions of the likelihood equations.

For the case in which p = 1, there are three unknown scalar parameters, viz.,
µ, the common mean, and σ2

1 and σ2
2 , the population variances. In this case,

Sugiura and Gupta (1987) reduced the system of equations to a cubic in µ and
deduced that, almost surely, there are three complex solutions; they observed also
that the likelihood equation tended to have multiple real solutions if σ2

1 and σ2
2 are

small in comparison with µ, and otherwise that the likelihood equation usually
has a unique real solution. Drton (2007) also studied the univariate Behrens-
Fisher problem and showed, in particular, that if the null hypothesis is true then
the probability of multiple real solutions tends to zero as the sample sizes tend
to infinity. We prove the analogous result for the multivariate Behrens-Fisher
problem in Theorem 4.1.

In this paper, as in the article of Buot and Richards (2006), we apply results
from the theory of algebraic geometry to study the solution set of the system of
likelihood equations for the multivariate Behrens-Fisher problem. Generalizing
the univariate result described earlier, we prove the following.

Theorem 1.1. Suppose that N1, N2 > p. Then, almost surely, there are exactly

2p+1 complex solutions of the system of likelihood equations for the multivariate

Behrens-Fisher problem. In particular, almost surely, there always exists at least

one real solution.

2. Derivation of the Likelihood Equations

Denote by X̄ and Ȳ the means of the samples from Np(µ,Σ1) and Np(µ,Σ2),
respectively. By standard calculations (cf., Mardia, Kent and Bibby (1979,
p.142)), we find that the likelihood equations for estimating µ, Σ1 and Σ2 are:

Σ̂1 = N−1
1

N1∑

j=1

(Xj − µ̂)(Xj − µ̂)′,

Σ̂2 = N−1
2

N1∑

j=1

(Yj − µ̂)(Yj − µ̂)′,

(2.1)

(N1Σ̂
−1
1 + N2Σ̂

−1
2 )µ̂ = N1Σ̂

−1
1 X̄ + N2Σ̂

−1
2 Ȳ . (2.2)

Some authors have proposed the following iterative algorithm for solving (2.1)
and (2.2).
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(1) Begin the iteration with initial estimates Σ̂i,0 = S̃i, i = 1, 2, where

S̃1 = N−1
1

N1∑

j=1

(Xj − X̄)(Xj − X̄)′,

S̃2 = N−1
2

N2∑

j=1

(Yj − Ȳ )(Yj − Ȳ )′.

(2.3)

(2) Apply (2.2) to calculate µ̂0, the corresponding estimate of µ, in the form

µ̂0 = (N1Σ̂
−1
1,0 + N2Σ̂

−1
2,0)

−1(N1Σ̂
−1
1,0X̄ + N2Σ̂

−1
2,0Ȳ ).

(3) Use the value of µ̂0 obtained in Step (2) to calculate Σ̂i,1, an updated value

of Σ̂i,0, using the formulas

Σ̂1,1 = S̃1 + (X̄ − µ̂0)(X̄ − µ̂0)
′, Σ̂2,1 = S̃2 + (Ȳ − µ̂0)(Ȳ − µ̂0)

′,

which are a consequence of (2.5) and (2.6) below.

(4) Return to Step (2) and update µ̂j until the sequences Σ̂1,j and Σ̂2,j, j =

1, 2, 3, . . ., converge.

We are grateful to Mathias Drton for pointing out that Drton and Eichler

(2006) showed that this algorithm converges to a saddle point or a local (but

not necessarily a global) maximum of the likelihood function. If the likelihood

function were found to be multimodal, a phenomenon which has been encoun-

tered recently by Drton and Richardson (2004) in a study of seemingly unrelated

regression models, then any numerical algorithm for solving the system of like-

lihood equations necessarily must include some information about the choice of

initial values.

At first glance, the likelihood equations appear to be a system of p(p +

2) equations in p(p + 2) variables, comprising the p components of µ and the

p(p + 1)/2 entries of both Σ1 and Σ2. However, a closer inspection of (2.1) and

(2.2) reveals that if µ̂ is known then Σ̂1 and Σ̂2 are determined completely. We

show how to eliminate Σ̂1 and Σ̂2 from (2.2) so as to obtain a system of p cubic

equations in the variables µ̂1, . . . , µ̂p.

Proposition 2.1. The likelihood equations (2.1) and (2.2) for the Behrens-Fisher

problem are equivalent to

N1S̃
−1
1 (X̄ − µ̂)

1 + (X̄ − µ̂)′S̃−1
1 (X̄ − µ̂)

+
N2S̃

−1
2 (Ȳ − µ̂)

1 + (Ȳ − µ̂)′S̃−1
2 (Ȳ − µ̂)

= 0. (2.4)

Proof. We apply the standard procedure of writing each term Xi − µ̂ as Xi −

X̄ + X̄ − µ̂ to the sums in (2.1), and similarly for each term Yi − µ̂. This leads
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to the formulas

Σ̂1 = S̃1 + (X̄ − µ̂)(X̄ − µ̂)′, (2.5)

Σ̂2 = S̃2 + (Ȳ − µ̂)(Ȳ − µ̂)′, (2.6)

where S̃1 and S̃2 are defined in (2.3). By a special case of Woodbury’s theorem

(Muirhead (1982, p.580, Thm. A5.1))) we have, for any nonsingular p× p matrix

M and any column vector v ∈ R
p,

(M + vv′)−1 = M−1 −
M−1vv′M−1

1 + v′M−1v
.

Multiplying the latter equation on each side from the right by v and simplifying,

we obtain

(M + vv′)−1v = M−1v −
M−1vv′M−1v

1 + v′M−1v

=
(1 + v′M−1v)M−1v − (M−1v)(v′M−1v)

1 + v′M−1v

=
M−1v

1 + v′M−1v
.

Setting M = S̃1 and v = X̄ − µ̂, we obtain

Σ̂−1
1 (X̄ − µ̂) ≡

(
S̃1 + (X̄ − µ̂)(X̄ − µ̂)′

)−1
(X̄ − µ̂)

=
S̃−1

1 (X̄ − µ̂)

1 + (X̄ − µ̂)′S̃−1
1 (X̄ − µ̂)

, (2.7)

and, similarly,

Σ̂−1
2 (Ȳ − µ̂) =

S̃−1
2 (Ȳ − µ̂)

1 + (Ȳ − µ̂)′S̃−1
2 (Ȳ − µ̂)

. (2.8)

On rewriting (2.2) as N1Σ̂
−1
1 (X̄ − µ̂) + N2Σ̂

−1
2 (Ȳ − µ̂) = 0, it follows from (2.7)

and (2.8) that (2.2) is equivalent to (2.4).

3. The Maximum Likelihood Degree of the Behrens-Fisher Problem

Following Catanese, Hoşten, Khetan and Sturmfels (2006) and Hoşten,

Khetan and Sturmfels (2005), we call the number of complex solutions to the

likelihood equations the maximum likelihood degree. In this section we prove

Theorem 1.1, that the maximum likelihood (or ML) degree of the Behrens-Fisher

problem is 2p + 1. Before providing the details of the proof, it is instructive to
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understand why the theorem holds for p = 1 and p = 2. Denote by DX(µ̂) and

DY (µ̂) the denominators 1 + (X̄ − µ̂)′S̃−1
1 (X̄ − µ̂) and 1 + (Ȳ − µ̂)′S̃−1

2 (Ȳ − µ̂),

respectively, which appear in the likelihood equations (2.4).

Lemma 3.1. Let

N1DY (µ̂)S̃−1
1 (X̄ − µ̂) + N2DX(µ̂)S̃−1

2 (Ȳ − µ̂) = 0 (3.1)

be the system of polynomial equations obtained by clearing denominators in (2.4),

and suppose that µ̂ is a solution to (3.1). Then DX(µ̂) = 0 if and only if DY (µ̂) =

0.

Proof. Suppose that DX(µ̂) = 0. On multiplying (3.1) from the left by (X̄ − µ̂)′

we obtain N1DY (µ̂)(DX (µ̂) − 1) = 0, and so we deduce that DY = 0. Similarly,

starting with the assumption that DY = 0, we deduce that DX = 0.

We remark that, because DX(µ̂) and DY (µ̂) are strictly positive for any

real µ̂, the system of equations (2.4) and (3.1) are equivalent when determining

real solutions only. However, in the calculation of complex solutions, the like-

lihood equations (2.4) are not equivalent to (3.1), since it is possible that the

denominators are zero for complex µ̂.

Let J be the ideal defined by equation (3.1) and let I = 〈DX(µ̂),DY (µ̂)〉 be

the ideal of zeros common to the first and second denominators. Then we need to

compute and count the solutions to J : I. For the case in which p = 1 there is a

single univariate cubic polynomial in (3.1) which, generically, has three complex

roots. Since two generic univariate polynomials (in this case, DX(µ̂) and DY (µ̂))

have no common roots then the ideal I has, in general, no solutions. Hence we

conclude that J : I has exactly three solutions for the case p = 1.

We now consider the case p = 2. Since two quadrics in two variables have,

generically, four complex roots, then there are four generic solutions to I. Simi-

larly, since two cubics in two variables have generically nine complex roots, then

there are nine generic solutions to J . Therefore J : I has five complex roots for

the case in which p = 2.

Unfortunately, this counting argument fails even for p = 3. In this case, we

have two quadrics in three variables, so there are infinitely many solutions to I

and hence also to J . Yet, J : I still has finitely many solutions. Theorem 1.1

relies on the following.

Theorem 3.2.(Catanese et al. (2006)) Let f1, . . . , fn be polynomials of degrees

b1, . . . , bn, respectively, in the variables x1, . . . , xd, let u1, . . . , un be integers, let

f = fu1
1 · · · fun

n , and consider the critical equations

1

f

∂f

∂x1
=

1

f

∂f

∂x2
= · · · =

1

f

∂f

∂xn
= 0
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of log f =
∑n

i=1 ui log fi. If the number of complex solutions to this system of

equations is finite then that number is less than or equal to the coefficient of zd

in the generating function

(1 − z)d

(1 − b1z)(1 − b2z) · · · (1 − bnz)
.

Equality holds if the coefficients of the polynomials fi are sufficiently generic.

Before we proceed, there are a few points that need clarification in Theorem

3.2. First of all, given the integers b1, . . . , bn, there exists a fixed polynomial

G = Gb1,...,bn
in the coefficients of n polynomials in d variables with degrees

b1, . . . , bn; we call f1, . . . , fn generic if G(f1, . . . , fn) 6= 0. Furthermore, when

f1, . . . , fn is generic, the number of complex solutions to the critical equations is

given by the formula in the statement of the theorem. In other words, genericity

already implies the finiteness of the number of complex solutions. This follows

from Theorem 5 in Catanese et al. (2006).

Before providing the proof of Theorem 1.1, we show that the coefficients of

DX(µ̂) and DY (µ̂) are generic for almost all data X1, . . . ,XN1 and Y1, . . . , YN2.

First we need the following result that has a standard proof in the literature (for

instance based on the argument in Anderson (2003, p.76)). We present our own

proof.

Lemma 3.3. Suppose that N + 1 > p. Then given any p × p positive definite

matrix S there exist X1, . . . ,XN+1 ∈ R
p such that S =

∑N+1
i=1 (Xi − X̄)(Xi − X̄)′.

Proof. We can assume, without loss of generality that X̄ = 0. Now let

Xi = (Xi1, . . . ,Xip)
′ for i = 1, . . . , N and let XN+1 = −

∑N
i=1 Xi. Given a

positive definite matrix S, there exists a nonsingular symmetric matrix U such

that USU ′ = Λ where Λ is a diagonal matrix with diagonal entries λi > 0,

i = 1, . . . , p. Hence it is enough to prove the result for diagonal matrices Λ. The

required identity Λ =
∑N+1

i=1 XiX
′
i gives rise to p(p + 1)/2 polynomial equations,

namely,

N∑

i=1

N∑

j=1

XikXjk =
λk

2
,

k = 1, . . . , p, and

X1i(X1j +

N∑

k=1

Xkj) + X2i(X2j +

N∑

k=1

Xkj) + · · · + XNi(XNj +

N∑

k=1

Xkj) = 0,

1 ≤ i < j ≤ p. We claim that there exists at least one real solution to the

above system, where Xij = 0 for j = 1, . . . , p and i = j + 1, . . . , N . It is easy to
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check that X11 =
√

λ1/2, with X1k = X2k = · · · = Xk−1,k =
√

λk/k(k + 1) and
Xkk = −k

√
λk/k(k + 1) for k = 2, . . . , p, gives such a solution.

Theorem 3.4. For generic data X1, . . . ,XN1 and Y1, . . . , YN2 , the denominators

DX and DY are generic.

Proof. DX and DY are quadratic forms in p variables. In light of our remarks
after Theorem 3.2, there exists a fixed polynomial G in the coefficients of two
quadratic forms in p variables such that DX and DY are generic if G(DX ,DY ) 6=
0. We need to show that this condition holds for generic data. As in the proof of
Lemma 3.3, the entries of S̃1 and S̃2 are polynomials in the data. The same lemma
implies that the polynomial maps defined from the data spaces R

p×N1 and R
p×N2

are surjective onto the cone of semidefinite matrices in R
p(p+1)/2. Therefore there

exist data vectors X1, . . . ,XN1 and Y1, . . . , YN2 such that G(DX ,DY ) 6= 0. If the
statement in the theorem is not true, then there exists a Zariski-open subset
U ⊂ R

p×N1 × R
p×N2 such that for all (X1, . . . ,XN1 : Y1, . . . , YN2) ∈ U we

have G(DX ,DY ) = 0. But this means that G is identically zero, and this is a
contradiction.

Proof of Theorem 1.1. Denoting by L(µ,Σ1,Σ2) the likelihood function for
the Behrens-Fisher problem, it is well-known that

L(µ̂, Σ̂1, Σ̂2) = (2πe)−
(N1+N2)p

2 |Σ̂1|
−

N1
2 |Σ̂2|

−
N2
2 .

By (2.5) and (2.6), we have |Σ̂1| = |S̃1|·DX(µ̂) and |Σ̂2| = |S̃2|·DY (µ̂). Therefore

L(µ̂, Σ̂1, Σ̂2) = (2πe)−
(N1+N2)p

2 |S̃1|
−

N1
2 |S̃2|

−
N2
2

(
DX(µ̂)

)−N1
2

(
DY (µ̂)

)−N2
2 .

It now is clear that, to find the maximum value of L, we need to minimize

(
1 + (X̄ − µ̂)′S̃−1

1 (X̄ − µ̂)
)N1

2
(
1 + (Ȳ − µ̂)′S̃−1

2 (Ȳ − µ̂)
)N2

2 . (3.2)

Equivalently, we may minimize the logarithm of this expression, and since the
critical equations of the logarithm of (3.2) are precisely the likelihood equations
in Proposition 2.1, then Theorem 3.2 implies that the maximum likelihood degree
of the Behrens-Fisher problem is equal to the coefficient of zp in the power series
expansion of the rational function

(1 − z)p

(1 − 2z)2
,

provided that the data X1, . . . ,XN1 and Y1, . . . , YN2 , and hence DX and DY , are
generic. Expanding this rational function in a power series in z, we find that this
coefficient is

∑

i+j=p

(−1)i 2j

(
p

i

)
(j + 1),
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and an elementary calculation shows that this sum equals 2p + 1.

Step 4 in Algorithm 7 in Hoşten et al. (2005), and the theory of Gröbner

bases, imply that all 2p + 1 complex solutions can be obtained from the roots

of a univariate polynomial of degree 2p + 1. Since DX(µ̂) and DY (µ̂) have real

coefficients, this univariate polynomial also has real coefficients. In particular,

since roots occur in complex conjugate pairs then at least one root is real.

Remark 3.5. We note that our arguments which led to the derivation of the ML

degree of the Behrens-Fisher problem also apply to the more general problem of

multivariate analysis of variance (MANOVA). Suppose that we have independent

multivariate normal populations Np(µ,Σ1), . . . , Np(µ,Σk+1) and that, on the ba-

sis of random samples from each population, we wish to derive the maximum like-

lihood estimators of the parameters µ and Σ1, . . . ,Σk+1. By arguments similar

to those in Section 2, we obtain analogous likelihood equations as in Proposition

2.1, where now there are k + 1 rational summands in each of the p equations. It

then follows from Theorem 3.2 that the ML degree for the MANOVA problem is

d(k, p) :=
∑

i+j=p

(−1)i 2j

(
p

i

)(
j + k

k

)
. (3.3)

By writing this result in the form

d(k, p) = (−1)p +

p∑

j=1

(−1)p−j 2j

(
p

j

) (
j + k

k

)
,

we find that d(k, p) is odd; therefore, there always exists a real solution to the

system of likelihood equations.

We note that d(k, p) can be evaluated using methods from the calculation of

combinatorial sums, as follows. First, we write

2j

(
j + k

k

)
=

1

k!

( d

dt

)k
tj+k

∣∣∣∣∣
t=2

.

Inserting this formula in the sum in (3.3) and interchanging derivatives and

summation, we obtain

d(k, p) =
1

k!

( d

dt

)k
tk

p∑

j=0

(−1)p−j

(
p

j

)
tj

∣∣∣∣∣
t=2

=
1

k!

( d

dt

)k
tk (t − 1)p

∣∣∣
t=2

. (3.4)

In particular, d(1, p) = 2p+1, the ML degree of the Behrens-Fisher problem, and

d(2, p) = 2p(p + 1) + 1. The general formula for d(k, p) is interesting even in the
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case p = 1, for it yields the ML degree of the one-dimensional (k + 1)-population

MANOVA problem to be 2k + 1. Further, by substituting t = (1 + u)/2 in (3.4),

we recognize the outcome as Rodrigues’ formula (Szegö (1939, p.66)) for a Jacobi

polynomial P
(p−k,0)
k , and we obtain d(k, p) = P

(p−k,0)
k (3), p ≥ k.

4. Simulations and a Large Sample Size Result

Having determined the number of solutions of the system of likelihood equa-

tions (3.1) it is natural to seek the number of real solutions, for it is those solutions

which are of interest in statistical inference. Not surprisingly, it appears to be

difficult to determine an algebraic expression for the number of real solutions

of the system; indeed, this is also the case for the general theory of systems of

polynomial equations.

To study the real solutions of the system (3.1), we considered the case p = 2,

presenting empirical evidence that multiple solutions occur rarely if the model is

correctly specified. In each simulation run, we first used a random number gener-

ator to generate sample sizes N1 and N2, and a mean vector µ. We next generated

lower triangular matrices T1 and T2 with positive diagonal entries, after which

we set Σk = TkT
′
k, k = 1, 2. Finally, we simulated a random sample of vectors

Z1, . . . , ZN1 from N2(0, I2), and then we set Xj = T1Zj +µ, j = 1, . . . , N1. It fol-

lows from standard distribution theory that X1, . . . ,XN1 constitutes a simulated

sample from the bivariate normal population N2(µ,Σ1). In a similar manner, we

simulated an independent random sample Y1, . . . , YN1 from N2(µ,Σ2).

The solutions of the resulting likelihood equations (3.1) were computed nu-

merically using PHCpack (Verschelde (1999)), a software package which imple-

ments polyhedral homotopy continuation methods for solving systems of polyno-

mial equations. The results of our simulations show that multiple solutions can

occur. For example, for N1 = 11, N2 = 5, and the summary statistics

X̄ =

(
−1.5516

−9.4713

)
, S̃1 =

(
0.3998 −0.1026

−0.1026 0.2378

)
,

Ȳ =

(
−1.9175

−10.4805

)
, S̃2 =

(
0.4193 0.0792

0.0792 0.0334

)
,

the real solutions for µ are

(
−1.3570

−10.2957

)
,

(
−1.2478

−9.9902

)
, and

(
−1.4451

−9.6333

)
.

This example seems, however, to be a rare exception. Indeed, we found that the

bivariate Behrens-Fisher likelihood equations (3.1) had one real solution in about
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99.5% of simulations, three real solutions in about 0.5% of simulations, and we

found no instances in which the equations had five real solutions. However, it

is possible that (3.1) has five real solutions when the data are generated from

a “wild” distribution and not from the corresponding multivariate distributions.

For instance, for N1 = 15, N2 = 28, and

X̄ =

(
−4

−3

)
, S̃1 =

(
49.3619 −45.0547

−45.0547 42.4495

)
,

Ȳ =

(
4

1

)
, S̃2 =

(
52.8534 19.8380

19.8380 9.0472

)
,

the real solutions for µ are

(
3.9822

1.0443

)
,

(
−3.7286

3.2906

)
,

(
−2.4192

4.6925

)
,

(
2.0437

5.8993

)
,

(
1.0089

8.2001

)
.

To test for distinctions between the case of small and large samples in the

bivariate case, we performed simulations in which N1 and N2 were randomly

generated (uniform distribution) between 3 and 15. The outcomes are given as

follows, with percentages rounded-off to two decimal places:

Table 1. Simulations with 3 ≤ N1, N2 ≤ 15.

Number of solutions Frequency Percentage

1 4450 99.29%
3 32 0.71%

As noted above, none of these simulation resulted in five real solutions.

In the case of larger samples, our simulations resulted in the following out-

comes:

Table 2. Simulations with 15 ≤ N1, N2 ≤ 60.

Number of solutions Frequency Percentage

1 4404 99.46%

3 24 0.54%

Here again, no simulation resulted in five real solutions. (In both cases, the

population mean µ is randomly generated from a uniform distribution on the

subspace [−20, 20] × [−20, 20], and the population covariance matrices Σ1 and

Σ2 are randomly generated in the manner described above, with positive diagonal

entries no greater than 10.)
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In summary, there seems to be little chance that a randomly generated, two-
dimensional Behrens-Fisher problem will have three or more real solutions, and

there is a high chance that it will have a unique real solution. The following
supports the second conclusion for large sample sizes.

Theorem 4.1. Suppose that the random samples X1, . . . ,XN1 and Y1, . . . , YN2

are drawn from independent normal populations Np(µ,Σ1) and Np(µ,Σ2), re-

spectively. As N1, N2 → ∞ the likelihood equations (2.4) for the Behrens-Fisher

problem has a unique real root with probability one.

Proof. If X̄ = Ȳ then it follows from (3.2) that the unique real solution of the
likelihood equations is µ̂ = X̄ = Ȳ . Without loss of generality we can assume

that X̄ = Ȳ = 0, and with this the likelihood equations are

N1S̃
−1
X µ̂

1 + µ̂′S̃−1
X µ̂

+
N2S̃

−1
Y µ̂

1 + µ̂′S̃−1
Y µ̂

= 0. (4.1)

We argue that µ̂ = 0 is a solution of multiplicity one for the system obtained by

clearing denominators in (4.1). Let I be the ideal in C[µ1, . . . , µp] generated by
these p equations. The multiplicity of µ̂ = 0 is the length of the Artinian module

C[µ1, . . . , µp]〈µ1,...,µp〉

I · C[µ1, . . . , µp]〈µ1,...,µp〉

over the local ring C[µ1, . . . , µp]〈µ1,...,µp〉. The ideal I is generated by p polyno-

mials given by (N1S̃
−1
X + N2S̃

−1
Y )µ̂ + N1(µ̂

′S̃−1
Y µ̂)S̃−1

X µ̂ + N2(µ̂
′S̃−1

X µ̂)S̃−1
Y µ̂ = 0.

Each of these polynomials consists of a linear term and a cubic term. With prob-
ability one, the rank of N1S̃

−1
X +N2S̃

−1
Y over C is p and hence we can assume that

I is generated by p polynomials of the form µi + gi where gi has degree three.
This implies that the initial ideal of I in the local ring C[µ1, . . . , µp]〈µ1,...,µp〉 with

respect to the local term order anti-graded revlex as in Cox, Little and O’Shea
(1998, p.152) is 〈µ1, . . . , µp〉. By Corollary 4.5 of Cox, Little and O’Shea (1998),

we conclude that the length of the above module, and hence the multiplicity of
µ̂ = 0, is one. Now as N1, N2 → ∞, by the Law of Large Numbers, X̄ and Ȳ
converge to µ, and S1 and S2 converge to SX and SY . Since µ̂ = 0 is the unique

real solution to (4.1) with multiplicity one, and by the continuity of solutions to
the general likelihood equations (2.4), we conclude that, with probability one,

(2.4) has a unique real solution.
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