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Abstract: Ferré and Yao (2005) proposed an approach to the estimation of the

Effective Dimension Reduction space in functional sliced inverse regression. This

did not require the inversion of the variance-covariance operator of the explanatory

variable, and thus circumvent the main drawback of SIR in the functional case.

Forzani and Cook (2007) argued that our result is possible only under additional

conditions. Although our discussion may have created ambiguity, the result is cor-

rect and does not require further assumptions. In this note, we give the additional

details needed to make our purpose clear.
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1. Introduction

In Ferré and Yao (2005), we addressed the issue of the estimation of the

Effective Direction Reduction space in functional Sliced Inverse Regression. As

in many functional statistical problems, one of main drawback is that, while

the covariance operator of the explanatory functional variable X is invertible,

it has an unbounded inverse so that its estimator is ill-conditioned. We assume

that X is square integrable so that, for the particular problem, the covariance

operators mentioned are well-defined. Then, we proposed a solution where the

covariance operator need not be inverted. Indeed, if Γ (respectively Γe) denotes

the covariance operator of X (resp. of E(X|Y ), where Y is the real response

variable), while the EDR space is usually derived from the eigen decomposition

of Γ−1Γe, we use Γ+
e Γ, where Γ+

e is the Moore-Penrose generalized inverse of Γe.

Forzani and Cook (2007) claim that our result does not hold without addi-

tional assumptions. For illustration purpose, they give two examples to suggest

that, in general, ”the sentence the eigenvectors of Γ−1Γe are the ones of Γ+
e Γ as

stated in Ferré and Yao (2005) is not correct”. We agree with them concerning

the general case but, in the particular context of Sliced Inverse Regression, this

assertion is true as it will be proved in the next section.

Let us first focus on Forzani and Cook’s finite dimensional example.
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Recall that we are dealing with the (multivariate or functional) SIR model

Y = g(〈b1, X〉, . . . , 〈bD, X〉, ε), (1)

and assume the linearity condition of Ferré and Yao (2005).

For any real response Y, and particularly under the model above, one has

Γ = Γe + Λ, where Λ = E(Var (X|Y )) is a positive definite operator ( in either

the finite or infinite dimensional case).

The finite-dimensional example of Forzani and Cook is not compatible with

the SIR model, since we have : Γ =

(

2 1

1 4

)

, Γe =

(

2 0

0 0

)

, and then Λ = Γ−Γe =
(

0 1

1 4

)

is not positive definite.

This illustrates only the known fact that the proposal is uncorrect in general,

but it does not prove that it is uncorrect under (1).

On the other hand, the examples treated (simulated or real) in Ferré and Yao

(2005), Ferré and Villa (2005) and in Amato, Antoniadis and De Feis (2006) sug-

gest that our approach leads to convenient solutions. In Amato et al. (2006) a

similar solution is proposed except that the conditional covariance operator is

estimated from wavelets instead of kernels. Concerning their simulated example

based on Brownian motion, the results are not surprising since their EDR space

is generated by some eigenfunctions of the covariance operator of the Brownian

motion and, thus, the assumption added by Forzani and Cook is straightfor-

wardly satisfied. This is no longer true for our simulations and we have a priori

no idea for real data, but it works. Thus, the underlying properties of the model

are responsible for the possibility of estimating the EDR space from Γ+
e Γ.

In the following section, we present lemmas and a theorem to this effect

in the context of multivariate and functional SIR, and without any additional

assumptions. Moreover, we prove that Condition A of Forzani and Cook is

satisfied under Model (1). The results of Ferré and Yao (2005) are thus clarified.

2. Additional Results

We first introduce some notations. Let

• β1, . . . , βD be the Γ-orthonormed eigenvectors of Γ−1Γe associated with strictly

positive eigenvalues (λi)i=1,...,D;

• ΠΓ
SD

=
∑D

i=1 Γβi ⊗ βi be the Γ−orthogonal projector onto the space SD =

R(Γ−1Γe);

• ΠΓ∗
SD

be the adjoint of ΠΓ
SD

, i.e., ΠΓ∗
SD

=
∑D

i=1〈βi, .〉Γβi;

• ΠR(Γe) be the orthogonal projector onto R(Γe).
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If we complete the basis (βi)i=1,...,D to obtain a basis of Γ−orthonormed vec-

tors of H, we have ΠΓ

S
⊥

Γ

D

=
∑

j>D Γβj⊗βj (where S⊥Γ

D is the space Γ−orthogonal

to SD) . Let ΠΓ∗

S
⊥Γ

D

be its adjoint.

Lemma 2.1. For all b ∈ H, we have ΠR(Γe)b = ΠR(Γe).Π
Γ∗
SD

b.

Proof. Let b ∈ H, so b = ΠΓ∗
SD

b + ΠΓ∗

S
⊥Γ

D

b (by identifying H and its dual). Thus,

ΠR(Γe)b = ΠR(Γe).Π
Γ∗
SD

b + ΠR(Γe).Π
Γ∗

S
⊥

Γ

D

b.

Since for a fixed, j > D, 〈βi, Γβj〉 = 0 for all i ∈ {1, . . . ,D}, we have

E(〈βj , X〉|Y ) = 0 a.s. (see Dauxois, Ferré and Yao (2001)). So, E(ΠΓ∗

S
⊥

Γ

D

X |Y ) =

0 a.s. and E(X|Y ) = E(ΠΓ∗
SD

X|Y ) a.s.

Then,

Γe = var(E(X|Y )) = var(E(ΠΓ∗
SD

X|Y )) = ΠΓ
SD

ΓeΠ
Γ∗
SD

, (2)

which implies that R(Γe) ⊂ SD and, since ΠΓ∗

S
⊥

Γ

D

b =
∑

i>D〈βj , b〉Γβj , we have

ΠR(Γe).Π
Γ∗

S
⊥

Γ

D

b = 0 so ΠR(Γe)b = ΠR(Γe).Π
Γ∗
SD

b.

Remark. This result is interesting in that the second example (in infinite di-

mensions) of Forzani and Cook cannot hold under the SIR model.

Indeed, suppose that Model (1) holds in the context of their example. Then

we are dealing with a single index model (i.e., i = 1). Now, according to their

assumptions, we get β1 = f/
√

〈Γf, f〉 and, as they suggest, Γe = ΠR(Γe) =

h ⊗ h/ ‖h‖2.

But, by using the previous Lemma (more precisely equality (2) in the proof),

we have Γe = ΠR(Γe) = (‖h‖2 /〈Γf, f〉)〈f, .〉f, which implies that there exists a

constant c such that h = c f and then, necessarily as they show, if f =
∑

∞

i=1 aiφi

with
∑

∞

i=1 a2
i < ∞, there exists an ai = 0, which is a condition required for

Model (1) to hold, in contradiction to the Forzani and Cook statement.

Lemma 2.2. For i = 1, . . . ,D, 〈βi,X〉 = 〈ΠR(Γe)βi, X〉.
Proof. Since for all i = 1, . . . ,D, Γ−1Γeβi = λiβi, Γeβi = λiΓβi, and then

Γβi ∈ R(Γe) (and Γβi = ΠR(Γe)Γβi ). So we have βi = ΠΓ
SD

βi =
∑D

i 〈Γβi, βi〉βi =
∑D

i 〈Γβi,ΠR(Γe)βi〉βi = ΠΓ
SD

ΠR(Γe)βi and

〈βi, X〉 = 〈ΠΓ
SD

ΠR(Γe)βi,X〉 = 〈βi, ΠR(Γe).Π
Γ∗
SD

X〉.

Now, applying the previous lemma to X, for all i ∈ {1, . . . ,D}, 〈βi, X〉 =

〈βi, ΠR(Γe)Π
Γ∗
SΓ

D

X〉 = 〈ΠR(Γe)βi, X〉, and the proof is complete.

Theorem 2.3. For i = 1, . . . ,D , βi is an eigenvector of Γ+
e Γβi.
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Proof. From 〈βi,X〉 = 〈ΠR(Γe)βi, X〉, we get Γβi = E(〈ΠR(Γe)βi,X〉X) =

Γ ΠR(Γe)βi, and then βi = ΠR(Γe)βi which implies that βi ∈ R(Γe). Now, we have

Γ−1Γeβi = λiβi, and then ΠR(Γe)βi = λiΓ
+
e Γβi.

This achieves the proof since ΠR(Γe)βi = βi.

The above theorem shows that, for i = 1, . . . ,D, the vector βi is the eigen-

vector of Γ+
e Γ associated with eigenvalue 1/λi. Since R(Γ−1Γe) and R(Γ+

e Γ) are,

under Model (1), both D−dimensional subspaces that contain the D indepen-

dent vectors β1, . . . , βD, we have proved that in the framework of (multivariate

or functional) SIR,

R(Γ−1Γe) = R(Γ+
e Γ).

Then, unlike the Forzani and Cook claim, this property holds without additional

assumptions under Model (1). Moreover, R(Γe) is also a D−dimensional sub-

space that contains the βi’s so that

R(Γ−1Γe) = R(Γ+
e Γ) = R(Γe),

and we find again the result obtained by Forzani and Cook.

In practice, since βi belongs to R(Γe) and Γeβi = λiΓβi, we have Γ+
e Γβi =

1/λiβi. This leads to Γ1/2Γ+
e Γ1/2νi = 1/λiνi by letting νi = Γ1/2βi. Then, the vec-

tors νi are derived from the eigenvalue decomposition of Γ1/2Γ+
e Γ1/2, and we have

λiΓ
+
e Γ1/2νi = λiΓ

+
e Γβi = βi. Now let Γn be the usual (empirical) estimate of Γ,

and Γ̂e a root-n consistent estimates of Γe. Then, for i = 1, . . . , n, the estimation

of βi is achieved by β̂i = λ̂iΓ̂
+
e Γ

1/2
n ν̂i, where ν̂i is the eigenvector of Γ

1/2
n Γ̂+

e Γ
1/2
n

associated with eigenvalue 1/λ̂i. This is the estimator proposed in Ferré and Yao

(2005). Finally, we have Γ
1/2
n Γ̂+

e Γ
1/2
n −Γ1/2Γ+

e Γ1/2 = Op(1/
√

n) and, by applying

the results of the perturbation theory of linear operators, we achieve the root-n

consistency of the estimates of the β’s as indicated in Ferré and Yao (2005).
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Ferré L. and Villa N. (2005) Discrimination de Courbes par Regression Inverse Fonctionnelle.

Rev. Statistique Appliqués LIII, 39-57.



REPLY “A NOTE ON SMOOTHED FUNCTIONAL INVERSE REGRESSION” 1687
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