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Abstract: The probabilistic models used in the inference of phylogenetic trees from

molecular data are particularly rich in algebraic structure. This was first noticed 20

years ago when certain polynomials called phylogenetic invariants were introduced

by Cavender and Felsenstein, and by Lake. Recently, however, there have been

considerable advances in our algebraic understanding of these models. We survey

some of this work, indicating both how algebra has been exploited for theoretical

understanding and the preliminary steps that have been taken toward its use in

practical inference.
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1. The Problem of Phylogenetic Inference

Phylogenetics is concerned with the inference of evolutionary relationships

among a collection of organisms, or taxa. Most often the relationships that

are sought will be described by a phylogenetic tree. In such a tree, each given

taxon will appear at a leaf, while (unlabeled) internal nodes represent inferred

ancestors.
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Figure 1.1. Three of the 15 possible rooted phylogenetic trees relating 4 taxa.

In Figure 1.1, for example, we see three rooted phylogenetic trees that might

relate the four taxa S1, S2, S3 and S4. The roots of these trees indicate the

location of the most recent common ancestor of the given taxa. However, even

an unrooted tree can carry much information about evolutionary relationships,
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and inference of the root location may not even be possible. Note that if roots

are ignored then the two trees on the right of Figure 1.1 are topologically the

same, while the one on the left is different.

Although the data underlying phylogenetic inference might be of many types,

in this article we limit ourselves to discussing approaches suitable for biological

sequence data (e.g., DNA, proteins). In this setting, not only can reasonable

probabilistic models be devised to describe evolutionary changes, but the models

also naturally display a rich algebraic structure.

Combining sequence data with an appropriate model of evolution enables

phylogenetic inference to be performed in standard statistical frameworks, such

as the maximum likelihood or Bayesian paradigms. Indeed, software implemen-

tations of these methods (e.g., PAUP* (Swofford (2002)), Phylip (Felsenstein

(2004b)), MrBayes (Ronquist and Huelsenbeck (2003))) are widely used. How-

ever, largely because of the rapid growth in the number of possible trees that

might relate a collection of taxa (for n taxa, there are (2n − 3)!! possible rooted

binary trees), the necessary computations can easily exceed what is possible.

Often compromises are made, through the use of simple models and heuristic

searches. Thus there remains a need for new perspectives and insights, both to

better understand the nature of the problem, and to develop improved practical

approaches. Algebraic statistics provides one such perspective.

While the idea of applying algebra to phylogenetic inference first emerged 20

years ago (Cavender and Felsenstein (1987) and Lake (1987)), recently there has

been a resurgence of activity and progress. In subsequent sections, we introduce

phylogenetic models, emphasizing their algebraic aspects. We discuss how this

perspective has led to deeper theoretical understanding of the inference problem,

and describe steps taken toward incorporating it into practical inference. We

sketch results for those evolutionary models that are best understood, empha-

sizing the way tree topology is reflected in algebraic structures. We particularly

hope to interest more researchers in investigating how algebraic understanding

might be further exploited in data analysis.

2. Models of Molecular Evolution

Sequence data for a phylogenetic inference problem is usually a collection of

aligned sequences, one for each taxon to be related. In an alignment of sequences,

sites (positions) are matched so that each is presumed to correspond to an an-

cestral sequence site. We assume that all unalignable sites are omitted from our

data so that, in the case of DNA for example, it might appear as in Table 2.1. A

site will be referred to as a character, and the particular sequence building-block

(e.g., A, G, C or T for DNA) in that site as a character state.
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To introduce a simple probabilistic model of sequence evolution along a tree,
consider a rooted tree, such as that in Figure 2.2, and assume that characters
have the four states appropriate for DNA (1 = A, 2 = G, 3 = C, 4 = T ). We
model evolution of a single character, treating the different characters in the data
as independent trials of the same process (i.i.d. assumption).

Table 2.1. Aligned DNA sequences for four taxa.

Taxon S1: AAGCTTCACCGGCGCAATTATCCTCATAATCGCCCACGGACTTACATCCTCATTATTA...

Taxon S2: AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGGCTTACATCCTCATTACTA...

Taxon S3: AAGCTTCACCGGCGCAGTTGTTCTTATAATTGCCCACGGACTTACATCATCATTATTA...

Taxon S4: AAGCTTCACCGGCGCAACCACCCTCATGATTGCCCATGGACTCACATCCTCCCTACTG...
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Figure 2.2. A rooted 5-leaf tree.

At the root r of the tree, a root distribution vector π = (π1, π2, π3, π4) de-
scribes the probabilities of each possible state occurring in the most recent com-
mon ancestor of the given taxa. For the ith edge of the tree, a 4 × 4 Markov
matrix Mi gives conditional probabilities of the 16 possible state changes that
might occur in passing from ancestor to descendant along that edge. Thus there
are 3 + 12|E| independent numerical parameters for this general Markov model

of DNA evolution, where |E| = 8 is the number of edges in the tree. Let-
ting P (i1, i2, i3, i4, i5) denote the probability of observing state ij at taxon Sj,
j = 1, . . . , 5, for the tree of Figure 2.2 we obtain the formula

P (i1, i2, i3, i4, i5)

=

4∑

s=1

πsM1(s, i1)

(
4∑

t=1

M2(s, t)

(
4∑

u=1

M3(t, u)M4(u, i2)M5(u, i3)

)

·

(
4∑

v=1

M6(t, v)M7(v, i4)M8(v, i5)

))

. (2.1)

The full joint distribution P for an n-leaf tree is thus specified by an n-dimensional
4×· · ·×4 table, whose entries can be calculated efficiently by polynomial formulas
analogous to equation (2.1).
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That formulas such as equation (2.1) are polynomial indicates that algebraic
methods might be useful in phylogenetics. In fact, such polynomials are highly-
structured and encode the topology of the tree; a different tree topology leads

to different polynomial formulas. We refer to any model for which the joint
distribution is given by polynomial formulas as algebraic.

Since the general Markov model is parameter-rich, more restrictive submod-
els can be of interest. In particular, the Jukes-Cantor, Kimura 2-parameter, and

Kimura 3-parameter models all assume a uniform root distribution, and that the
Markov matrices on each edge have the respective forms

MJC =





∗ a a a

a ∗ a a

a a ∗ a

a a a ∗



 , MK2 =





∗ a b b

a ∗ b b

b b ∗ a

b b a ∗



 , MK3 =





∗ a b c

a ∗ c b

c b ∗ a

b c a ∗



 .

Here the parameters a, b, c in the matrices may vary from edge to edge of the

tree. The Jukes-Cantor model thus states that on each edge all possible state
changes have the same probability of occurring, while the Kimura 2-parameter
model allows for transitions (A ↔ G, C ↔ T ) and transversions to occur with
differing probabilities, as is often observed. Note that with any of these models

we retain polynomial formulas for the joint distribution, such as in equation (2.1),
so these models are also algebraic.

In current practical inference it is most common to assume that all Markov
matrices on the tree edges arise from a common rate matrix Q. Here Q is a
4 × 4 matrix with non-negative off-diagonal entries — the instantaneous rate of

various state changes — and with rows summing to 0. Each edge e of the tree
is then assigned an edge length parameter te, representing actual time or some
non-clock-like measure of mutation. The Markov matrix giving state change
probabilities from one end of the edge e to the other is then Me = exp(teQ). The

root distribution π is generally taken to be an eigenvector of Q with eigenvalue
0, so that the state distribution is stationary under the substitution process on
each edge, and Q is assumed to be time-reversible (see Felsenstein (2004a)). Note
that this parameterization is not purely algebraic, as it involves the exponential

function. However, algebraic methods can be used to study these models also,
as they are more restrictive submodels of the algebraic general Markov model.

The assumption of a common rate matrix across a tree is certainly dubious
for some data sets, as are the stationary base distribution and time-reversible

assumptions. As phylogenetic work advances and more complex data sets are
collected and analyzed, it becomes desirable to relax such overly simplistic as-
sumptions. Thus the discrete time (one matrix per edge) formulation of the
algebraic models we focus on can be viewed as a potential strength, as it allows

some weakening of questionable hypotheses.
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Finally, it is also common to consider models in which the i.i.d. assumption is

relaxed somewhat so that different sites may evolve at different rates. This may

be handled by explicitly partitioning the data (if one has information on natural

ways to do this) or by considering mixture models in which the partitioning is

controlled by parameters. In the continuous-time formulation, one might imagine

several classes of sites, each with its own scalar rate parameter λi, so that for

class i the Markov matrices are Me = exp(teλiQ). The mixing parameters si

then describe the proportion of sites in each class, and the joint distribution is

simply a sum, weighted by the si, of the joint distributions for each class.

For algebraic models, such as the general Markov, we can similarly construct

mixture models allowing rate variation across sites. If we allow several classes

of sites, then each class has its own set of general Markov parameters (with the

same tree), and the joint distribution for the model is simply a weighted sum of

joint distributions for each class, with weights given by the mixing parameters.

For DNA evolution, such a general Markov model mixture with N classes would

thus have (N − 1) + N(3 + 12|E|) independent parameters, where |E| is the

number of edges in the tree.

3. Phylogenetic Invariants

The origin of an algebraic approach to phylogenetic inference can be traced

to two independent papers (Lake (1987), Cavender and Felsenstein (1987)). (Al-

though Lake (1987) seems to have had the greater impact in the early days, we

recommend Cavender and Felsenstein (1987) for its more illuminating viewpoint

and closer connection to recent work.) These papers introduced polynomials

referred to as phylogenetic invariants, and proposed their use in inference.

Fix a phylogenetic tree T with n taxa labeling the leaves, and a 4-state

algebraic model M of character evolution. We then have a polynomial parame-

terization

φT,M : S → R
4n

giving the joint distribution in terms of the numerical parameters. Here S ⊂

[0, 1]L denotes the numerical parameter space for the model on T . The image

φT,M(S) of this map forms a piece of a ‘surface’ of dimension L (or less) in

4n-dimensional space. Because the parameterization is given by polynomials, a

fundamental result from algebraic geometry ensures that there will be another set

of polynomials, in the 4n coordinate variables of the image space, that evaluate

to zero at every point of the image. Polynomials in this second set are called

phylogenetic invariants for T and M. They give an implicit description, as a

zero-set, of the collection of all joint distributions arising from the model for this

fixed tree.
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More formally, the set of all phylogenetic invariants for T , M is called the

phylogenetic ideal IT,M of the polynomial ring C[P ], defined by

IT,M = {f(P ) | f(φT,M(s)) = 0 for all parameters s ∈ S}.

Although S is a subset of [0, 1]L, since φT,M is polynomial, this function extends

to a polynomial map on all of C
L. Though unnatural from a statistical viewpoint,

this extension to complex parameters puts us in a convenient setting to use the

tools of algebraic geometry. Importantly, IT,M is unchanged if S is replaced by

C
L in this definition.

The phylogenetic variety VT,M is the set of points on which all phylogenetic

invariants vanish,

VT,M = {P ∈ C
4n

| f(P ) = 0 for all f ∈ IT,M}.

Thus the phylogenetic variety contains all (complex) joint distributions that arise

from the model on T , as well as some additional points in the closure of that set.

While we are of course most interested in points on VT,M that are in φT,M(S),

even the points on VT,M with real coordinates form a strictly larger set.

While phylogenetic invariants give all polynomial equalities satisfied by joint

distributions arising from a model, note that Cavender and Felsenstein (1987)

already recognized that polynomial inequalities are also satisfied by distributions

arising from stochastically-meaningful parameters. In algebraic geometry it is

well-understood that if one restricts from complex parameters to real ones then

inequalities are generally necessary to characterize the image of a parameteri-

zation map, and the further restriction of parameters to stochastic values can

lead to additional inequalities. However, determining such inequalities explicitly

is a difficult problem of real algebraic geometry, and in the phylogenetic setting

much needs to be accomplished in this direction. (See, however, the recent work

of Stefankovic and Vigoda (2007) on linear inequalities.) In this short survey we

limit our focus to invariants.

For the general Markov model, and many others, it can be shown that

phylogenetic varieties are independent of the root location in the tree; that

is, even though the parametrization map φT,M is defined by specifying a root,

the (closure of) its image depends only on the topology of the unrooted tree

(Steel, Székely and Hendy (1994) and Allman and Rhodes (2003)). (This trait

is shared by the non-algebraic continuous-time reversible model so heavily used

in practical inference as well.) Consequently, from now on we treat all trees as

unrooted.

A naive plan for using phylogenetic invariants for inference proceeds as fol-

lows. Having chosen a particular model M, for each possible tree T that might
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relate the given taxa, find a collection of phylogenetic invariants. From the se-

quence data, compute the observed joint distribution P̂ . Then choose as the

best tree the one for which the invariants are somehow ‘closest’ to zero when

evaluated on P̂ .

In following such a scheme, we emphasize that there is no estimation of any

numerical model parameters. Whether one views such parameters as ‘nuisances,’

or merely recognizes that their inference can be time-consuming, this is one

reason why invariants are attractive. Of course, with a tree in hand inference of

numerical parameters can then be performed more quickly.

In principle, generators of the phylogenetic ideal can be computed from

the polynomials defining the parameterization map, using computational algebra

techniques built on Gröbner bases. In practice, however, except for the simplest

models and small trees, the number of variables involved in such a calculation is

too great for even the best current software.

To give concreteness to the idea of an invariant, we sketch two construc-

tions. The first of these comes from Cavender and Felsenstein (1987); the sec-

ond is also motivated there, and plays an important role in more recent works

(Sturmfels and Sullivant (2005), Allman and Rhodes (2007a)). Both illustrate

the important point that specific invariants can often be given very natural in-

terpretations as statements about a tree and model.

Consider the 4-taxon tree of Figure 3.3 viewed as a metric tree, and let dij

denote the total edge-length distance along the tree between taxa Si and Sj.

Then the 4-point condition (Buneman (1971)) asserts

d12 + d34 < d13 + d24 = d14 + d23, (3.1)

for any assignment of positive edge lengths to this tree. Furthermore, the two

other unrooted binary topological trees that might relate four taxa lead to dis-

tances that do not satisfy this condition. Now for the general Markov model on

the tree of Figure 3.3, let Pij denote the matrix of expected frequencies of pairs

of states at the taxa Si and Sj (so Pij is a 2-dimensional marginalization of the

full 4-dimensional table P giving the joint distribution). Then one can show that

Dij = detPij behaves much like a multiplicative version of a distance on the tree,

and thus the equality (3.1) yields, for a DNA model, the degree 8 polynomial

equation

D13D24 − D14D23 = 0.

Indeed, for the general Markov model, Dij is (up to some minor adjustments)

the exponential of the log-det distance later introduced by Steel (1994). Since

the Jukes-Cantor and Kimura models are submodels of the general Markov one,

the left hand side of this equation is an invariant for all of these models.
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Figure 3.3. A 4-taxon tree.

For a second construction of invariants, again consider the 4-state general

Markov model on the tree of Figure 3.3, and imagine the root placed midway

along the central edge. Then, conditioned on the state at the root, state changes

on the right half of the tree are independent of those on the left half of the

tree. If only one state were possible at the root, then a 42 × 42 table of the

joint distribution entries (with one dimension referring to states at the leaves in

the left of the tree and one to the right) would be a contingency table for two

independent 16-state variables, and hence a rank 1 matrix. Since 4 states are

possible at the root, this table is instead a rank 4 matrix. But this implies all

5 × 5 minors (subdeterminants) of this matrix will be 0. Thus each such minor

gives a degree 5 invariant for the model, and collectively these
(16

5

)2
polynomials

encode conditional independence of evolution on the two halves of the tree.

Lake (1987), and many papers following shortly thereafter, focused solely on

finding and using linear invariants, the degree 1 polynomials in IT,M. (Reasons

for this will be discussed in Section 5.) Cavender and Felsenstein (1987) found

higher degree invariants, but worked primarily with a 2-state version of a Jukes-

Cantor model. In subsequent research, some of which is quite recent, phylogenetic

invariants have been investigated thoroughly for the Jukes-Cantor and Kimura

models, and for the general Markov model.

Although we defer a survey of these results until Section 6, we informally

describe them here: For those models most thoroughly investigated, invariants

for an arbitrary tree can be understood through those associated to local structures

in the tree. More particularly, specific invariants can be associated to each edge

in a tree, and to each internal node in a tree, and from these one can produce

all, or at least ‘most’, invariants. Examples of such invariants have already

appeared above: the invariants encoding conditional independence statements

about evolution on two parts of a tree separated by an edge.

We note that the association of invariants with local features in a tree gives

a further compelling motivation for their investigation. In practical applications,

one can hope to exploit this feature of invariants to provide measures of data

support for local features within a tree, and then to use such measures as a

means of inferring a tree from data by identifying local features.
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4. Theoretical Insights from Invariants

Despite being originally proposed for use in inference, to date invariants have

been most useful in providing theoretical understanding.
If a model is to be used for inference, it is of course crucial that the parameters

of interest be identifiable. For phylogenetic models, the most important of these

parameters is certainly the tree. While identifiability of the tree topology was
known for models such as Jukes-Cantor, Kimura, and even general Markov, for

mixture models allowing rate variation across sites little was known until recently.

For non-mixture models, tree identifiability was approached as follows. First,
a natural distance between leaves of a tree was defined, and computed from 2-

marginals of the joint distribution. Then these distances could be used to identify

the topology, using equation (3.1). Unfortunately, this approach is not applica-
ble to mixture models, since there is no known means of defining computable

distances in such a setting.

Allman and Rhodes (2006) used phylogenetic invariants to obtain the first
tree identifiability results for general sorts of mixtures. A general-Markov-like

model which allows more states at internal nodes of the tree than at the leaves is

introduced in that paper. Then invariants expressing conditional independence
statements on the internal edges of the tree are constructed. The vanishing of

these invariants can then be shown to identify the tree topology for generic values

of model parameters. Although this model is far too general to be useful in data
analysis, many models of more direct biological interest can be embedded in it,

yielding results like the following.

Theorem 1. (Allman and Rhodes (2006)). Consider a binary tree and the

4-state general Markov model. Then for mixture models allowing up to 3 rate

classes, the tree topology is identifiable for generic choices of parameters.

Of particular interest is another type of rate variation model called the co-

varion model (Tuffley and Steel (1998)). This is a model that allows a character
to switch between ‘on’ and ‘off’ states as it evolves over a tree, modeling the

intermittent presence of functional constraints in living organisms. When ‘on’ a

standard Markov model of state change applies; when ‘off’ no state changes can
occur. The on-off changes are themselves governed by a Markov process. As this

model can also be embedded inside one allowing more states at internal nodes

than leaves, further arguments show the following.

Theorem 2. (Allman and Rhodes (2006)). Under the covarion model on a

binary tree, for generic choices of parameters the tree topology is identifiable.

Note that the covarion model is formulated as a continuous-time model,

and is not itself algebraic. Nonetheless, tree identifiability for it has only been

established by algebraic arguments.
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In another direction, invariants have been used to investigate issues of multi-

ple maxima in maximum likelihood inference of trees and numerical parameters.

Maximum likelihood inference of phylogenetic trees is generally performed by

using some approximate optimization scheme to explore the space of numerical

parameters, combined with a heuristic search of tree space (unless the number

of taxa is small enough for a complete tree search). Thus one seldom has a guar-

antee that a true optimum has been found. While data sets had been found for

which standard software finds multiple local optima (Salter (2001)), theoretical

understanding of the situation has lagged behind.

For small trees and simple models, one might try to determine the max-

imum likelihood point by equating the gradient of the log-likelihood function

to zero and solving the resulting equations algebraically. This was done in a

simple 3-taxon case by Yang (2000). Subsequently, 3- and 4-taxon cases were

considered by Chor, Hendy, Holland and Penny (2000), Chor, Hendy and Penny

(2001), Chor, Khetan and Snir (2003), Chor, Hendy and Snir (2006) and Chor

and Snir (2004). However, in order to make the algebra tractable, these later

papers typically formulate the maximization problem not in terms of the param-

eters of the model, but rather in terms of the unknown joint distribution. Thus

a constrained optimization problem, with phylogenetic invariants providing the

constraints, is posed. Using computational algebra software, this problem can

then solved exactly. Among the results are examples of 4-taxon data for which

a 2-state model similar to the Jukes-Cantor leads to the maximum of the like-

lihood function occurring for two different trees and a continuum of numerical

parameters on each tree.

Hoşten, Khetan and Sturmfels (2005) present a more general investigation

of algebraic approaches to likelihood maximization, in both constrained and un-

constrained formulations. In one phylogenetic example, using data from 4 taxa

and the Jukes-Cantor model, they determine algebraically that there are multiple

local maxima. While a similar computation with a more general model or more

taxa is not yet feasible, it is remarkable that any such likelihood calculation has

been done exactly.

5. Steps Toward Practical Applications

One attractive feature of Lake’s proposal to use linear invariants for phyloge-

netic inference (Lake (1987)) is that it permits a weakening of the i.i.d. assump-

tion that all sites evolved according to the same process. Specifically, suppose

all sites are described by the same model M, but perhaps with different choices

of numerical parameters. Then such a rate-variation mixture model gives a joint

distribution on which any linear invariant of M will vanish. We can see this

geometrically: The zero-set of a linear invariant is a hyperplane. If we have a
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collection of joint distributions on such a hyperplane, then any weighted sum

of them lies in the hyperplane as well. Thus any phylogenetic inference scheme
based solely on linear invariants will be insensitive to this type of rate variation.

Unfortunately, Lake’s linear invariant method was not found to be very useful

for practical inference. Although the method is statistically consistent, several

works (most notably, Huelsenbeck (1995)) used simulation studies to show that
it was extremely inefficient compared to other methods. Even when data was

simulated from the assumed model, the sequence length needed to reliably infer

the generating tree was very much greater for Lake’s method than, for instance,

maximum likelihood.
From the inefficiency of Lake’s linear invariant method a perception has

grown that any practical use of invariants will require much longer sequences

than other methods to perform reliably, even in the absence of rate-variation

mixtures. However, both theory and recent simulation studies show there is no
basis for this view.

Consider, for instance, the application of Lake’s invariants to data generated

from a Kimura 3-parameter model on a tree relating 4 taxa. Then testing for
the vanishing of Lake’s two linear polynomials on an observed joint distribution

amounts to testing whether that joint distribution lies on (or near) two partic-

ular hyperplanes (i.e., a linear space of dimension 61) in a space of dimension

44 − 1 = 63. However, the set of all joint distributions arising from this model is
much smaller than this. There are only 15 numerical parameters for the model

on this tree, and one can show the phylogenetic variety has dimension exactly 15.

There are many more phylogenetic invariants for this model, of degree greater

than 1, which are needed to test whether a point is on or near the 15-dimensional
set. It is because the variety is ‘curved’ and not ‘flat’ that these are non-linear,

and ignoring the non-linear invariants simply throws away too much of the infor-

mation in the data. If one considered all invariants for the Kimura model, one

could potentially have a much more efficient method.
While this argument helps explain why hopes for Lake’s invariants were not

realized, there are further reasons why one should suspect all invariants will

perform better. As was pointed out in Section 3, the equality of the 4-point

condition can be expressed as a higher-degree invariant. But the neighbor joining
algorithm (Saitou and Nei (1987)) is built on combining the 4-point condition for

distances with simple averaging ideas, and so one might expect a clever use of

invariants to at least match neighbor joining in performance. (Although neighbor

joining can be justifiably criticized for its lack of a firm statistical framework,
because of its speed and reasonably good performance it remains an important

heuristic.)

Theoretical arguments aside, the same sort of simulation studies that showed

Lake’s invariants to be inefficient have recently shown that uses of non-linear
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invariants can be highly efficient. Casanellas, Garcia and Sullivant (2005) and

Casanellas and Fernández-Sánchez (2007) investigate the performance of one

scheme using invariants to infer trees from data generated under a Kimura 2-

parameter model. First a particular generating set of 8,002 polynomials fi,j(p)

was chosen for ITj ,M, where Tj , j = 1, 2, 3, denotes one of the three topologically-

distinct unrooted trees that might relate 4 taxa, and M was the Kimura 3-

parameter model. The near-vanishing of all phylogenetic invariants for Tj on an

observed joint distribution P̂ was measured by the statistic

sj =
∑

i

∣∣∣fi,j(P̂ )
∣∣∣ ,

and the tree Tj was chosen if sj was the smallest of the three such statistics.

Although the results in the first of these papers were promising, in that the correct

tree was inferred a high percentage of the time even without long sequences, a

lack of comparison to other methods made interpreting the results difficult.

Casanellas and Fernández-Sánchez (2007) remedy this by following the meth-

odology of Huelsenbeck (1995), so that easy comparisons could be made to other

inference methods. For that part of parameter space for 4-leaf trees that was con-

sidered, this invariant-based method is indeed quite efficient, with performance

comparable to that of maximum likelihood. Furthermore, in some small regions

of parameter space, it appears that invariants may even be more efficient than

any of the methods considered by Huelsenbeck (1995).

Note that the statistic above is dependent on the precise choice of generators

of the phylogenetic ideal. Although the generators used in these works were

natural ones from an algebraic point of view, it is unclear whether others might

behave better in inference; we do not yet know whether the invariants that are

most useful statistically will be the ones that are algebraically simplest.

Also, these works were limited to inference of 4-taxon trees. As the number

of invariants needed to generate the full ideal grows considerably as the number

of taxa increases, it seems unlikely that a straightforward extension of the above

statistic will ultimately prove useful. Whether all 4-taxon invariants can lead to

a useful quartet-method for inference of larger trees, or other sets of invariants

associated to the local structure of the tree can be effectively exploited, remains to

be investigated. Nonetheless these studies have clearly shown that invariants have

potential application in data analysis, and are worthy of further investigation.

Another method of inferring a tree was developed by Eriksson (2005) using

ideas based on invariants, even though the invariants themselves do not appear in

the final implementation. For the general Markov model of DNA evolution on an

arbitrary tree, the invariants associated to an edge in the tree (or, equivalently,

to the bipartition of taxa produced by deleting that edge), arise from the fact
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that a certain matrix constructed from the joint distribution must have rank at

most 4, as was indicated in Section 3. If one considers a matrix constructed

from an observed distribution in this way for some bipartition of the taxa, then

it should be close to a rank 4 matrix if there is an edge in the true tree inducing

that bipartition. Thus an algorithm based on edge invariants might simply test

which matrices associated to bipartitions are nearly of rank 4. As the singular

value decomposition provides a good means of calculating how far a matrix is

from having any given rank, and numerical algorithms for computing the SVD

are highly developed, it is convenient to replace use of the edge invariants with

SVD considerations.

The algorithm of Eriksson (2005) proceeds as follows, in a way reminiscent

of neighbor joining: First observe that any tree relating four or more taxa must

have at least two cherries (a cherry is a pair of taxa each joined to a common

vertex by a single edge). Then consider all possible bipartitions of taxa in which

one set has only two elements (a potential cherry). Use the SVD to choose the

bipartition for which the corresponding matrix is closest to rank 4. Then join the

two taxa together in a cherry. Treating this cherry as if it were a single taxon,

we now have one fewer taxon and can repeat the process until all taxa are joined.

Although this algorithm is quite fast and performs reasonably well, in simu-

lation studies it does not perform as well as maximum likelihood or even neighbor

joining. (To some degree the studies were biased against the SVD method, which

assumes only a general Markov model, while the other methods were performed

assuming a more restrictive model in line with that used to simulate the data.)

While the poor performance compared to neighbor joining is disappointing, the

novel introduction of the SVD as a means of measuring the presence of a bipar-

tition of the taxa is intriguing.

In investigating the performance of the Eriksson SVD algorithm on simulated

data, we found it had a tendency to infer trees with too many cherries. While

there are several factors that contribute to this, one of the most important ones

has an interesting basis in geometry. If n taxa are to be related, then the various

matrices one must consider to test for the presence of bipartitions of k and n− k

taxa are of size 4k × 4n−k, where 2 ≤ k ≤ n/2. Within the 4n-dimensional space

of 4k × 4n−k matrices, however, the variety of rank 4 matrices can be shown to

have dimension 4k+1 + 4n−k+1 − 16. In particular, the dimension of the variety

of rank 4 matrices is largest when k is small. It is therefore easier for a ‘random’

matrix to be nearly of rank 4 when k = 2 than when k is larger. As a result,

the Eriksson algorithm tends to form too many cherries before it chooses to join

cherries into larger groups. This issue of varying dimensionality of models is of

course common in statistical comparisons, and finding an effective correction in

this setting will be interesting work for the future.
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It is of course easy to criticize these attempts to use invariants for tree in-

ference as ad hoc and not sufficiently ‘statistical’. In our view, there is much to

be done to understand the performance and usefulness of invariants both within

a statistical framework, and as potential contributors to heuristics that might

aid in improving the performance of software implementations of more standard

methods. Phylogenetic methods are full of compromises between biological re-

ality and computational feasibility. Invariants are potentially useful in further

developing methods precisely because they provide a different perspective.

6. Phylogenetic Ideals

We now survey in more detail the major results on determining phylogenetic

invariants for specific models.

The Jukes-Cantor, Kimura 2-parameter, and Kimura 3-parameter models are

the most biologically-plausible examples of group-based models. This means the

character states can be identified with elements of an abelian group (the states

A,G,C, T are identified with elements of Z/2Z×Z/2Z for the Jukes-Cantor and

Kimura models), and then probabilities of a state change from state x to state

y along a particular edge are assumed to depend only on y − x. This special

structure of group-based models allows one to use Fourier analysis in analyzing

them. Although the mathematical ideas behind this are quite nice, in the end

the key result is both simple and powerful.

Theorem 3. For a group-based model, there are linear changes of variables for

the parameter space of the model and for the joint distribution space, so that

the parameterization map φT,M in these new variables is given by monomial

formulas.

This monomial parameterization is the key to constructing invariants for

the group-based models. This change of variables was first noticed for a 2-

state group-based model (Hendy and Penny (1989)), and is sometimes referred

to as a Hadamard transform. Evans and Speed (1993) exploited it to con-

struct invariants for the Jukes-Cantor and Kimura models, as subsequently did

Steel, Székely, Erdös, and Waddell (1993). The Fourier transform was general-

ized to all group-based models by Székely, Steel and Erdős (1993). Recently,

however, Sturmfels and Sullivant (2005) pushed this line of reasoning forward to

analyze the full ideal of phylogenetic invariants for these models. Varieties pa-

rameterized by monomial maps are known as toric varieties and are well-enough

understood that additional theoretical understanding and computational tools

could be applied.

Theorem 4.(Sturmfels and Sullivant (2005)). For the Jukes-Cantor and Kimura

models on any binary tree T , a set of generators of the phylogenetic ideal can be
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explicitly given. Each of these generators is naturally associated to either an edge

of the tree or a vertex.

The generators associated to an edge express conditional independence state-

ments, as discussed before. The generators associated to a vertex of a binary tree

arise from those associated to an unrooted star tree with 3 leaves. If T is not

binary, then one only needs to understand the invariants for star trees with more

than 3 leaves to extend the above theorem. For small numbers of leaves these can

be determined computationally, but we still lack a theoretical analysis of them.

A helpful compendium of invariants for trees of up to 5 taxa, for group-based

models of 2 and 4 states, is provided for easy downloading on the website created

by Casanellas et al. (2005). This should be a useful resource for those wishing to

explore the statistical behavior of these polynomials on data, simulated or real.

Invariants for the general Markov model were constructed by Allman and

Rhodes (2003). Note that, unlike for group-based models, we lack a means of

simplifying the parameterization map for the general Markov model. The key

results of that paper actually focus on the 3-leaf star tree, and use rather sim-

ple observations on the structure of the model on that tree, together with basic

linear algebra, to find explicit invariants. For the k-state model, these are of

degree k + 1, which is known to be the minimal degree possible. For k ≤ 4, one

can check these give all invariants of the minimal degree. Though for k = 4 the

invariants have hundreds of terms, they can be naturally expressed as entries

in a concise matrix formula involving classical constructions such as cofactors.

While for 2- and 3-state models this construction gives a set of generators of the

ideal for the 3-leaf tree, for the 4-state case relevant to DNA it is known that

additional higher-degree invariants are needed (see Allman and Rhodes (2007a)

for details). Nonetheless, one can also characterize the possible location of ‘ex-

traneous zeros’ of this set of invariants as being in the zero set of another explicit

polynomial. Thus while gaps remain in our knowledge of invariants for the 3-leaf

case, substantial progress has been made.

Although trees relating more than three taxa are considered by Allman and

Rhodes (2003), considerably more progress is made in determining all the in-

variants for the general Markov model on larger trees by Allman and Rhodes

(2007a). In that work, actions of the matrix groups GLk on the phylogenetic

varieties serve as an important tool. Representative results include the following.

Theorem 5.(Allman and Rhodes (2007a)) Consider the k-state general Markov

model on an arbitrary binary tree. If k = 2, then an explicit set of generators

of the phylogenetic ideal can be given. If k = 3, then explicit polynomials can be

given whose zero-set is the phylogenetic variety. For any k, if explicit polynomials

are known whose zero set is the phylogenetic variety for the 3-leaf tree, then
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explicit polynomials can be given whose zero set is the phylogenetic variety for

the given tree.

The first statement here establishes a conjecture of Pachter and Sturmfels

(2004), that can be interpreted as saying that for k = 2 and binary trees, all

phylogenetic invariants are generated by those associated to conditional inde-

pendence statements on edges of the tree.

The results for higher k are not quite as complete. First, we still lack com-

plete knowledge of ideal generators for the 3-taxon tree if k ≥ 4. Second, the

proof that ideal generators can be given when k = 2 takes advantage of an ‘acci-

dental fact’ that in that case there are no invariants for the 3-leaf tree. Without

this fact for higher k, nothing is proved about ideal generators.

Finally we note that Casanellas and Sullivant (2005) consider invariants for

the 4-state strand symmetric model for DNA. This model is a sort of amalgama-

tion of a 2-state general Markov model with a 2-state group-based model, and

so ideas arising for those constituent models can be applied to it to obtain de-

tailed results on invariants. Lying between the group-based models and general

Markov models, the strand symmetric model might, in some circumstances, offer

more biological realism without excessive generality. (Bielawski and Gold (2002)

provide one biological investigation of strand-symmetry.)

7. Further reading

Those seeking a broad overview of phylogenetics should consult Felsenstein

(2004a). Semple and Steel (2003) also provide a good entry to the field, focusing

on combinatorial aspects. The collections of articles edited by Gascuel (2005)

and Gascuel and Steel (2007) provide a wide spread of perspectives, from the

biological to mathematical, from theoretical to practical. In the second of these,

Allman and Rhodes (2007b) give a more detailed exposition along the lines of this

article, suitable for researchers in phylogenetics who are not algebraists. That

work also includes a more extensive bibliography on phylogenetic invariants. Fi-

nally, Eriksson, Ranestad, Sturmfels and Sullivant (2004) introduce phylogenet-

ics in a manner suitable for researchers in algebraic geometry.
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The shape of the five-locus Drosophila fitness landscape discussed in Section 7
is a triangulation of the 5-cube that consists of 110 maximal simplices. In the
following list, these simplices are represented by the sets of their vertices:

{00000, 00001, 00011, 00100, 01000, 11000}, {00000, 00001, 00011, 00100, 10001, 11000},

{00000, 00010, 00011, 00100, 01000, 11000}, {00000, 00010, 00011, 00100, 10110, 11000},

{00000, 00010, 00011, 10010, 10110, 11000}, {00000, 00011, 00100, 10001, 10100, 11000},

{00000, 00011, 00100, 10100, 10110, 11000}, {00000, 00011, 10001, 10010, 10110, 11000},

{00000, 00011, 10001, 10100, 10110, 11000}, {00000, 10000, 10001, 10010, 10100, 11000},

{00000, 10001, 10010, 10100, 10110, 11000}, {00001, 00011, 00100, 00101, 01101, 10101},

{00001, 00011, 00100, 01000, 01011, 11000}, {00001, 00011, 00100, 01011, 01101, 11000},

{00001, 00011, 00100, 01101, 10001, 10101}, {00001, 00011, 00100, 01101, 10001, 11000},

{00001, 00011, 01011, 01101, 10001, 11000}, {00001, 00100, 01000, 01011, 01101, 11000},

{00001, 01000, 01001, 01011, 01101, 11000}, {00001, 01001, 01011, 01101, 10001, 11000},

{00010, 00011, 00100, 00110, 01011, 10110}, {00010, 00011, 00100, 01000, 01011, 10110},

{00010, 00011, 00100, 01000, 10110, 11000}, {00010, 00011, 01000, 01011, 10110, 11000},

{00010, 00011, 01011, 10010, 10110, 11000}, {00010, 00100, 00110, 01011, 01110, 10110},

{00010, 00100, 01000, 01010, 01011, 10110}, {00010, 00100, 01010, 01011, 01110, 10110},

{00010, 01000, 01010, 01011, 10110, 11000}, {00010, 01010, 01011, 10010, 10110, 11000},

{00011, 00100, 00101, 00111, 01101, 10101}, {00011, 00100, 00110, 00111, 01101, 10110},

{00011, 00100, 00110, 01011, 01101, 10110}, {00011, 00100, 00111, 01101, 10101, 10111},

{00011, 00100, 00111, 01101, 10110, 10111}, {00011, 00100, 01000, 01011, 10110, 11000},

{00011, 00100, 01011, 01101, 10110, 11000}, {00011, 00100, 01101, 10001, 10100, 10101},

{00011, 00100, 01101, 10001, 10100, 11000}, {00011, 00100, 01101, 10100, 10101, 10110},

{00011, 00100, 01101, 10100, 10110, 11000}, {00011, 00100, 01101, 10101, 10110, 10111},

{00011, 00110, 00111, 01011, 01101, 10110}, {00011, 00111, 01011, 01101, 10110, 10111},

{00011, 01011, 01101, 10001, 10101, 10110}, {00011, 01011, 01101, 10001, 10110, 11000},

{00011, 01011, 01101, 10101, 10110, 10111}, {00011, 01011, 10001, 10011, 10110, 10111},

{00011, 01011, 10001, 10011, 10110, 11000}, {00011, 01011, 10001, 10101, 10110, 10111},

{00011, 01011, 10010, 10011, 10110, 11000}, {00011, 01101, 10001, 10100, 10101, 10110},

{00011, 01101, 10001, 10100, 10110, 11000}, {00011, 10001, 10010, 10011, 10110, 11000},

{00100, 00110, 01011, 01101, 01110, 10110}, {00100, 01000, 01010, 01011, 01110, 10110},

{00100, 01000, 01011, 01100, 01101, 11100}, {00100, 01000, 01011, 01100, 01110, 10110},

{00100, 01000, 01011, 01100, 10110, 11100}, {00100, 01000, 01011, 01101, 11000, 11100},
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{00100, 01000, 01011, 10110, 11000, 11100}, {00100, 01011, 01100, 01101, 01110, 10110},

{00100, 01011, 01100, 01101, 10110, 11100}, {00100, 01011, 01101, 10110, 11000, 11100},

{00100, 01101, 10100, 10110, 11000, 11100}, {00110, 00111, 01011, 01101, 01110, 10110},

{00111, 01011, 01101, 01110, 01111, 10110}, {00111, 01011, 01101, 01111, 10110, 10111},

{01000, 01010, 01011, 01110, 10110, 11100}, {01000, 01010, 01011, 10110, 11000, 11100},

{01000, 01011, 01100, 01110, 10110, 11100}, {01001, 01011, 01101, 10001, 11000, 11001},

{01010, 01011, 01110, 10110, 11010, 11100}, {01010, 01011, 10010, 10110, 11000, 11010},

{01010, 01011, 10110, 11000, 11010, 11100}, {01011, 01100, 01101, 01110, 10110, 11100},

{01011, 01101, 01110, 01111, 10110, 11110}, {01011, 01101, 01110, 10110, 11100, 11110},

{01011, 01101, 01111, 10110, 10111, 11110}, {01011, 01101, 01111, 10111, 11011, 11110},

{01011, 01101, 10001, 10101, 10110, 11000}, {01011, 01101, 10001, 10101, 11000, 11001},

{01011, 01101, 10101, 10110, 10111, 11100}, {01011, 01101, 10101, 10110, 11000, 11100},

{01011, 01101, 10101, 10111, 11011, 11100}, {01011, 01101, 10101, 11000, 11001, 11100},

{01011, 01101, 10101, 11001, 11011, 11100}, {01011, 01101, 10110, 10111, 11100, 11110},

{01011, 01101, 10111, 11011, 11100, 11110}, {01011, 01110, 10110, 11010, 11100, 11110},

{01011, 10001, 10011, 10110, 10111, 11011}, {01011, 10001, 10011, 10110, 11000, 11011},

{01011, 10001, 10101, 10110, 10111, 11011}, {01011, 10001, 10101, 10110, 11000, 11011},

{01011, 10001, 10101, 11000, 11001, 11011}, {01011, 10010, 10011, 10110, 11000, 11011},

{01011, 10010, 10110, 11000, 11010, 11011}, {01011, 10101, 10110, 10111, 11011, 11100},

{01011, 10101, 10110, 11000, 11011, 11100}, {01011, 10101, 11000, 11001, 11011, 11100},

{01011, 10110, 10111, 11011, 11100, 11110}, {01011, 10110, 11000, 11010, 11011, 11100},

{01011, 10110, 11010, 11011, 11100, 11110}, {01101, 01111, 10111, 11011, 11101, 11110},

{01101, 10001, 10100, 10101, 10110, 11000}, {01101, 10100, 10101, 10110, 11000, 11100},

{01101, 10101, 10111, 11011, 11100, 11101}, {01101, 10101, 11001, 11011, 11100, 11101},

{01101, 10111, 11011, 11100, 11101, 11110}, {01111, 10111, 11011, 11101, 11110, 11111}.
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