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Abstract: The isotonic regression problem with a smoothness penalty is considered.
The shape-restricted smooth estimator was characterized as a solution to a set of
recurrence relations by Tantiyaswasdikul and Woodroofe (1994). Using a related
Green’s function, the estimator can be represented as a kernel regression estima-
tor. Under regularity conditions on the underlying regression function, asymptotic
normality of the estimator is established for a large range of choices of the tuning
parameter.
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1. Introduction

There are many regression problems for which the underlying function is
known to be monotone, for example, dose-response experiments in biology and
the modeling of disease incidences as function of the toxicity level, etc. Industry
examples like the effect of temperature on the strength of steel are also available.
The least squares estimator for this problem is widely known, and described
by [Robertson, Wright. and Dykstra (1987). Unfortunately, this estimator lacks
smoothness, and its non-normal asymptotic behavior complicates its use. We re-
fer to (Wright (1981) for the derivation, and IGroeneboom and Wellner (2001) for
its distribution. Accordingly, there has been recent interest in combining smooth-
ness and monotonicity. [Friedman and Tibshirani (1984), Mukherjee (1988) and
Mammen (1991) were early contributors, and Ramsey (1998) is a recent method
to counter the problem. [Hall and Huang (2001) provide a recent review with ref-
erences. Here we follow the approach of [Tantiyaswasdikul and Woodroofe (1994)
(referred as TW henceforth), who proposed a penalized least square estimator.

In Section 2, we review the derivations of TW and give several properties.
Section 3 contains the main results of this paper. The estimator of TW can be
described as an approximate solution to a differential equation with boundary
values. It is shown that their estimator can be approximated by a kernel estima-
tor, using the Green’s function for a closely related boundary value problem as
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a kernel. Many asymptotic properties of the estimator follows as consequences.
Section 4 contains simulation results and an example. There is some precedence
for the use of Green’s functions to approximate splines in the absence of shape
restriction: [Rice and Rosenblatfl (1983), ISilverman (1984), Messer (1991) and
Nychka (1997) notable among them. These ideas are modified to allow for shape
restrictions.

2. The Smoothing Spline

Consider a regression problem,
Y= o(tin) + €, i=1,...,n, (1a)

where t; ,, are pre-specified design points on [0,1] with 0 < ¢y, < - <t,, <1,
and ¢ is a non-decreasing function. Here we can restrict ourselves to the unit
interval, without loss of generality. We suppose that the ¢; are mean zero in-
dependent and identically distributed random errors, with a moment-generating
function finite on some neighborhood of 0. From now on, we denote ¢;,, as t;
only, to avoid notational complications.

Let w be the uniform distribution on ti,...,¢,, and let g be a piecewise
constant function for which g(tx) = Yx for £ = 1,...,n. To combine smooth-
ness with shape restrictions in a weighted manner, TW chooses to minimize a
penalized least-squares criterion of the form

1 1
¥(f) =/0 (9 — f)?dw + a/o F(t)3dt.

2.1. Characterization of the estimator

Let H be the set of absolutely continuous functions h for which b’ € L2[0, 1].
Let HY = {h € H : I/ > 0 a.e.}, the set of non-decreasing h € H. Let F(z) =
Jo f(t)dw(t), and G(x) = [ g(t)dw(t). Further, the positive part of any real =
is denoted as x4 = x1;>0.

Theorem 1. Necessary and sufficient conditions for f € H" to minimize 1 on
H are that F(1) = G(1) and,

af = (F - G); ae. (1)

TW used this characterization to derive an algorithm to compute the esti-
mate. Let, Fy = Go=0and for k=1,...,n,

fe = f(t), Fk:%(f1+...+fk)’ GkZ%(Y1+'--+Yk).
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Then the condition (1) reduces to
af'(t) = (Fy — Gi)y for ty <t < tpia, (2)

and also F;, = G,, by virtue of the first condition in the theorem. Consequently,
f is a continuous non-decreasing piecewise linear function with

e = fo—1+ é(kal — Gr—1)+(ty — th—1) (3)

for k = 1,...,n. Relation (3) determines f1,..., f, for a given fp, and fy is
determined from the condition F,, = G,, (with the aid of Property A below).
Several properties of the estimator are needed, as follows.

For c € R, let fo(a,c) = ¢, and define

i) = fi1(0,) + - (Fia( ) — Gio) (b — 1),
Fi,¢) = +(fil0,0) + fal,e) - + i)

We need to solve the equation ‘F),(a, c) = G,,’ for real c. We denote the solutions
as cq, fk(a) = fr(a,cq) and Fi(a) = Fi(a,cq), respectively. The following
lemma ensures that a unique solution exists. The proof can be found in the
Appendix.

Lemma 1. The following properties can be derived from (3).

Property A: For fized o, fr(a,c) is strictly increasing in c, is continuous in c,
and goes to —oo and oo as ¢ goes to —oo and oo. Consequently, so
does Fy(a, c). Therefore, F,(ca,c) = Gy, has a unique solution cq.

Moreover,

. nG
min ——*& < o < Gy
1<k<n

Property B: For each ¢ € R, both fi(a,c) and Fi(«,c) are non-increasing in «.
Property C: ¢, is non-decreasing in a.

Property A enables us to set up a bisection search algorithm to compute the
final estimate in an iterative procedure. The next lemma investigates the shape
of the solution. We denote the LSE by f We recall that it is the left hand
slope of the greatest convex minorant (we call it G with knot values ék), of the
cumulative sum diagram G. The proofs are outlined in the Appendix.

Lemma 2. The estimator satisfies the following.

Property D: Fy(a) is non-decreasing in a.
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Property E: For ollk =1,...,n and all o, we have, F’k(a) > Gy
Property F: For all o and t between 0 and 1, f(t1) < flo,t) < f(tn)-
Property G: Fort; = i/n, (F(a,t)—G(t))- = Op(1) uniformly in o and t, where

n
r— = (L‘lzgo.

Finally, we refer to the main result of Pal and Woodroofe (2004), which
shows that the cumulative sum diagram G and its greatest convex minorant G
are close. Under the assumption that the true regression function f is strictly
increasing with derivative bounded away from 0, it is then clear that

~ logn\ 3
max ’Gk—Gk‘ZOP(( i )3)

1<k<n

3. Asymptotic Properties of the Estimator

The main result is presented in this section. The dependence on n becomes
important, and there is a slight change in the notation. Henceforth, ¢ = ¢,
is that value of ¢ identified in Property A, f is the resulting estimator, and

E(t) = [y f(s)ds.

3.1. Green’s function

Since (3) does not yield a closed form representation of the estimator, it
seems impossible to compute or approximate its bias and variance theoretically.
However, we can proceed by replacing that difference equation by an analogous
differential equation that fortunately has a closed form solution.

Consider the differential equation,

aF"(t) = F(t) — H(t), 0<t<1, (4)

with boundary conditions F'(0) = 0 and F(1) = A. We assume that H is abso-
lutely continuous with derivative h. Letting 8 = 1/y/a, the homogeneous equa-
tion (aF" — F) = 0 has solutions e*”*, and the corresponding Green’s Function
is

1
K, (t,s) = §ﬁe*ﬁ‘t*5| for 0 <t < 1.

To solve the differential equation with boundary conditions, let,
1
Ry(t) :/ Kot s)H(s)ds  0<t<1.
0

Then, aF} = Fy — H. To satisfy the boundary conditions, let,

F(t) = co(B)e P + c1(B)e P10 + Fy(t).
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The values of ¢o(/3) and ¢;1(f) can be evaluated from the boundary conditions as
Fy(1) — A= Fy(0)e”

CO(ﬂ) = 6'8 — Giﬁ )
_ eb
Cl(ﬂ) _ (A Fzélz)eg— Fo(O)’

from which it follows that |co(5)] + |c1(8)] < 6|/ H| + 4A for B > 1, where
|H|| = supg<;<q [H(t)|. It is quite important that this is the unique solution to
(4) with the given boundary Condltlons

Define, for all [ € LY, K, I(t fo l(s)ds.

Lemma 3. In case t; = i/n, |F — FH =Op(1/n).

Proof. For any 0 <z <1 and n, let k = |nz|. Then,

— F(x ‘_‘/f t)duw(t /f(t)dt

k—1 .
- | Zf O F [ By [ B PO LN 20)
=1
1
< o sup|fl.

Moreover, sup |f| < [f(tn)| + |f(t1)] = O,(1), since the LSE f is a stochastically
bounded estimator. Hence, the lemma follows.

From now on, we consider uniformly spaced points only.

The next proposition allows us to represent F as the sum of a convolution of K,
(defined in Section 3.1) with the greatest convex minorant G and a remainder
term that is of smaller order.

Proposition 1. Under the assumptions stated in Section 2,
F(t) = KaG(t) + KaR(D) + o B)e ™ + 1 (8)°0 D),

where both ¢y and c; are stochastically bounded functions of B, and |R| =
Op(n=?/3(logn)?/3).
Proof. Property G implies that ||(F — G) — (F — G)4 || < O,(1/n). Combining
that with (3), we get

laf” — (F = G)|| = |(F = G)y — (F ~
= (F =Gy = (F F—F)

- ~ - 1

<IF = G)y = (F = )| +I(F = F)l| + Op(=)

~—
—~

~ 1
<G =Gl +0y()

= Op(n~3(logn)3).



1606 JAYANTA KUMAR PAL AND MICHAEL WOODROOFE

Let, R = (F — G) — aF”. Then, |R| = Op(n=2/3(logn)?/3) and F satisfies
aF" — F = —G — R = —H (say). Hence, using the uniqueness of the solution of
Section 3.1,

/ Ko(t,s)H(s)ds 4 co(B)e Pt + ¢ (8)eP—Y

/ K, (t,s) ds—l—/ K, (t,s)R dS—i_CO(ﬁ)e_ﬂt—i—Cl(ﬁ)eﬁ(t_l)’

where ¢y and ¢; are defined as in Section 3.1 with A = G,,. By Marshall’s
Lemma, |G—F|| < ||G—F| — 0, since F is a convex function. (Refer to Robert-
son, Wright and Dykstra (1987, p.329) for a statement of Marshall’s Lemma.)
Therefore, |G| is bounded. So, H is bounded in n and t and boundedness of
co(B) and ¢1(B) follows. The second term of the above representation is of order
n=2/3(log n)%/3, since |f0 o(t,s)R(s)ds| < ||R]| fo «(t,s)ds. The proposition
follows.

To get the analogous representation for f , we need to define a few variables
and functions related to the true regression function ¢, which give us the bias
and random components of the estimator. The cumulative regression functions
are also required in this context. We define,

o= d(t),  Blr) = /qus(t)dw(t), B(z) = /qub(t)dt

The next function has to be defined through a characterizing differential equation
analogous to (4).

Proposition 2. Suppose that the true regression function ¢ is twice continuously
differentiable. Then there is a function 1, which minimizes

/01(7 — ¢)?dt + « /01{7’}2dt

among all functions, and also satisfies the approzimation 74(t) = ¢(t) +ad” (t) +
o(a).
Proof. We consider the minimization problem as a problem in the Calculus of
Variations. Euler’s equation gives the differential equation ar” = 7 — ¢. Using
the same Green’s function technique as in Section 3.1, 7,(t) = Kn¢(t) satisfies
the equation. However Ko¢(t) = ¢(t) + a¢”(t) + o(a) (It is a special case of
Equation (6.4) in Theorem 2.2 of [Nychka (1995)). The proposition follows.
Now we can derive the crucial representation of the estimator obtained in
Section 2.
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Theorem 2. The regression estimator f can be written
B = gt _2 _BH(1—
F#) = 7a(t) + 5> e 706 + Op(n 3 logn)§ + e 70 0p(5),
i=1

uniformly in o and in t € (0,1).

Proof. The Lebesgue integral F can be written as in Proposition 1. Differenti-
ating pointwise we get,

1
/8 Gl | 5ot R(s)ds—Be eo(5)+ 561 (5)

v /0 57 Kot )[G(s) = B(s)]ds + V(1) + V(o).
where,
1 ~ —
(t) = /0 & Kalt,5)(G(s) + Rls) — B(s) ~ Gls) + Bls))ds,
Va(t) = —Be P co(8) + B Ver (8) — %ﬁe‘ﬁ“‘t)@(l) = e MD0p(B).

However,
1, ~ — [t - _
]Vl(t)\§§HG—G+R—<I>+<I>H/O e =las < 5| G- + R+ @~ |

Since |® — ®|| = o(1/n), and both |G — G|| and || R|| are O,(n~2/3(logn)?/?), we
find |V;(t)| = Op(n=2/3(logn)?¥?). Finally,

1 ) o
/0 aKa(t,s)[G(s) — ®(s)]ds

1 o o
—/ &Ka(t, s)[G(s) — ®(s)]ds
0
1
= —K,(t,1)[G(1) — ®(1)] +/0 Ko(t,s)[dG(s) — d®(s)]

B = B <
— P —p0-t) L7 —Blt—ti| .
= 2ne Zez+2nZe €;

)
ConET L 8 S,

That completes the detail of the representation.
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Remark. Theorem 2 implies that the constrained estimator is approximately a
kernel regression estimator obtained by employing the Laplace kernel function.
Here, The tuning parameter « plays a role similar to the bandwidth h. The
asymptotic mean 7, has a bias that we seek to make negligible. We need a to
be reasonably small to ensure that. On the other hand, we do not want to let 3
grow too rapidly as that will inflate the random component. As a balance, we
take a to be in an admissible range.

Corollary 1. Let o satisfy an®/® — oo but an®/® — 0. Suppose also that the
true regression function ¢ is twice continuously differentiable with bounded second
deriwvative. Then for t € (0,1),

/500 = o0) = N0, 5 )

However, if an®/5 — K >0, then \/n/B[f(t) — ¢(t)] = N[K/4¢"(t), 02 /4].

Proof. Define U, (t) = 8/2n 3.1, e PIt=0/mle;. For a fixed ¢, this is a sequence
of sums of a triangular array. We invoke the Lindeberg-Lévy Central Limit
Theorem to verify that,

2

3000 = N0.F [~ ey = ¥10.

— 00

Lindeberg’s condition is easily satisfied since the ¢;’s have finite moment gener-
ating function.
Moreover, from Proposition 2,

%[Ta(t) —o(t)] = \/g[aeﬁ”(t) +o(a)] = K¢ () + o(1).

The remainder terms V; and V5 are op(1) for the admissible range of o and the
corollary follows.

Remark. The case a = 0 guides us back to the LSE, which has a non-normal
asymptotic distribution. The choice v = n~2/3 yields the slowest rate of conver-
gence (it is also at the boundary) in the limit, that of the MLE. Then, 3 is of
the same order as the number of jump points of the MLE. A comparison to the
Theorem 2.2 of INychka (1995) yields an approximately similar bias and a vari-
ance twice that of the unconstrained spline. However, the asymptotic normality
is an important feature here. The conditions on the magnitude of a are more

stringent than Nychka’s, a price paid for the penalization.



ASYMPTOTIC PROPERTIES OF SMOOTH MONOTONE ESTIMATORS 1609

4. Simulation Results and Applications

Before applying the technique to data, we investigate the estimator’s per-
formance in simulations, especially for small sample size. Different underlying
regression functions are considered : exponential (convex); sinusoidal (in its con-
cave range); and polynomials 322 — 223 (flat ends and inflexion) and 2% — z
(violates the shape-restriction). Errors are generated from N(0,.01), Student’s
t (with 4 degrees of freedom and scaled down by .1) and Beta (with parame-
ters 3,2 and centralized). The TW estimators are compared with the LSE and
the unconstrained smoothing splines (with optimal smoothing), graphically and
numerically.

4.1. Optimal choice of o

As shown in Proposition 2, the estimator has a bias af”(t). Though negli-
gible for large n, it has to be accounted for in small sample. To counter that, we
follow the technique used in the selection of bandwidth in kernel estimation to
find the optimal values of . Now

_ po?

2 1
MSE(z) = - — + ?f"(z)* = IMSE = iin + o? /O f"(z)dz.

So, the optimum value of « is,

oy [16n fol f;’(x)de

g

(S

|7 5.

Unfortunately, it depends on both ¢ and the underlying regression function f.

2 can be consistently estimated, as observed by Meyer and Woodroofe

Now, o
(2000). However, since our method yields piecewise linear functions, it is unable
to estimate f”. To plug in an estimate of fol f"(z)?dz, one can think of using a
kernel substitute. However, we prefer the easier route of pretending the regression
function to be quadratic over the range [0, 1]. Under the model f(t) = a+ bt +ct?
we estimate ¢ using simple linear regression, and observe that fol f"(x)%dz = 4c%.

Finally, we select our estimated smoothing parameter as

Table 1 compares the Monte Carlo estimates of the IMSE of the smooth esti-
mators with data-driven «, alongside that of the optimal «, the LSE, and the
linear smoothing spline with the smoothing parameter taken as its optimal value.
We also provide the Monte Carlo standard error to give an idea of how much
variation the different estimates have across simulations. (We have 1,000 MC
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simulations for all of them.) It appears that the Monte Carlo standard error of
the IMSE of the estimators does not depend on the mean function, but depends
on the distribution of the errors.

Table 1. The Monte Carlo estimates of finite-sample IMSE obtained using
Riemann sum approximation for the integral, for sample size n = 100 and
number of replications M = 1,000 for all combinations of error and mean
function. The upper figure is the estimate and the lower is one standard

deviation.

Mean Error W T™W LSE unconstrained
function | distribution | optimal | adaptive | (PAVA) | spline(optimal)

N(0,0.01) 0.0102 0.0227 0.0234 0.0113

4+ 0.0051 | + 0.0067 | = 0.0077 + 0.0073

e 0.1t4 0.0168 0.0314 0.0413 0.0187

4+ 0.0098 | + 0.0114 | £ 0.0239 + 0.0145

06(3,2) — 0.6 0.0296 0.0450 0.0721 0.0352

+ 0.0176 | & 0.0232 | &= 0.0295 + 0.0233

N(0,0.01) 0.0087 0.0131 0.0194 0.0112

4+ 0.0054 | + 0.0071 | £ 0.0075 + 0.0074

sin(mx/2) 0.1t4 0.0151 0.0192 0.0343 0.0194

4+ 0.0099 | + 0.0116 | = 0.0183 + 0.0175

06(3,2) — 0.6 0.0260 0.0285 0.0644 0.0347

+ 0.0173 | & 0.0214 | &= 0.0319 + 0.0231

N(0,0.01) 0.0097 0.0186 0.0207 0.0127

4+ 0.0052 | + 0.0065 | = 0.0077 + 0.0074

322 — 223 0.1t4 0.0168 0.0229 0.0362 0.0220

4+ 0.0115 | + 0.0186 | £ 0.0239 + 0.0158

06(3,2) — 0.6 0.0277 0.0303 0.0653 0.0387

+ 0.0189 | + 0.0256 | & 0.0323 + 0.0248

N(0,0.01) 0.0371 0.0421 0.0394 0.0061

40.0050 | £ 0.0068 | + 0.0074 + 0.0072

- 0.1t4 0.0396 0.0482 0.0435 0.0103

+ 0.0115 | & 0.0202 | £ 0.0231 + 0.0172

06(3,2) — 0.6 0.0443 0.0531 0.0542 0.0173

+ 0.0186 | & 0.0276 | &= 0.0314 + 0.0250

The sample size taken is n = 100. Clearly, the optimal smoothing would
have worked substantially better than the LSE, and even the data-driven adap-
tive smoothing has a remarkable effect on the overall IMSE. As expected, the
TW estimator fails in comparison to the unconstrained spline when the shape
restriction is violated. When the true function is monotone, the TW estimator
performs a little better than the unconstrained spline. The reason lies in the fact
that the constraint preempts the estimator to have too many ups and downs,
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and therefore restricts it to have too much variation. The unconstrained spline
does not share this property. This fact will also be corroborated by the graphical

plots shown later.
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Figure 1. The plot of the smooth estimators alongwith the LSE over [0, 1]
for one sample of size 100. The bold dotted line is the true function, whereas
the dashed, dotted and solid lines represent the LSE, the optimally smooth
estimator and the unconstrained smooth estimator. The regression functions
and the a values are sin(mz/2), 3z — 223, 222 — 2, %, and 0.0044, 0.0053,
0.0027 and 0.0043 respectively. The errors are generated from the Normal
(left panels) and the Beta (right panels). The IMSE for the TW(optimal)
estimator, the LSE and the unconstrained splines for the four plots are
[0.0059, 0.0200, 0.0080], [0.0134, 0.0548, 0.0227], [0.0329, 0.0359, 0.0244]
and [0.0534, 0.0853, 0.0655] respectively.

4.2 Graphical comparisons

Figure 1 shows us the relative performance of the estimators for different
regression functions and error distributions. The sample size is 100, but the
signal-to-noise ratio is diminished to a scale of 0.2 to discern the plots through
a cursory glance. Clearly, the smooth estimator alleviates the spiking problem,
and reduces the roughness of the LSE. A function violating the shape-constraints,
(2 — x) over [0,1], is included for comparison. The optimal values of « and the
IMSE for these individual curves are also mentioned. We compare the mean
square error of the estimators at ty = 0.25,0.5,0.75, for sample sizes from 100
through 1,000. Figure 2 includes a few of these MSE curves for some of the mean
function-point of estimation-error distribution combinations. It appears that the
optimally smooth isotonic estimator always outperforms the LSE, and so does
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the adaptive smooth estimator in most cases. Though they have a bias that
the LSE doesn’t have, the variance is much lower. However, for points close to
the ends and a skew error, the adaptive smooth estimator fares worse than the
LSE, perhaps because the adaptive « is not close to the optimal «. If the shape
restriction is violated, the unconstrained spline works much better than the TW
estimators. However, if the assumption holds, there is little to choose between
them in Figure 2.

-3 -3
3 x10 4 x10
3
2
2
1
\\ !
0 0
0 500 1,000 0 500 1,000
-3
0.02 15540
0015\ ]
1 \
\
0.01 \
0.5f
0.005 N
0 g 0
0 500 1,000 0 500 1,000

Figure 2. The pointwise mean square error of the smooth estimators along-
with the LSE for n =1,...,1,000. The MSE for the LSE is the dotted line,
whereas the dash-dotted, solid and the dashed lines represent the MSE for
TW estimators with optimal smoothing, data-estimated optimal smoothing,
and the unconstrained spline, respectively. The chosen mean function-error
distribution-point of interest combinations are [e”, N (0,0.01), .25], [sin(7z/2),
0.1t4,0.5], [32% — 223, 3(3,2) — 0.6,0.75] and [2% — z, N(0,.01),0.5], respec-
tively. As the first three plots show, there is no difference between the con-
strained and the unconstrained smoothing splines when the shape restriction
is present.

4.3. Analysis of ASA cars data

As an illustration of our method we use part of the “cars” data from the
1983 ASA Data Exposition. These data are available at the StatLib Internet
site (http://lib.stat.cmu.edu/datasets/cars.data) at Carnegie Mellon University.
Here, the covariate X is the engine output of a car model, in horsepower, and
the response Y is its fuel efficiency, to be studied as function of the engine out-
put. Several methods of constrained as well as unconstrained smoothing have



ASYMPTOTIC PROPERTIES OF SMOOTH MONOTONE ESTIMATORS 1613

been applied to the data in Mammen, Marron, Turlach and Wand (2001). Since,
logically, more powerful engines require more fuel, a decreasing smooth function
should be fitted to the observations. In Figure 3, we fit a non-smooth stan-
dard isotonic estimator (LSE) alongside the smooth isotonic estimator and an
unconstrained smoothing spline, using the data itself to design the bandwidth
according to the method described above.

240

220 o g

180F
160
140r
120F
100f

80

60

40 L L L \. L L L L
5

Figure 3. Scatterplot of the fuel efficiency as a function of engine output. The
PAVA estimator is the solid line, and the dashed line is the smooth estimator
with optimally chosen smoothing parameter. The dotted line indicates a
smoothing spline without the shape-restriction.
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Appendix

Proof of Lemma 2.
Property A: The final inequality of Property A is a restatement of Lemma 4 in
TW. The rest of it is clear.

Property B: For any a < S, fo(o,c) = ¢ = fo(B,¢). Suppose, inductively,
that f;(a,c) > f;(B,c) for j = 0,1,...,k — 1 for some k. Then
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Fy_1(a,c) > Fr_1(5,¢), and consequently,
i €) = fi1(0,) + ~(Fia(,6) — G (b — 1)
> fia(8,0) + (Frr(8,0) = G (b — ti)
= fr(B, ).

The result follows.

Property C: If o < f3, then F,,(a, cg) > Fy,(8,c3) = Gn, and therefore, ¢, < cg.

Proof of Lemma 2:

Property D: Let a < 3. Clearly, Fi(a) = co/n < cg/n = Fi(B) and F,(a) =
F,(B) = G, Suppose, Fj(a) > F;(3) for some j between 2 and n—1,
and let k be the smallest such j. Then fi(a) > fi(3). Therefore,

fr1(a) = fr(@) + é(Fk(Oé) — Gr) 4 (thg1 — tr)
> folB) + = (Fe(8) — Gi)s (tar — )

= fr+1(8)

and Fyy1(e) > Fpy1(B). Proceeding like this, we get, F,(a) >
F,.($3), a contradiction to our assertion.

@

Property E: Clearly, Fi(a) = co/n > minj <<, Gi/k = G1, and Fo(a) =G, =
Gn. As above, suppose, Fj(a) < G for some j between 2 and n — 1,
and let k be the smallest such j. Then, as G < G}, for all k,

fiera(0) = fil0) + = (Fyle) = Gi) tin — 1)
= fila
= n[Fy(a) = Fy_1()]
< n[ék — kal]
< n[Gry1 — Gi] (as G is convex).

Therefore, Fji1(a) = Fr(a) + fip1(a)/n < Gii1. Consequently,
fre2(a) = frra(a) = frle) < nf[Gryr — Gi] < n[Grio — Gral
(as above) and Fjyio(a) < Ggyo. Proceeding in the same way, we
conclude that Fy,(a) < Gy, a contradiction.

Property F: Clearly, for all ¢ and «, f(a,t) > co > f(tl), establishing the first
inequality. The other inequality follows by symmetry.
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Property G: The following lemma shows that the MLE itself is stochastically

bounded.
Lemma 4. Both f(t1) and f(t,) are bounded w.p. 1.
Proof.
> . Y+ 4Y; . €1+ te . €+t tE
= mip 1T T S ar--Th ar.- e
f(tr) = min—— 2 f(t)+min ———— > f(0+)+min ——

We know that, (e + ...+ €,)/n — 0 w.p.1, using the Strong Law of Large
Numbers. Hence, min;>i(e; + ... +¢;)/i > —oo w.p. 1. Consequently, flt) >
—oo w.p. 1. Using symmetry with respect to the mean function, we get, f(t,) <
oo w.p. 1. The lemma follows.

Now, for tj, <t < ty11, F(a,t) = Fp(a), and é’(t) lies betwgen G, and Gjy1.
}_I)ence, |G(7f) - Gk| < |Gk - Gk+1|. However, |Gk - Gk+1| = f(tk)(tk-i-l - tk) =
f(tx)/n, and hence is Op(1/n) uniformly in ¢, by Lemma 4. The property follows
by using Property E and observing that the previous bound is also uniform in «.
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