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Abstract: Blind deconvolution problems arise in image analysis when both the

extent of image blur, and the true image, are unknown. If a model is available

for at least one of these quantities then, in theory, the problem is solvable. It is

generally not solvable if neither the image nor the point-spread function, which

controls the extent of blur, is known parametrically. In this paper we develop

methods for solution when a model is known for the point-spread function, but

the image is assessed only nonparametrically. We assume that the image includes

sharp edges — mathematically speaking, lines of discontinuity of image brightness.

However, the locations, shapes and other properties of these lines are not needed

for our algorithm. Our technique involves mathematically “focussing” the restored

image until the edges are as sharp as possible, with sharpness being measured using

a difference-based approach. We pay special attention to the Gaussian point-spread

function. Although this context is notorious in statistical deconvolution problems

on account of the difficulty of finding a usable solution, it is arguably the central,

and the most important, setting for restoring blurred images. Numerical simulation,

application to an image, and theoretical analysis demonstrate the effectiveness of

our approach.

Key words and phrases: Adaptive estimation, blur, deblurring, Gaussian blur, ill-

posed problem, image restoration, inverse problem, noise, nonparametric regression,

point-spread function, regularisation, test pattern.

1. Introduction

Photographic images, whether recorded by digital or analogue means, have

imperfections which prevent them from conveying the “true” scene. These degra-

dations have a variety of causes but two types, blurring and noise, are especially

common. The removal of blur, in the presence of noise, is generally an ill-posed

deconvolution problem, the solution of which requires inversion of the blur oper-

ator followed by a smoothing step.

Although challenging, this type of problem is quite well understood if the

extent of blur can be described in precise mathematical terms. However, there

is a rapidly increasing interest in problems where the mathematical operation

of blurring is known only approximately, for example in terms of a function
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which depends on unknown parameters that have to be computed from image

data. This is a blind deconvolution problem and is, of course, significantly more

challenging than its more conventional, non-blind counterpart. See, for example,

work of Kundur and Hatzinakos (1998), Carasso (2001), Galatsanos, Mesarović,

Molina, Katsaggelos and Mateos (2002) and Figueiredo and Nowak (2003).

In this paper we suggest a new technique for double-blind deconvolution

when the point-spread function, describing the manner in which blur degrades

the true image, is available only up to unknown parameters. Our approach is

of interest because it is closely linked to the physically meaningful notion of

adjusting the parameters until the image is sharpest. In contrast to some earlier

methods, ours does not require detailed information about the “true” image.

Instead, we recognise that the sort of image that would be used to determine a

point-spread function would usually be one that has relatively sharp boundaries,

such as those in a photographic test pattern. We introduce a difference-based

approximation, D say, to the derivative of such an image, and observe that in the

absence of error, D is mathematically virtually identical to the integral, along all

boundaries, of the squared height of jump discontinuities in image intensity. We

suggest gradually altering the inverse of a candidate point-spread function, by

steadily increasing its spread, until a place is reached where D increases sharply

from a low to a high value; and then taking the corresponding version of the

function to be the correct one.

An algorithm of this type can be implemented using a threshold argument,

as follows. Gradually increase the spread of the point-spread function until D

exceeds the threshold, and then stop. In operation, this technique is rather like

focusing a lens and stopping when the image is at its sharpest point, except

that the extent to which the image is blurred is determined not by eye but by

the mathematical criterion D. Moreover, in the present problem, if the degree

of spread of the candidate point-spread function is increased beyond the point

where it is exactly correct, the deblurred image becomes extremely erratic, and

in fact the value of D would be theoretically infinite if we were to go beyond

the critical point-spread parameter, were it not for the influence of noise and

discretisation error.

The ideal choice of threshold is the value of the integral of the square of

the jump in intensity along edges, mentioned two paragraphs above. In some

instances, the value of this integral may be known within a range. We might

take the threshold to be toward the upper end of this range, although in theory,

statistically consistent estimators can be obtained for any value in the range;

see the theorem in Section 3. More generally, experimentation with different

images that have approximately the same sort of discontinuities and noise levels
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as the one under investigation, and where the point-spread function is similar

but known, can assist in threshold choice.

Thus our technique avoids the need for information about the true image, by

using a mathematical description of the extent to which the image is too “soft”

through the effect of blur. However, some parametric forms of point spread

functions differ very little, from one parameter value to another, in terms of the

effects they have on the extent to which an image is blurred. A technique based

on assessing the sharpness of a test pattern cannot be expected to perform well in

such circumstances. This issue is the subject of particular discussion in Section 2,

which gives general theoretical background for our technique. For simplicity, we

do not consider the effects of noise there; this matter is taken up in mathematical

detail in Section 3. A summary of numerical properties of our method is given

in Section 4.

We focus on the problem of estimating the point-spread function, rather

than the obviously related one of of image restoration, since there are a great

many approaches to solving the latter problem, and our objectives would have to

narrow if we were to treat just one of them. Moreover, there is usually intrinsic

interest in the point-spread function, not the least because knowing the nature

of that function is an important step in determining the blurring mechanism, so

as to improve performance of the imaging device.

There is a substantial, recent statistical literature on deconvolution problems,

including four discussion papers (Cornford, Csató, Evans and Opper (2004),

Johnstone, Kerkyacharian, Picard and Raimondo (2004), Haario, Laine, Lehti-

nen, Saksman and Tamminen (2004) and Wolfe, Godsill and Ng (2004)) in a

single issue of the Journal of the Royal Statistical Society. Recent sta-

tistical, or closely related, work on blind deconvolution includes that of

Gassiat and Gautherat (1999), Poskitt, Dougancay and Chung (1999), Higdon

and Yamamoto (2001), Li and Shedden (2001), Zhang, Amari and Cichocki

(2001), Doucet, Godsill and Robert (2002), Ellis (2002), May, Stathaki and Kat-

saggelos (2003), Rosec, Boucher, Nsiri and Chonavel (2003), Sotthivirat and

Fessler (2003), Carasso (2004), Erdogmus, Hild, Principe, Lazaro and Santa-

maria (2004), and Likas and Galatsanos (2004).

2. Models and Methodology

2.1. Models for point-spread function

Denote by X(x, y) the brightness of an image at a point (x, y) in the plane

IR2. We consider the function X to be “blurred” by a point-spread function,

φθ, where θ denotes the value of an unknown (possibly vector valued) parameter
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on which the point-spread function depends. The result is the observed, blurred

image

Y θ(x, y) =

∫∫
φθ(u, v)X(x − u, y − v) du dv , (x, y) ∈ IR2. (2.1)

(Here and below, unqualified integrals are taken over the whole real line or the

entire plane.) Importantly, in none of the work in this paper do we assume

that X is known. This is especially relevant when the image represented by X

is degraded by stochastic noise as well as by systematic blur; see Section 3 for

discussion of the case of noise.

We may view Y θ as the result φθX, say, of operating on X by the linear

transform with kernel φθ. (For economy of notation we use the same notation

for both a point-spread function and the associated linear operator.) For the

most part we assume θ is univariate. We suppose too that φθ preserves average

brightness, in the sense that for each θ,
∫∫

φθ(x, y) dx dy = 1. (2.2)

Examples include the Gaussian point-spread function

φθ
Gau(x, y) =

1

2πθ
exp

{
−

1
2

(
x2 + y2

)

θ

}
, (x, y) ∈ IR2. (2.3)

Although, as statisticians know from experience in errors-in-variables problems,

this type of blur is especially challenging for deconvolution, it is especially com-

mon in applications of image analysis. One of the reasons is the central, canonical

role played by the Gaussian density function, which comes about in part through

arguments based on the Central Limit Theorem.

The circular-exponential point-spread function,

φθ
exp(x, y) =

1

2π θ2
exp

{
− θ−1(x2 + y2)

1

2

}
, (x, y) ∈ IR2, (2.4)

where θ > 0, is occasionally discussed in image analysis. One generalisation of

φθ
Gau is to the circular, “stable” point-spread function,

φθ
sta(x, y) = θ−2

2 ψθ1

sta

{
(x, y)

θ2

}
, (x, y) ∈ IR2, (2.5)

where θ = (θ1, θ2), 0 < θ1 ≤ 2, θ2 > 0, and ψθ1

sta denotes the density of a bivariate,

symmetric, stable law with characteristic function
∫∫

exp{−(isx+ ity)}ψθ1

sta(x, y) dx dy

= exp
{
− (s2 + t2)

θ1
2

}
, (s, t) ∈ IR2.
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The Gaussian case is obtained by taking, in (2.5), θ1 = 2 and θ2 proportional to

the standard deviation.

2.2. Models for images

The type of image that is most likely to be useful for determining a point-

spread function is one that includes sharp boundaries. That is, if we represent an

image as a function, X, from the plane to the real line, then the function should

include jump discontinuities. Such functions can be thought of as modelling

the intensity of light reflected from a typical test-pattern used in photography.

Rows of lines in the test-pattern are represented mathematically as long, narrow,

closely-spaced rows of rectangular blocks, on each of which the function takes a

particular value, say 1, and off which it takes a different value, say 0.

An example to which we pay special attention, because of its mathematical

simplicity, is the square-block test-pattern, where the image is represented as the

function

X(x, y) =

{
1 if |x| ≤ 1 and |y| ≤ 1

0 otherwise.
(2.6)

Note, however, that we do not need to know the true image; that is, the function

X is not assumed known. Our approach supposes only that X is a function with

fault-type discontinuities; we do not require information about their location,

height or extent.

2.3. Effect of deblurring on discontinuities

If a function X of the type discussed in Section 2.2 is smoothed by the

operator φθ0 , producing the blurred function Y θ0 defined at (2.1), then vertical

fault-type discontinuities in X will generally be converted to sloping surfaces

in Y θ0 = φθ0X. Conversely, if we attempt to recover the image represented by

X by applying the inverse of φθ to Y θ0, then in many cases we should be able to

determine the correct value of θ (that is, θ = θ0) by considering which values of

θ produce a function

Zθ =
(
φθ

)−1
Y θ0 =

(
φθ

)−1
φθ0X (2.7)

that has had fault-type discontinuities restored to it.

Since we do not assume that the true image represented by X is known,

then we do not know where to look for the fault lines, or how to assess how

high the jump discontinuities might be. Thus, rather than make a subjective

assessment of image smoothness we require a mathematical criterion, based on

differentiation or differencing. Such an approach is discussed in the next section.
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To appreciate in more detail the effect that the choice of θ has on properties

of Zθ, defined at (2.7), assume that θ is a scalar parameter and that increasing

θ increases the extent of “spread” of φθ. Examples include the Gaussian and

circular-exponential point-spread functions, at (2.3) and (2.4), respectively, and

also the circular-stable point-spread function at (2.5) if θ1 is fixed and θ = θ2
is varied, or if θ2 is fixed and θ = θ1 is altered. In such cases, if the univariate

parameter θ is too small then applying the inverse operator, (φθ)−1, to Y θ0 =

φθ0X, as at (2.7), will not fully compensate for the blurring action that took X

to Y θ0 . However, increasing θ all the way to θ = θ0 will cause the image to “snap

into focus,” and allow us to recover X perfectly. On the other hand, increasing

θ beyond θ0 will cause Zθ to fluctuate in a highly erratic manner, especially if

some noise is present. By assessing these situations mathematically, we have an

opportunity to determine the correct value of θ.

Let φθ
ft denote the Fourier transform of φθ:

φθ
ft(s, t) =

1

(2π)2

∫∫
φθ(x, y) exp{−(isx+ ity)} dx dy. (2.8)

Mathematically, the point-spread functions considered in the previous paragraph,

with θ univariate and with the exception of the circular-exponential function, all

have the following properties:

if 0<θ1<θ2 then for each C>0,
∣∣∣φθ2

ft (s, t)/φθ1

ft (s, t)
∣∣∣ is bounded above

by a constant multiple of (1 + |s| + |t|)−C , uniformly in (s, t) ∈ IR2.
(2.9)

Since C in (2.9) can be chosen arbitrarily large, then the implications of (2.9)

may be expressed in words as follows: If 0 < θ1 < θ2 then the effect that φθ2 has

on dampening down high-frequency portions of the function X is exponentially

greater, as a function of those frequencies, than the effect had by φθ1. Here

we interpret “exponentially greater” as meaning “greater than any polynomial

function,” although in the examples in the previous paragraph it actually is a

conventional exponential function.

2.4. Measuring the sharpness of a blurred image

If the extent of deblurring is too small, then the deblurred image will be

relatively “soft.” In particular, if φθ satisfies (2.9) and θ is strictly less than

the correct value θ0 then, even when X contains fault-type discontinuities, Zθ

(representing our attempt at deblurring the blurred version, Y θ0, of X) will be

differentiable. On the other hand, provided X contains fault-type discontinuities,

Zθ will fail to be differentiable if we deblur by exactly the right amount, or

if we deblur too much. These considerations suggest that we might measure
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the sharpness of the deblurred image by assessing the extent to which Zθ is

differentiable.

Of course, in practice we have to do all our calculations on a discrete grid,

representing the pixel grid on which images are digitised. Therefore, we are inter-

ested in difference operators as much as we are in differentiation. The method-

ology discussed below is strongly influenced by this consideration.

Let h > 0 denote a small positive quantity, let Z = Zθ represent our attempt

at restoring the function Y θ0 , obtained by smoothing X, and define

A(h) = (2h)−1

∫∫
max

ω

{
Z(x+ h cosω, y + h sinω)

−Z(x− h cos ω, y − h sinω)
}2
dx dy, (2.10)

A1(h) = (2h)−1

∫∫ [
{Z(x+ h, y) − Z(x− h, y)}2

+{Z(x, y + h) − Z(x, y − h)}2
]
dx dy. (2.11)

Clearly,

A1(h) ≤ 2A(h), (2.12)

and so if discontinuities in Z were evident from the criterion A1(h), they would

also be apparent from A(h).

We show in Appendix A.1 that, if Z is smooth except for fault-type disconti-

nuities along a collection, C, of curves in the plane, and if f(s) denotes the jump

height at s ∈ C, then as h→ 0,

A(h) →
∫

C

f(s)2ds, (2.13)

the latter denoting the line integral of f2 along C. Of course, C does not need to

be a single connected curve, and need not be smooth; it may contain corners.

The limit for A1(h) is less explicit than that for A(h), but always lies between

1 and
√

2 times the limit for A(h): as h→ 0,

A1(h) → α

∫

C

f(s)2ds, (2.14)

where 1 ≤ α ≤
√

2. In general, α will depend on C and f in a complex manner.

To obtain (2.13) and (2.14) in Appendix A.1 we assume that, at points away

from C, the function X is smooth, in the sense of having a bounded derivative.

Results (2.13) and (2.14) demonstrate the ability of the criteria A and A1

to discern places in Z where brightness changes rapidly. In particular, A and A1

are not appreciably affected by smooth parts of Z, and A(h) is asymptotically

equal to the integrated squared height of jump discontinuities.
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2.5. Properties of A and A1 when applied to Z
θ

Let us assume that a graph of the surface z = X(x, y) shows a nondegenerate

collection, C, of fault-type discontinuities, but that X is smooth elsewhere and,

in addition, is compactly supported so that it is square-integrable on IR2. (The

square-block test-pattern, for which X is given at (2.6), is a case in point.) If

we have chosen θ = θ0 exactly right in the definition of Z = Zθ at (2.7), then

Z = X, and so by (2.13) and (2.14), A(h) and A1(h) both converge to a strictly

positive constant as h→ 0.

On the other hand, if the point-spread function φθ satisfies (2.9) and if θ < θ0,

then it can be proved, using a simple argument based on Fourier transforms, that

the function Z = Zθ has infinitely many square-integrable derivatives on IR2. In

consequence, the values of A(h) and A1(h) for this Z both converge to zero as

h → 0. Therefore, the fact that we have used a value of θ that is too small can

be recognised from the property that A(h) and A1(h) are also unduly small.

Moving to the other side of θ0, if φθ satisfies (2.9) and if θ > θ0, then A(h) and

A1(h) are both infinite, for each h > 0. (In a practical setting, where noise and

digitisation error are involved, and A and A1 are computed by a regularisation

procedure, “infinite” should be replaced by “very large.”) This follows from

Parseval’s identity and the fact that if X has a fault-type discontinuity running

through it, then its Fourier transform decreases to zero only polynomially quickly

as frequency increases whereas, by (2.9), the ratio |φθ0

ft (s, t)/φθ
ft(s, t)| diverges

faster than any polynomial as s, t → ∞. In Appendix A.2 we give a rigorous

proof for the square-block test-pattern function defined at (2.6); other functions

with fault-type discontinuities can be treated in the same fashion.

These considerations suggest that we can estimate θ by constructing either

A(h) or A1(h) for a small value of θ, and steadily increasing θ until the criterion

changes sharply, from a small to a very large value. The appropriate threshold can

be determined through experimentation. Section 3 discusses implementation of

this rule in the presence of noise, and Section 4 reports the results of a numerical

study of properties of the rule.

In this discussion we have, for the sake of simplicity, confined attention to

the case where θ is univariate and satisfies (2.9). However, the results described

in the last two paragraphs can be generalised to a range of other settings. The

case of the circular-stable point-spread function (2.5), where θ is bivariate, is

a case in point. There, with θ = (θ1, θ2) denoting a general parameter choice

and θ0 = (θ01, θ02) representing the true value, the following results are readily

proved. If either θ1 < θ01, or both θ1 = θ01 and θ2 < θ02, then Z = Zθ is

infinitely differentiable and, therefore, A(h) and A1(h) both converge to zero as

h→ 0. If either θ1 > θ01, or both θ1 = θ01 and θ2 > θ02, then A(h) = A1(h) = ∞
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for h > 0. Therefore the true value of θ can be identified by examining either A

or A1 for a range of choices of θ.

2.6. Limitations to using differences as a means of determining a point-

spread function

The principle on which our methodology is founded is that, if θ lies on one

side of θ0, then the partially restored function Zθ is relatively smooth and, in

particular, does not contain the fault-type discontinuities in the “true” function

X = Zθ
0 ; and if θ lies on the other side, then Zθ is so rough that it is not well-

defined in the sense that the integral of its squared difference is infinite. If these

properties do not hold then a method based on assessing the roughness of Zθ,

whether by using the criteria A and A1 or by employing another approach, is

unlikely to be effective.

Consider, for example, the case of a point-spread function which has the

property that a fault-type discontinuity can persist in the restored function Zθ

no matter on what side of θ0 the value of θ lies. In this context the presence

of a discontinuity in Zθ cannot be used to characterise the correct choice of θ.

We show in Appendix A.2 that the circular-exponential function φθ
exp, defined at

(2.4), is of this type. This function does not satisfy (2.9), because altering the

value of θ does not have a very large effect on the impact that smoothing has on

high-frequency parts of the image. For example, if X denotes the square-block

test-pattern function defined at (2.6), if θ0 > 0 is fixed, if Z = Zθ is defined

by (2.7), and if A(h) and A1(h) are given by (2.10) and (2.11), then no matter

what the value of θ, A(h) and A1(h) converge to strictly positive constants as

h → 0. The function Zθ, given at (2.7), still contains a fault-type discontinuity,

no matter what the values of θ and θ0.

This problem is intrinsic to methodologies that use differentiation, or differ-

encing, to assess the efficacy of restoration. It is not an artifact of the particular

techniques we have chosen. If using the incorrect amount of deblurring does not

result in either marked undersmoothing (e.g., rendering a discontinuous function

smooth) or oversmoothing (making a function extremely rough, in the sense that

it is no longer square-integrable), then it is very difficult to use differentiation or

differencing as a means of determining the extent of deblurring.

3. Effects of Noise

3.1. Main results

In practice the blurred image, represented in Section 2 by the function Y θ0 =

φθ0X, is not observed exactly. In particular, there is a degree of noise at the level

of the pixel grid. In this section we investigate the impact of that source of error.
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If noise is added to φθ0X then we need to re-define the function Y θ0 that

represents the observed image. Rather than treat pixels explicitly, we use a

bivariate form of the white-noise model:

Y θ0(x, y) =
(
φθ0X

)
(x, y) + δ dW (x, y), (3.1)

where W denotes a standard Wiener process in the plane. White-noise models,

as problems with Weiner-process noise are often called, are used in statistics as

a means of ensuring theoretical justification for methodology, while retaining the

insight and clarity that only a relatively incisive argument can provide. The

equivalence of white-noise problems to discrete-data problems is well established

in a range of settings. See, for example, Brown and Low (1996), Nussbaum

(1996) and Brwon, Cai, Low and Zhang (2002).

In more conventional applications of the white-noise model in statistics, in-

volving samples of size n, the “scale” δ is taken proportional to n−1/2. In the

context of data on a pixel grid, “sample size” can be represented by the num-

ber of pixels per unit area of the plane, N say, and δ is proportional to N−1/2.

Therefore, our asymptotic theory will be based on δ decreasing to zero.

In order to counteract the effects of noise we compute Fourier transforms in

an increasing, although compact, region that for simplicity is assumed to be the

disc Rr of radius r centred at the origin. (An alternative approach would be to

use a compactly supported stochastic process in place of W , at (3.1), but that

would arguably not be a realistic assumption.) To distinguish truncated Fourier

transforms from regular ones, we use the subscript “tft,” rather than “ft,” to

indicate the former. In particular, the truncated Fourier transform of Y θ0 , at

(3.1), is

Y θ0

tft (s, t) =
1

(2π)2

∫∫

Rr

(
φθ0X

)
(x, y) exp{−(isx+ ity)}dx dy

+
δ

(2π)2

∫∫

Rr

exp{−(isx+ ity)}dW (x, y). (3.2)

The dependence of Y θ0

tft on θ0, here and below, serves only to indicate that Y θ0

tft

is based on the actual signal Y θ0 , computed for the true value of the parameter.

It does not mean that the true parameter value has to be known in order to

compute Y θ0

tft .

We “deblur” Y θ0 by dividing Y θ0

tft by φθ
ft, treating the ratio as a Fourier

transform, and inverting it using a hard-thresholding approach to regularisation,

obtaining

V θ(x, y) =

∫∫
Y θ0

tft (s, t)

φθ
ft(s, t)

exp{i(sx+ ty)}I
(
s2 + t2 ≤ λ2

)
ds dt, (3.3)
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where λ > 0 denotes the threshold. If there were no noise, in particular if δ = 0

in (3.1), and if we were to take r = λ = ∞ in (3.2) and (3.3), then V θ would

be identical to Zθ defined at (2.7). When δ 6= 0, finite values of r and λ are

necessary in order to reduce the effects of noise. In such cases, the function V θ

at (3.3) is generally not real-valued. However this is not a problem, since we are

not interested in V θ for its own sake, but instead in using it to construct versions

of the difference operators A(h) and A1(h).

Indeed, writing |z| for the absolute value of a complex number z, we con-

struct the following generalised forms of A(h) and A1(h) at (2.10) and (2.11),

respectively:

Bθ(h) = (2h)−1

∫∫
max

ω

∣∣∣V θ(x+ h cos ω, y + h sinω)

−V θ(x− h cosω, y − h sinω)
∣∣∣
2
dx dy,

Bθ
1(h) = (2h)−1

∫∫ {∣∣V θ(x+ h, y) − V θ(x− h, y)
∣∣2

+
∣∣V θ(x, y + h) − V θ(x, y − h)

∣∣2
}
dx dy.

For simplicity we work only with the latter, which by Parseval’s identity is

Bθ
1(h) = 2h−1 1

(2π)2

∫ ∫ ∣∣∣∣∣
Y θ0

tft (s, t)

φθ
ft(s, t)

∣∣∣∣∣

2

(sin2 sh+sin2 th
)
I(s2 + t2 ≤ λ2)dsdt. (3.4)

If there is no noise and we take r = λ = ∞, then Bθ
1 is identical to A1 at (2.11).

Note particularly that, as indicated by (3.4), smoothing is undertaken in the

frequency rather than the spatial domain. As a result, smoothing has very little

deleterious impact on jump discontinuities or similar non-regular features of the

true image.

The discussion in Section 2 suggests that simple thresholding rules, based

on the value of Bθ
1(h), may be used to determine θ0. Two such rules are given

below.

Let C be strictly positive but otherwise arbitrary, and let θ̂ denote

either the least value of θ for which Bθ
1(h) ≥ C, or the least value of

θ such that Bθ1

1 (h) ≥ C for all θ1 ≥ θ.

(3.5)

We claim that, for a range of point-spread functions which includes those satis-

fying (2.9), both algorithms in (3.5) produce statistically consistent estimators

of θ0. The convergence rate of estimators of θ0 can generally be improved by

using refined versions of those algorithms, but that will not concern us here; for
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simplicity we focus only on consistency. Moreover, since the assumptions im-

posed on h, r and λ will depend on choice of the parametric class of point-spread

function, we reduce the length of our treatment by considering only the Gaussian

case, at (2.3). Our method of proof is also valid for circular-stable point-spread

functions, at (2.5).

We assume that the image function X satisfies the following:

X is bounded and compactly supported, and its Fourier transform

Xft decreases to zero at only a polynomial rate as s, t increase, in

the sense that there exist constants C1, C2 > 0 and 0 < c1 < c2 <∞
such that the interval (c1, c2) does not contain an integer multiple of

π2, and
∫∫

|Xft(s, t)|2 I
(
c1u ≤ s2 + t2 ≤ c2u

)
ds dt ≥ C1u

−C2

for all sufficiently large u.

(3.6)

Condition (3.6) asks that the image X not be too smooth. To appreciate why,

note that the displayed integral in (3.6) decreases to zero very fast, as a function

of increasing u, only if X is smooth. Only in such cases does the inequality in

(3.6) fail. In particular, (3.6) holds for images that include jump discontinuities.

However, (3.6) also holds for many functions X that are quite smooth. For

example, consider the case

X(x, y) =

{
C3(1 − x2)k(1 − y2)k if |x| ≤ 1 and |y| ≤ 1

0 otherwise,
(3.7)

with integer k ≥ 0 and a C3 nonzero constant. Then (3.6) is satisfied. This choice

of X at (3.7) has k bounded derivatives in the plane, and in particular does not,

unless k = 0, have the jump discontinuities that a typical test-pattern function

would enjoy. Nevertheless, our technique gives consistent estimation in the case

of such an X. The square-block test-pattern function (2.6) is an example of the

case k = 0.

We also need to prescribe the manner in which h, in the definition of Bθ
1(h),

and the parameters r and λ of the regularisation vary together. We consider each

of h, r and λ to be a function of δ, and assume that r and λ diverge to infinity

and that

λ

r
,

λ

| log δ| 12
and

(log r)

λ
all converge to 0, and hλ→ ∞, as δ → 0. (3.8)

Therefore, r can be exponentially large as a function of λ, and λ can be expo-

nentially large as a function of δ, before our method fails in a serious way. This
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robustness against values of these parameters will be explored numerically in

Section 4.

Theorem. Assume (3.6) and (3.8), and that the point-spread function φθ is

given by (2.3). Let θ̂ be defined by either of the algorithms at (3.5). Then, with

probability 1, θ̂ → θ0 as δ → 0.

A proof of the theorem is given in Appendix A.3.

4. Numerical Properties

4.1. Square-block test pattern

Here we summarise the results of a simulation study where the true image

X(x, y) was defined in the unit square [0, 1] × [0, 1], X(x, y) = 2 − 2(x− 0.5)2 −
2(y − 0.5)2 when (x, y) was in the central square [0.25, 0.75] × [0.25, 0.75], and

X(x, y) = 1−2(x−0.5)2 −2(y−0.5)2 when (x, y) was outside the central square.

Observations were generated from the model

Y (
i

n
,
j

n
) = (φθ0X)(

i

n
,
j

n
) + ǫij , i, j = 1, . . . , n,

where the true point-spread function φθ was assumed to be φθ
Gau, at (2.3), the

true value of θ was θ0 = 0.032, the errors ǫij were independent and identically

distributed as normal N(0, σ2), and n2 was the sample size. When n = 128

and σ = 0.02, the original image, its blurred version, and the blurred-and-noisy

version are shown in Figure 1(a)−1(c), respectively.

Using the inversion formula (3.3), when the parameters (θ, λ) were chosen

to be (0.022, 60), (0.032, 60) or (0.042, 15), the restored images obtained from the

image in Figure 1(b) are shown in Figure 1(d)−1(f), respectively. Note that, in

this example, the domain of definition of the true image X is finite. Therefore,

Rr in (3.2) can be simply chosen to be the whole domain of definition of X (i.e.,

[0, 1]×[0, 1]). From Figure 1, it can be seen that when θ < θ0, the image is under-

deblurred; it is perfectly deblurred when θ = θ0; and it is over-deblurred when

θ > θ0. In the first two cases, theoretically speaking, λ could have been chosen

equal to infinity. We selected λ = 60 so as to avoid underflow in computation.

For the same reason, a smaller λ was chosen in the third case. The corresponding

restored images from the blurred-and-noisy image in Figure 1(c) are shown in

Figure 1(g)−1(i), where λ was chosen to be 16, 16 and 15, respectively. Smaller λ

values were chosen in this case due to noise. It can be seen that image restoration

is more difficult in the presence of noise. The periodic artifacts seen in some

panels of Figure 1 are the result of oscillating trigonometric terms included in

the Fourier transformation. These are mainly caused by the thresholding scheme

used in the image estimator (see (3.3)) and by noise.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1. Graphs of X , φX , Y , and deblurred images. Panels (a)−(c) show

the true image X , its blurred version φX , and the blurred-and-noisy version,

respectively. Panels (d)−(f) show the deblurred images, based on (3.3) and

constructed from (b), when θ in the deblurring operator is smaller than

θ0, equal to θ0, and larger than θ0, respectively. Panels (g)−(i) show the

corresponding deblurred images from (c). Panels (j)−(l) show the deblurred

images, constructed from (b), when θ = 0.032 and λ equals 40, 50, and 70,

respectively.

This example also suggests a practical approach to choosing λ and θ in

(3.3). If the computer program performs well for a particular value of λ when
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θ is smaller than a specific value, say θ∗, but has an underflow problem when θ
is larger than θ∗, then the true value of θ should be close to θ∗, and λ should

be chosen accordingly for best visual impression. Near θ∗, the restored image is
quite robust to λ. To see this, the restored images obtained from the image in

Figure 1(b) are shown in Figure 1(j)−1(l), respectively, when θ = 0.032 and λ
equals 40, 50, and 70. It can be seen that results with different values of λ are

almost identical.

(a) (b) (c)
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λ=8, h=0.001
λ=10, h=0.001

λ=10, h=0.001

0
.0

0.0

0
.0

0.00.0 0.010.01 0.020.02 0.030.03 0.040.040.04 0.08 0.12

Figure 2. Graphs of A1(h) and Bθ
1(h). Panel (a) shows A1(h). Panel (b)

graphs Bθ
1(h) when θ1/2 varies within [0, 0.04], when σ = 0, and when (λ, h)

takes one of the values (10, 0.01), (15, 0.01), (10, 0.001), and (15, 0.001).
Panel (c) depicts the corresponding results when σ = 0.02 and (λ, h) takes
one of the values (8, 0.01), (10, 0.01), (8, 0.001), and (10, 0.001).

The image restoration procedure (3.3), and the procedure (3.5) for estimating

θ0, are based on the properties (2.13) and (2.14) of A(h) and A1(h). In the case of
the square-block test pattern considered above, A(h) = A1(h), and

∫
C
f(s)2 ds =

2 if Z = X in (2.13) and (2.14). The plot of A1(h) is shown in Figure 2(a). It

can be seen that A1(h) tends to
∫
C
f(s)2 ds when h converges to zero. When

noise is involved, the criterion A1(h) should be replaced by Bθ
1(h), defined at

(3.4). Figure 2(b) plots Bθ
1(h) when θ1/2 varies within the range [0, 0.04], when

σ = 0, and when (λ, h) takes one of the values (10, 0.01), (15, 0.01), (10, 0.001),

and (15, 0.001). The corresponding results when σ = 0.02 and (λ, h) takes one of
the values (8, 0.01), (10, 0.01), (8, 0.001), and (10, 0.001) are presented in Figure

2(c). It can be seen that: (a) Bθ
1(h) increases with θ and λ; (b) if we decrease

the value of h, the value of θ at which Bθ
1(h) would start to change dramatically

with λ would be closer to θ0; and (c) when σ is larger, the value of λ should
be chosen relatively small, which is consistent with results presented in Table 1

below. These facts should be helpful for determining θ̂ in applications.
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Table 1. Optimal values of λ and h in (3.5). Tabulated are the smallest

values of λ and h such that the mean squared error of θ̂ is zero, based on

100 simulations.

n = 64 n = 128

C σ = 0.01 σ = 0.02 σ = 0.05 σ = 0.01 σ = 0.02 σ = 0.05

1 (12,0.01) (12,0.01) (12,0.01) (12,0.01) (12,0.01) (12,0.01)

10 (18,0.01) (17,0.01) (15,0.01) (19,0.01) (18,0.01) (16,0.01)

100 (19,0.01) (18,0.01) (17,0.01) (20,0.01) (19,0.01) (18,0.01)

To estimate θ0 using (3.5), we considered cases where n was either 64 or 128,

σ changed its value among 0.01, 0.02 and 0.05, and the threshold C in (3.5) was

1, 10 or 100. In each case, the optimal values of λ and h were sought in [1, 25]

and among 10−1, 10−2, 10−3 and 10−4, respectively, for minimising the mean

squared error of θ̂ based on 100 replications. We found that (a) the two versions

of θ̂ in (3.5) gave exactly the same results in all cases, and (b) in each case we

could always find values of λ and h such that mean squared error vanished (i.e.,

θ̂ = θ0) in all 100 replications. The smallest values of λ and h for which mean

squared error vanished are listed in Table 1. It can be seen that the optimal

value of h is stable when n, σ and C change. The value of λ should be chosen

larger when n is larger, when σ is smaller, or when C is larger.

Image analysis enjoys an advantage that smoothing methods applied to re-

lated problems do not: even if an observer has never seen the true image, he

or she often has an accurate impression, gained from extensive experience, of

the scene to which the degraded image is an approximation. It is appropriate,

and very common in practice, to exploit this information and choose tuning pa-

rameters so as to produce a restoration that gives the best visual impression.

This approach has the advantage that it is not limited by metric-based, technical

accounts of performance. While commonly used in theoretical work, those ap-

proaches are well-known not to respect perceived visual fidelity. See, for example,

Marron and Tsybakov (1995).

4.2. Lena image example

Next we applied our image restoration procedure, described by (3.3)−(3.5),

to the Lena image. The original Lena image shown in Figure 3(a) has 256× 256

pixels, with grey levels in the range [0, 255]. Its version degraded by the Gaussian

point-spread function (2.3), with θ0 = 0.0152, and by independent and identically

distributed noise from the N(0, 1) distribution, is illustrated in Figure 3(b).

The criterion Bθ
1(h) is shown in Figure 3(c) when λ = 20 or 25, and h = 0.01

or 0.001. It can be seen from the plot that Bθ
1(h) starts to increase dramatically

around θ = 0.0152 when λ increases from 20 to 25, and when h = 0.001. In
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(3.5), if we chose C = 1, 000 then we obtained θ̂ = 0.0152 when λ ≥ 20 and
h = 0.001. Combining these two facts, it can be concluded that θ0 is close to
0.0152. In applications, we can also obtain a reasonable estimator of θ0 by trying
several values of θ. The restored Lena images, using the method at (3.3) when
λ = 1, 000 and θ = 0.012, 0.0142, 0.0152, 0.0162 or 0.022, are shown in Figure
3(d)−(h), respectively. From these plots it can be seen that the restored images
are quite good when θ is close to θ0; compare Figure 3(e)−(g).

(a) (b)
(c)

(d) (e) (f)

(g) (h) (i)

θ0.5
0.0 0.005 0.010 0.015 0.020

0
1
0
0
0
0
0

3
0
0
0
0
0

5
0
0
0
0
0

λ=20, h=0.01
λ=20, h=0.001
λ=25, h=0.01
λ=25, h=0.001

Figure 3. Lena image example. Panel (a) shows the original Lena image.
Panel (b) depicts the blurred-and-noisy Lena image, obtained via the Gaus-
sian point-spread function (2.3) with θ0 = 0.0152, further degraded by in-
dependent and identically distributed noise from the N(0, 1) distribution.
Panel (c) shows the criterion Bθ

1(h) when λ = 20 or 25, and h = 0.01 or
0.001. Panels (d)−(h) show the degraded images using (3.3)−(3.5) with
λ = 1, 000 and θ equal to 0.012, 0.0142, 0.0152, 0.0162 or 0.022, respectively.
Panel (i) shows the image restored using the Wiener filter.
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The restored image defined at (3.3) was obtained using an inverse filter with

hard thresholding. In the literature there are several other procedures for recov-

ering X from Y when the point-spread function is specified. For example, the

restored image using a Wiener filter is defined by

X̂(x, y) =
1

(2π)2
ℜ

[ ∫ ∫
φ̄θ

ft(s, t)

|φθ
ft(s, t)|2 + α(s2 + t2)

β

2

Yft(s, t) exp{i(sx+ ty)}ds dt
]
,

where ℜ denotes “real part,” φ̄θ
ft is the complex conjugate of φθ

ft, and α, β > 0

are parameters. The Wiener filter is derived by minimising the mean integrated

squared error of the restored image, under the assumption that the error distri-

bution is Gaussian; see Gonzalez and Woods (1992, Chap. 5). The restored Lena

image is shown in Figure 3(i) in the case α = 5 × 10−6, β = 1 and θ = 0.0152.

It can be seen that the result is similar to that shown in Figure 3(f), obtained

there using the inverse filter with hard thresholding.

For real images, such as the Lena photograph, errors due to the impact of

noise are more clearly visible in regions where a viewer feels the grey shade should

be constant, than they are in other areas. However, in quantitative terms the

performance of our method is no less good in regions of perceived constant grey

shade than it is in the vicinity of discontinuities.

5. Generalisations and New Directions

Our results can be extended in a number of directions. For instance, the the-

orem in Section 3 can be generalised so that it applies to a much wider variety

of point-spread functions than the spherically symmetric Gaussian one treated

there. In particular, it is straightforward to show that the theorem holds for

asymmetric Gaussian point-spread functions. There, the scale on each principal

axis, and the angles of orientation of each these axes, can be estimated consis-

tently from data. Some methods for manufacturing optical lenses can result in

asymmetries of this type.

Cases where the point-spread function varies spatially in a reasonably straight-

forward manner can also be treated. For example, the instance where θ in (2.3)

alters with location can be treated, provided the variation is particularly smooth.

The theorem in Section 3 can also be generalised to a substantially larger

class of point-spread functions, where the characteristic function φft(t) decays

exponentially fast as the norm, ‖t‖, of frequency diverges to infinity. Examples

include spherically symmetric cases where the profile of the point-spread function

is the density of a univariate stable law.

It is also possible to explore, in more detail, cases where our method does not

perform so well, for example those discussed in Section 2.6. Take, for example,
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the case where the point-spread function is “rough but not too rough,” in the

sense that it is not infinitely differentiable but (unlike the circular-exponential

example discussed at (2.4)) has a number of bounded derivatives. The extent

to which our method works can be quantified theoretically by taking first the

limit as δ converges to zero, and then permitting the number of derivatives of

the point-spread function to increase. On the other hand, if the number of

derivatives is not large then fitting the wrong model (e.g., a Gaussian model,

even if it is incorrect) may sometimes give acceptable results.

More broadly, limitations of the models and methodology we have developed

can be explored. Note that the point-spread function model exemplified by (2.1)

and (3.1) is appropriate only in the setting of a linear filter. Non-linear filters

cannot be removed so readily; in general, our approach would find it difficult to

distinguish non-linear filters from noise. Conversely, our approach would confuse

noise added to the image, before blur, with the true image, and would fail to

suppress noise in such cases. Methods quite different from those that we have

discussed are needed to deal with problems such as this.

Appendix A.1. Integrals of Squared Differences of Images

Let C denote a curve in the plane, having a continuously turning tangent,

except possibly for a finite number of jump discontinuities in the tangent (giving

corners of C); assume C is of finite length and, for the present, is neither discon-

nected nor self-intersecting; let f denote a continuous function from C to the real

line; and, for points in IR2 close to but not on C, identify two sides, S1 and S2 say,

of C. Let X be a compactly supported function from IR2 to IR, with the property

that (a) both partial derivatives of X are bounded uniformly in (x, y) ∈ IR2 \ C,

and (b) if s ∈ C then X(s1) − X(s2) → f(s) as sj → s for j = 1, 2, with sj on

side Sj of C. Define A(h) as at (2.10), although for the function X instead of Z.

Then (2.13) holds.

More generally, we do not need to confine attention to instances where the

image X includes a single, non-self intersecting curve along which a fault-type

discontinuity occurs. General cases may be constructed by taking X = X0 to

be the sum of any finite number of functions X1, . . . ,Xm say, each of which has

the properties of X given in the previous paragraph, with respective fault-line

curves C1, . . . , Cm and jump-size functions f1, . . . , fm. In such cases the fault

line along which X0 has jump discontinuities will be C0 = ∪1≤j≤m Cj; it may

be self-intersecting and is not necessarily connected. If each triple (Xj , Cj , fj)

satisfies the conditions given for (X, C, f) in the previous paragraph, then X0 =∑
1≤j≤m Xj has a fault-type discontinuity along C0, with jump size f0(s), say, at
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s ∈ C0; and results (2.13) continue to hold, in the forms,

A(h) ≡ (2h)−1

∫∫
max

ω
{X0(x+ h cosω, y + h sinω)

−X0(x− h cosω, y − h sinω)}2 dx dy →
∫

C0

f0(s)
2ds,

A1(h) ≡ (2h)−1

∫∫ [
{X0(x+ h, y) −X0(x− h, y)}2

+{X0(x, y + h) −X0(x, y − h)}2
]
dx dy → α

∫

C0

f0(s)
2ds,

where 1 ≤ α ≤
√

2.

Our proofs of these properties will treat the simpler setting discussed two

paragraphs above. Let C(h) denote the set of all points (x, y) that are distant less

than h from at least one point of C. Note that, by assumption (a) two paragraphs

above, the integrand of (2.10) equals O(h2) uniformly in (x, y) 6∈ C(h). This

result, and the compact support of X, imply that, if the integral on the right-

hand side of (2.10) were taken over (x, y) 6∈ C(h), then the right-hand side of

(2.10) would converge to zero as h → 0. Therefore, to prove (2.13) it suffices to

establish that result when A(h) there is replaced by A2{h, C(h)}:

A2{h, C(h)} = (2h)−1

∫∫

C(h)
max

ω

{
X(x+ h cosω, y + h sinω)

−X(x− h cos ω, y − h sinω)
}2
dx dy.

Since C has a continuously turning tangent in a piecewise sense then, to prove

the just-mentioned result, it suffices to treat the case where C consists of a finite

sequence of nondegenerate line segments; all other cases can be addressed by

approximation. In the line-segment context, suppose C is the union of disjoint,

nondegenerate line segments D1, . . . ,Dk. Then, since C(h) \ ∪jDj(h) is empty,

and since the measure of the set of points (x, y) that are in two or more Dj(h)’s

equals O(h2), we have:

A2{h, C(h)} =

k∑

j=1

A2{h,Dj(h)} + o(1).

Therefore, it suffices to prove (2.13) with A(h) and C there replaced by A2{h,
Dj(h)} and Dj , respectively. Call this result (Rj).

It is straightforward to prove that if Ej(h) denotes the set of points in the

plane that are not on Dj but are distant strictly less than h from Dj and no

closer than h to either end of Dj ; if Fj(h) is the set of points that are within h of
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either end of Dj ; and if s(x, y) denotes the point on Dj that is nearest to (x, y);

then, as h→ 0,

Y (x, y) ≡ max
ω

{
X(x+ h cos ω, y + h sinω) −X(x− h cos ω, y − h sinω)

}2

= f{s(x, y)}2 + o(1) (A.1)

uniformly in (x, y) ∈ Ej(h), and

Y (x, y) = O(1) (A.2)

uniformly in (x, y) ∈ Fj(h). Since the area of Fj(h) equals O(h2) then, by adding

the integrals of Y (x, y) over Ej(h) and Fj(h), we conclude that (Rj) holds. This

concludes our derivation of (2.13).

The proof of (2.14) is similar. Arguing as above we see that, if we define

C(h) as before, and re-define

A2{h, C(h)} = (2h)−1

∫∫

C(h)

[
{X(x + h, y) −X(x− h, y)}2

+{X(x, y + h) −X(x, y − h)}2
]
dx dy,

then it suffices to prove that (2.14) holds if A(h) there is replaced by A2{h, C(h)}.
To establish this result it is enough to consider the case where C is piecewise-

linear, with components D1, . . . ,Dk, and prove that for each j,

A2{h,Dj(h)} → αj

∫

Dj

fj(s)
2ds, (A.3)

where 0 ≤ αj ≤
√

2 and fj(s) denotes the jump height at s ∈ Dj .

Let Ej(h) and Fj(h) be as in the proof of (2.13), and introduce GV
j (h) and

GH
j (h) as the sets of points in Ej(h) that are distant strictly less than h from Dj

in the vertical and horizontal directions, respectively, and HV
j (h) and HH

j (h) as

the sets of points in Ej(h) that are strictly further than h from Dj in the vertical

and horizontal directions, respectively. Recall that s(x, y) denotes the point on

Dj that is nearest to (x, y). Then, in place of (A.1),

{X(x+ h, y)−X(x − h, y)}2 = f{s(x, y)}2+o(1), uniformly in (x, y) ∈ GH
j (h),

{X(x, y + h)−X(x, y − h)}2 = f{s(x, y)}2+o(1), uniformly in (x, y) ∈ GV
j (h),

and in place of (A.2),

{X(x + h, y) −X(x− h, y)}2 + {X(x, y + h) −X(x, y − h)}2 = O(1)
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uniformly in (x, y) ∈ Fj(h). Additionally,

{X(x+ h, y) −X(x− h, y)}2 = O
(
h2

)
, uniformly in (x, y) ∈ HH

j (h),

{X(x, y + h) −X(x, y − h)}2 = O
(
h2

)
, uniformly in (x, y) ∈ HV

j (h).

Combining these results, and defining DH
j [respectively, DV

j ] to be the set of x

(respectively, y) such that (x, y) ∈ Dj for some y (for some x), we deduce that

(2h)−1

∫∫

Dj(h)
{X(x+ h, y) −X(x− h, y)}2dx dy

= (2h)−1

∫∫

GH
j (h)

{X(x+ h, y) −X(x− h, y)}2dx dy + o(1)

=

∫

DH
j

f{s(x, y)}2dx+ o(1), (A.4)

(2h)−1

∫∫

Dj(h)
{X(x, y + h) −X(x, y − h)}2dx dy

=

∫

DV
j

f{s(x, y)}2dy + o(1). (A.5)

Assume Dj(h) is inclined at angle ω ∈ [0, π/2] to the positive direction of

the horizontal axis. (Other orientations may be treated similarly.) Combining

(A.4) and (A.5) we deduce that

A2{h,Dj(h)} →
∫

DH
j

f{s(x, y)}2dx+

∫

DV
j

f{s(x, y)}2dy

= (cosω + sinω)

∫

Dj

f{s(x, y)}2ds. (A.6)

Since 1 ≤ cosω + sinω ≤
√

2 then (A.3) follows from (A.6).

Appendix A.2. Proofs for Square-Block Test-Pattern

Using Parseval’s identity it may be proved that if the function Z has Fourier

transform Zft, and if A1(h) is given by (2.11), then

A1(h) = 2h−1(2π)2
∫∫

|Zft(s, t)|2
(
sin2 sh+ sin2 th

)
ds dt. (A.7)

If we take Z = X, where X denotes the function defining the square-block test-

pattern, then the fact that the sides of the pattern are parallel to the coordinate

axes, and of equal length and height, implies that A1 = A, and so A(h) is also

given by (A.7).
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The Fourier transform of the square-block test-pattern function X, given at

(2.6), is

Xft(s, t) =
sin s sin t

π2st
,

and the Fourier transform of Zθ, given by (2.7), is

Zθ
ft =

φθ0

ft Xft

φθ
ft

. (A.8)

Hence by (A.7), the version of A1(h) for Zθ is

A1(h) =
16

hπ2

∫∫ (
sin s sin t

st

)2{φθ0

ft (s, t)

φθ(s, t)

}2

(sin sh)2ds dt. (A.9)

We stated in Section 2.5 that if the function X contains fault-type discon-

tinuities, if φθ satisfies (2.9), and if θ > θ0, then A(h) = A1(h) = ∞ for each

h > 0. We prove this result here for the square-block test-pattern, showing that

if θ > θ0 then A1(h) = ∞. The infiniteness of A(h) then follows via (2.12). Now,

(2.9) implies that if θ > θ0 then for each C > 0,

A1(h) > const.

∫∫ (
sin s sin t

st

)2

(1 + |s| + |t|)C(sin sh)2ds dt,

which is clearly infinite if C ≥ 2.

Next we prove that if φθ = φθ
exp denotes the circular-exponential point-spread

function at (2.4), if θ0 is positive but otherwise arbitrary, and if we apply the

difference operators A(h) and A1(h) to Z = Zθ given at (2.7), then (a) for each

θ > 0, Zθ is square-integrable, and (b) A1(h) → C1(θ/θ0)
6 as h → 0, where

C1 > 0 does not depend on θ or θ0. We know from (2.12) that A1(h) is a lower

bound to 2A(h), and in fact a longer argument will show that A(h) → C2 (θ/θ0)
6,

where C2 > 0.

It can be proved that for each θ > 0,

φθ
ft(s, t) is real-valued, strictly positive for all (s, t), and satisfies

φθ
ft(s, t) ∼ C3θ

−3(s2 + t2)−
3

2 as |s| + |t| → ∞, where C3 > 0 de-

notes a constant.

(A.10)

This property and (A.8) imply that Zθ
ft, and hence (by Parseval’s identity) Zθ

itself, are square-integrable, thus giving (a) above.

Define J =
∫
(t−1 sin t)2dt, where, here and below, integrals are taken over

the whole real line. Combining (A.9) and (A.10) we deduce that for a constant
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C4 > 0 not depending on θ or θ0,

A1(h) ∼
C4θ

6

hθ0
6

∫∫ (
sin s sin t

st

)2

(sin sh)2ds dt

=
C4Jθ

6

θ0
6

∫ (
sin s

s

)2

sin2(
s

h
)ds→ C4J

2θ6

2θ0
6 .

That is, A1(h) → C(θ/θ0)
6 as h→ 0, where C > 0, and so (b) above is true.

Appendix A.3. Proof of Theorem

Let φθ
ft denote the Fourier transform defined at (2.8), and let Xft be the

conventional Fourier transform of X:

Xft(s, t) =
1

(2π)2

∫∫
X(x, y) exp{−(isx+ ity)}dx dy.

The Fourier transform of φθ
0X equals the product, φθ0

ft Xft and differs from

(
φθ0X

)
tft

(s, t) =
1

(2π)2

∫∫

Rr

(
φθ0X

)
(x, y) exp{−(isx+ ity)}dx dy

only in terms of order exp(−c1r2), i.e., for a constant c1 > 0:

sup
(s,t)∈IR2

∣∣(φθ0X)tft − φθ0

ft (s, t)Xft(s, t)
∣∣ = O

{
exp

(
− c1r

2
)}
. (A.11)

Taking the truncated Fourier transform of both sides of (3.1), we deduce

that

Y θ0

tft =
(
φθ0X

)
tft

+ δwtft, (A.12)

where

wtft(s, t) =
1

(2π)2

∫∫

Rr

exp{−(isx+ ity)}dW (x, y). (A.13)

Put g1(s, t) = φθ0

ft (s, t)Xft(s, t)/φ
θ
ft(s, t) and

g2(s, t) = δ
wtft(s, t)

φθ
ft(s, t)

+O
[
exp

{1

2
θ(s2 + t2

)
− c1r

2
}]
, (A.14)

where the big-oh term is interpreted as purely deterministic. Then, combining

(A.11) and (A.12), we may write:

Y θ0

tft (s, t)

φθ
ft(s, t)

= g1(s, t) + g2(s, t), (A.15)
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uniformly in (s, t) ∈ IR2.

For j = 1, 2 define

Dj =Dθ
j (h)

= 2h−1(2π)2
∫ ∫

|gj(s, t)|2
(
sin2 sh+sin2 th

)
I
(
s2+t2 ≤ λ2

)
ds dt. (A.16)

In view of (3.4) and (A.15),

∣∣Bθ
1 −Dθ

1

∣∣ ≤ Dθ
2 + 2

(
Dθ

1 D
θ
2

) 1

2 . (A.17)

By treating separately the real and imaginary parts of wtft, it may be proved

from (A.13) that for a constant C > 0, and with probability 1,

sup
s2+t2≤λ2

|wtft(s, t)| = O
{
(r| log δ|)C

}
.

Using this bound, and the fact that

sup
u

[{
min

(
1, u2

)}−1
sin2 u

]
<∞, (A.18)

we may deduce from (A.14) and (A.16) that for each c2 > 0 and some C > 0,

with probability 1,

Dθ
2(h) = O

[
δrC exp

{
(θ + c2)λ

2
}

+ exp
{
(θ + c2)λ

2 − 2c1r
2
}]

→ 0, (A.19)

uniformly in 0 < θ < θ1 for any θ1 > 0, where the limit result follows from (3.8).

Furthermore,

Dθ
1(h) = 2h−1(2π)2

∫∫
|Xft(s, t)|2 exp

{
(θ − θ0)(s

2 + t2)
}

×
(
sin2 sh+ sin2 th

)
I
(
s2 + t2 ≤ λ2

)
ds dt.

This quantity is clearly a monotone increasing function of θ. Since X is bounded

and compactly supported then Xft is bounded, and so by (A.18),

h−1Dθ
1(h) is bounded uniformly in h, λ > 0 and in 0 ≤ θ ≤ θ1, for

any θ1 ∈ [0, θ0).
(A.20)

Suppose, on the other hand, that θ2 > θ0 and 0 < c1 < c2 < ∞. Then, noting

that hλ→ ∞, we see that if δ is sufficiently small we have for all θ ≥ θ2,

Dθ
1(h) ≥ 2h−1(2π)2

∫∫
|Xft(s, t)|2 exp

{
(θ2 − θ0)

(
s2 + t2

)}

×
(
sin2 sh+ sin2 th

)
I
{
c1 ≤

(
s2 + t2

)
h2 ≤ c2

}
ds dt.
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Choose c1, c2 so that the interval [c1, c2] does not contain an integer multiple of

π2. Then there exists C1 > 0 such that, for all sufficiently small δ, sin2(sh) +

sin2(th) ≥ C1 for all (s, t) that satisfy c1 ≤ (s2 + t2)h2 ≤ c2. Therefore, with

C2 = 8π2C1 we have:

Dθ
1(h) ≥ C2h

−1 exp
{
(θ2 − θ0)h

−2c1
}

×
∫∫

|Xft(s, t)|2I
{
c1 ≤

(
s2 + t2

)
h2 ≤ c2

}
ds dt.

This bound and (3.6) imply that for constants C3 > 0 and C4,

Dθ
1(h) ≥ C3h

C4 exp
{
(θ2 − θ0)h

−2c1
}

uniformly in θ ≥ θ2. (A.21)

The theorem follows from (A.17) and (A.19)−(A.21).
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