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Abstract: The traditional variable selection problem has attracted renewed atten-

tion from statistical researchers due to the recent advances in data collection, es-

pecially in fields such as bioinformatics and marketing. In this paper, we formulate

regression variable selection as an optimization problem, propose and study several

deterministic and stochastic sequential optimization methods with lookahead. Us-

ing several synthetic examples, we show that the stochastic sequential method with

lookahead robustly and significantly outperforms a few close competitors, includ-

ing the popular stepwise methods. When applied to analyze a yeast amino acid

starvation microarray experiment, this method can find many transcription factors

that are known to be important for yeast to cope with stress and starvation.
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1. Introduction

Variable selection in regression modelling is a long-standing problem in statis-

tics. Recently there has been a significant surge of interest in analytically accu-

rate, numerically robust, and algorithmically efficient variable selection methods,

largely due to the tremendous advance in data collection techniques such as those

in biology and marketing and those associated with the internet.

This article focuses on the variable selection problem in linear regression.

Suppose Y , an n× 1 vector, is the response variable, and {X1, . . . ,Xp}, of which

each is an n × 1 vector, is a set of potential predictors. Let r index a subset of

{1, . . . , p} with |r| denoting the size of subset r, and let Xr (an n× |r| matrix)

be the potential predictors in subset r. We are interested in finding the “best”

subset r to fit the linear model

Y = Xrβr + ǫ, (1)

so that a criterion function H(r) is optimized. Here βr is a |r| × 1 vector of

regression coefficients, ǫ is a n × 1 vector of errors, and ǫ ∼ N(0, σ2I).
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There have been many discussions in the statistical literature concerning the

choice of the selection criterion H(r). Information-based criteria have been very

popular, among which the Akaike information criterion (AIC) (Akaike (1981))

and the Bayesian information criterion (BIC) (Schwarz (1978)) are best known.

In linear regression settings, the AIC value for a model with subset r is nlog(SSr)+

2|r| + constant, and its BIC value is nlog(SSr) + 2|r|log(n) + constant, where

SSr is the residual sum of squares (RSS) from model (1). The smaller the AIC

or BIC values of a model are, the “better” the model is. Other selection crite-

ria that penalize the number of unknown coefficients in the model (equivalent

to the L0-norm of βr) include the adj-R2, Mallows’ Cp (Mallows (1973)), the

Risk inflation criterion (RIC) (Foster and George (1994)), etc. Ridge regression

(Hoerl and Kennard (1970)) stems from penalizing the L2-norm of βr which,

however, does not necessarily lead to a reduced number of predictors. Recent

years have seen the rising popularity of criteria based on an L1 penalty such as

“LASSO”, see Tibshirani (1996). These L1-penalty based methods can do bona

fide model selection much as information-based criteria, and are also computa-

tionally tractable (Efron, Hastie, Johnstone and Tibshirani (2004)).

The development of Bayesian approaches to address variable selection has

opened up a different path. In these approaches, the posterior probability is

used as the model selection criterion, and MCMC algorithms are used to sample

models with high posterior probabilities. The difficulties lie in prior specifica-

tions and in the slow-mixing property of standard MCMC schemes. Fully speci-

fied and carefully chosen proper priors have been used in George and McCulloch

(1993), Carlin and Chib (1995), and Fernández, Ley and Steel (2001); methods

for reducing the influence of the priors on the final selected model have been

proposed by Lindley (1968), O’Hagan (1995), Laud and Ibrahim (1995), and

Berger and Pericchi (1996). To improve MCMC mixing, Liang and Wong (2000)

suggested an evolutionary Monte Carlo method that samples directly from the

Boltzmann-like distribution

π(r) ∝ exp{−H(r)/τ}, (2)

where H(r) was taken as Mallows’ Cp(r). It was also shown in Liang and Wong

(2000) that, with an appropriate prior setting, sampling from the posterior dis-

tribution is approximately equivalent to sampling from (2) with τ = 2 and

H(r) = Cp(r).

We note here that the sampling framework based on the Boltzmann distribu-

tion (2) can easily be tuned to conduct model optimization and to accommodate

any chosen model selection criterion, thus unifying the criterion-based and the

Bayesian model-based approaches. On one hand, by letting H(r) be the de-

sired variable selection criterion and τ converge to zero, sampling from (2) is
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equivalent to minimizing H(r); on the other hand, by equating −H(r)/τ to the

log-posterior distribution of r, which can be derived analytically by integrat-

ing out the regression coefficients and the variance parameter when appropriate

conjugate priors are used, sampling from (2) is essentially sampling from the

posterior model distribution. We focus here on the optimization aspect of the

variable selection problem. If model variations should be accounted for, one can

conduct further MCMC sampling from (2) using the optimal model we obtained

as the starting value.

We content ourselves with addressing the following question: suppose a selec-

tion criterion such as AIC or BIC is given, how should one find the optimal model

under the criterion in the space of 2p possible models. The proposed approach

for finding the optimal model is sequential in nature, adopting the lookahead and

piloting ideas in sequential Monte Carlo (e.g., see Zhang and Liu (2002)), and

some ideas from the Gibbs sampler. Although it is not our intention to study

the virtues of different selection criteria in this paper, we show in an example

the differences between the models selected by using the BIC criterion and those

selected by LASSO.

The rest of the paper is organized as follows. In Section 2, we reformulate the

variable selection problem. We then construct several sequential algorithms with

lookahead and piloting strategies, including greedy search algorithms in Section

3 and stochastic search algorithms in Section 4. Some of the algorithms are

quite standard and serve as preliminary methods and benchmarks. Those using

the pilot lookahead strategy are the main proposed algorithms. In Section 5, we

present some simulated examples to compare the performance of various methods,

and in Section 6 we apply the best of our methods to analyze a yeast microarray

data in Gasch, Spellman, Kao, Carmel-Harel, Eisen, Storz, Botstein and Brown

(2000). We conclude the article with a brief discussion.

2. Problem Formulation

Let r = (r1, . . . , rp) denote a vector of indicators for the predictors: rj = 1

if Xj is included in the regression model, and rj = 0 otherwise. Let Rp be the

set of all possible such vectors. The variable selection problem based on criterion

H(r) (e.g., AIC or BIC) is then to solve

r∗ = arg min
r∈Rp

H(r) (3)

or, equivalently,

r∗ = arg max
r∈Rp

π(r), (4)

where π(r) is defined as in (2), in which τ > 0 controls the landscape of the

distribution.
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In modern applications, the number of potential predictors p is often in the

range of hundreds to tens of thousands, making an exhaustive search impossible.

The leap and bound algorithm (Furnival and Wilson (1974)) uses a tree structure

to enumerate models, and can find the globally optimal one. But, with the current

desktop computing power, the leap and bound algorithm can only be applied to

problems with p ≤ 60 and the number of variables in the true model not exceeding

15. Stepwise methods and their variants provide fast but suboptimal solutions.

Among them, the forward selection method adds the predictors progressively,

with each variable being chosen to provide the largest reduction in RSS (or other

criterion, such as H(r) itself). Backward elimination starts with the full model

and removes one predictor a time according to the insignificance of that variable.

The forward-backward method (Efroymson (1960)) is a variation of the forward

selection: after each predictor is added to the set of selected predictors, a test is

conducted to see whether any of the previously selected predictors can be deleted

without appreciably increasing the RSS. Among the series of models obtained

using stepwise methods, the optimal model with respect to some adopted criterion

is then chosen.

Following the stepwise concept and the growth principle (Rosenbluth and

Rosenbluth (1955) and Liu and Chen (1998)), we decompose the problem of de-

termining r into a sequence of simpler problems: determining the indicator for

one predictor at a time. Because our procedure is sequential in nature, we found

that putting the variables in an appropriate order can significantly increase the

efficiency of the procedure. We tested using three methods to pre-arrange the

predictors: (a) forward stepwise selection, by which we arrange the predictors

according to the order of selection into the model; (b) the backward stepwise

elimination, by which we arrange the predictors according to the reverse order of

elimination from the model; (c) random ordering. We assume hereafter that the

predictors have always been pre-arranged and just use X1,X2, . . . ,Xp to denote

them.

For a positive integer j, we let [j] = (j mod p), i.e., the remainder of j divided

by p, and let the index vector [j1 : j2] = ([j1], [j1 +1], . . . , [j2]) for j1 ≤ j2. Hence,

for example, [(p− 1) : (p + 1)] = (p− 1, p, 1), achieving a wrap around operation.

Furthermore, we let I denote a nonempty subset of {1, . . . , p}, let rI and r−I

denote the subsets of r whose indices are in I and Ic, respectively, and let XI

and X−I denote the corresponding subsets of (X1, . . . ,Xp).

3. Greedy Search with Lookahead

Iterative conditional minimization (ICM) is probably one of the simplest

ways of finding a suboptimal solution to (3). It iteratively determines whether to

include variable Xj in the model so as to yield a smaller H(r), while fixing the
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inclusion/exclusion status of other predictors. Formally, this approach iteratively
finds the conditional minimum

r∗j = arg min
r′
j
∈{1,0}

{H(r′j , r−j)}

and uses it to replace the current value of rj for j = 1, . . . , p. In most problems,
ICM tends to be too greedy to result in a good global result.

The lookahead concept from the sequential Monte Carlo literature
(Meirovitch (1982), Meirovitch (1985), Chen, Wang and Liu (2000) and Zhang
and Liu (2002) has been shown to be useful to reduce greediness and pro-
mote adaption. A combination of lookahead and ICM yields the following al-
gorithm, termed the ICM(δ), where δ is the lookahead step. Specifically, at
each step, we explore all 2δ+1 possible ways of including/excluding predictors
X [j:j+δ] = {Xj ,X[j+1], . . . ,X[j+δ]} while fixing the inclusion/exclusion status of
the remaining predictors. The decision of inclusion or exclusion of Xj is based
on the best model among the 2δ+1 models explored.

Algorithm ICM(δ).

Let the initial variable indicator vector be r(0). For iterations t =
1, 2, . . . and for j = 1, . . . , p, compute

r∗j = arg min
r′j∈{1,0}

[
min

r′

[j+1:j+δ]
∈{1,0}δ

H
(
r′j , r

′
[j+1:j+δ], r−[j:j+δ]

)]
, (5)

and use it to replace the current value of rj.

The computational cost of ICM(δ) increases exponentially with δ, which ef-
fectively limits the number of steps one can afford to use. On the other hand, a
small δ is still too greedy and the algorithm can be easily trapped in a local mode.
Note that the idea of lookahead is to explore a large space and make decision
based on more information. In order to gather information from more predictors
while maintaining low computational cost, we propose to employ a “cheaper”
exploration procedure, called the “pilot search,” which is similar to the one pro-
posed in the SMC literature (Wang, Chen and Guo (2002) and Zhang and Liu
(2002)). In each step of the algorithm, we still consider the 2δ+1 possible com-
binations of the predictors X [j:j+δ] for δ step lookahead. However, for each
combination, the inclusion/exclusion status of the remaining predictors are re-
evaluated through a fast but greedy process, using ICM(δ∗) with a very small δ∗.
Hence one complete interaction of ICM(δ∗) is performed to search through these
remaining predictors so as to reach a more (but locally) optimized H(r) value,
and the ICM(δ∗) steps form the pilot search. The decision of whether to include
Xj in the model is made based on the best model explored as follows.
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Algorithm ICMP(δ, δ∗).

Let r(0) be an initial model. For iterations t = 1, 2, . . . , and for j =
1, . . . , p, compute

r∗j = arg min
r′j∈{1,0}

[
min

r′

[j+1:j+δ]
∈{1,0}δ

H
(
r′j, r

′
[j+1:j+δ], r̂−[j:j+δ]

)]

and use it to replace the current value of rj , where r̂−[j:j+δ] is obtained
by ICM(δ∗) with the initial indicator vector (r′j , r

′
[j+1:j+δ], r−[j:j+δ]),

and p− δ − 1 iteration steps from [j + δ + 1] to [j + p− 1] (i.e., going
over r−[j:j+δ]).

Both ICM and ICMP are deterministic algorithms. We execute the algo-
rithms until the selection criterion H values does not change in two iterations.

4. Stochastic Optimization with Lookahead

4.1. The stochastic optimization algorithms

In this section we present stochastic counterparts of ICM(δ) and ICMP(δ,δ∗),
using the Boltzmann-like distribution π(·) in (2) as a guide for sampling distribu-
tion selection. Similar to ICM(δ), the algorithm of iterative conditional sampling
with δ-step lookahead (ICS(δ)) explores all 2δ+1 possible models with X [j:j+δ],
while fixing the inclusion/exclusion status of the remaining predictors. These
models are then grouped according to whether Xj is included or not. The in-
clusion/exclusion status of Xj is then sampled according to the total sum of
Boltzmann probabilities (2) in each of the two groups.

Algorithm ICS(δ).

Let r(0) be an initial model. For iterations t = 1, 2, . . . , and for j =
1, . . . , p, compute

q0 =
∑

r′

[j+1:j+δ]
∈{1,0}δ

exp

{
−

1

τ
H

(
r′j = 0, r′

[j+1:j+δ], r−[j:j+δ]

)}
,

q1 =
∑

r′

[j+1:j+δ]
∈{1,0}δ

exp

{
−

1

τ
H

(
r′j = 1, r′

[j+1:j+δ], r−[j:j+δ]

)}
;

and draw r
(t)
j from Bernoulli(q1/(q0 + q1)).

Note that when δ = 0, each rj is updated by drawing from

π(rj |r−j) =
π(rj , r−j)∑

r′j∈{1,0} π(r′j , r−j)
,
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hence the ICS(0) algorithm is just the systematic-scan Gibbs sampler (Liu (2001)).
The ICS(δ) algorithm is a generalized Gibbs sampling procedure that iteratively
samples from the conditional distribution

π(rj | r−[j:j+δ]), (6)

which also forms an irreducible and reversible Markov chain. We show below that
this generalized Gibbs sampling method also has π as its invariant distribution.

Theorem 1. Let π(z) be the target distribution of interest, with z = (z1, . . . , zp).
Suppose we iteratively update each component by

zj ∼ π(zj | z−[j:j+δ]), (7)

for j = 1, . . . , p. Then π is the invariant distribution of this procedure, with the
caveat that at the last iteration one should update z[j:j+δ] ∼ π(z[j:j+δ] | z−[j:j+δ]).

Proof. Consider an “overlapping” systematic-scan Gibbs sampler that updates
as follows:

z[j:j+δ] ∼ π(z[j:j+δ] | z−[j:j+δ]), j = 1, . . . , p. (8)

It is easy to see that π is the invariant distribution of this algorithm. Sampling
from (8) can be done by first generating zj from (7), and then generating z[j+1:j+δ]

from π(z[j+1:j+δ] | zj ,z−[j:,j+δ]). However, the generated value of z[j+1:j+δ] is not
involved in the next step (and all future steps) of the updating scheme (8). Hence,
the algorithm based on (8) is identical to that based on (7) except for the last
step. Thus, as long as we update at the last step according to (8), π(·) is the
invariant distribution of the Markov chain based on (7).

Again, due to computational constraints, δ cannot be too large. The piloting
idea can be used also in the stochastic search, which gives rise to the following
ICSP(δ, δ∗) algorithm.

Algorithm ICSP(δ, δ∗).

Let r(0) be an initial model. For iterations t = 1, 2, . . . , and for j =
1, . . . , p, compute

q0 =
∑

r′

[j+1:j+δ]
∈{1,0}δ

exp

{
−

1

τ
H

(
r′j = 0, r′

[j+1:j+δ], r̂−[j:j+δ]

)}
,

q1 =
∑

r′

[j+1:j+δ]
∈{1,0}δ

exp

{
−

1

τ
H

(
r′j = 1, r′

[j+1:j+δ], r̂−[j:j+δ]

)}
,

where r̂−[j:j+δ] is obtained by ICM(δ∗) with the starting vector (r′j ,
r′

[j+1:j+δ], r−[j:j+δ]) and p − δ − 1 iterative steps from [j + δ + 1] to
[j + p − 1]. Then sample a new rj from Bernoulli(q1/(q0 + q1)).
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In general, ICSP(δ,δ∗) does not form an irreducible and reversible Markov

chain. Nevertheless it turns out to be a better optimization algorithm than

ICS(δ), as shown by our empirical studies in Section 5. The intuition is that it

uses information from more predictors than ICS(δ) at each step, making it less

susceptible to local modes.

The choice of the temperature parameter τ in the Boltzmann distribution

is important for stochastic optimization methods. When τ is too large, the

Boltzmann distribution becomes too flat, resulting in a decreased probability in

the region near the global mode. If τ is too small, the stochastic methods can

be easily trapped in a local minimum. For both ICS and ICSP algorithms, we

use multiple chains with difference temperatures and choose the best solution

among them. Alternatively, one could follow the simulated annealing approach

(SA; Kirkpatrick, Gerlatt and Vecchi (1983)). We have found in our simulation

studies that algorithms with SA are not as effective as the multiple temperature

scheme.

Both ICS and ICSP are stochastic search algorithms. We terminate the

algorithms when the H value does not decrease in MSR iterations, where MSR

is a pre-determined stopping criterion. Based on our experiences we found it

sufficient to choose MSR between 10 to 50.

5. Simulation Studies and Performance Comparisons

Throughout the examples, we use the BIC as the model selection criterion,

and use the notations and the settings listed in Table 1 unless stated otherwise.

One hundred data sets were simulated for each example. For ICS, we used

20 temperatures given by a geometric series τv = 10 log(n) × 1, 000−(v−1)/19,

v = 1, . . . , 20. For ICSP , we used the last ten temperatures {τ11, . . . , τ20}. All

algorithms were initiated with r(0) = (0, . . . , 0), and we studied the effect of pre-

ordering of the predictors based on forward selection, backward elimination, and

random ordering.

Table 1. Notation for various variable selection methods.

LB exhaustive search with the leap and bound algorithm

F forward selection method
B backward elimination method

FB forward-backward method

ICM ICM(3)

ICMP ICMP(2, 1)

ICS ICS(3), 20 temperatures, 5 chains for each temperature, MSR = 10 itera-

tions

ICSP ICSP(2, 1), 10 temperatures, one chain for each temperature, MSR = 3

iterations
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5.1. Example 1

We generated p = 60 predictors according to

X10(i−1)+j = X∗
10(i−1)+j + e0 + ei, i = 1, . . . , 6, j = 1, . . . , 10.

where the X∗
j (n × 1 vectors), j = 1, . . . , 60, were drawn independently from

N(0, I), and e0 ∼ N(0, I) and ei ∼ N(0, 2I) are independent noises. The pre-

dictors can be grouped into six clusters. The theoretical correlation coefficient

between two predictors in the same cluster is 0.75, and that in different clusters

is 0.25. The dependent variable was then generated from the model

Y = X1 + X2 + X3 + X11 + X12 + X21 + X22 + ǫ,

where ǫ ∼ N(0, 42I). We used n = 150 observations.

Table 2 reports the number of times each method reached the true global

minimum BIC value found by the leap and bound (LB) algorithm, and the

average computation time of each algorithm. Although the standard stepwise

procedures (F , B, FB) and ICM needed ignorable amounts of computing time,

their performances were clearly inferior to other methods even for this simple

example. LB requires significantly more computing time, and this grows expo-

nentially with the size of the true model and the total number of predictors. It

also appears that pre-ordering based on both forward selection and backward

elimination are better than random ordering, especially for the ICM method.

Table 2. For Example 1, each entry is the number of times each method
reached the global minimum BIC value (found by LB). Rows 2–4: three
ways of pre-ordering the predictors. Row 5: the average CPU time used by
each method.

LB F B FB ICM ICMP ICS ICSP

forward ordering 100 58 53 61 83 99 100 100

backward ordering 100 58 53 61 72 99 100 100

random ordering 100 58 53 61 55 97 97 99

time(sec.) 88.24 - - - - 0.43 10.16 5.57

5.2. Example 2

This example is taken from George and McCulloch (1993). A total of 60

predictors were generated according to Xj = X∗
j +e, j = 1, . . . , 60, where the X∗

j ’s

and e were i.i.d. N(0, I), giving rise to a theoretical correlation of 0.5 between all

pairs of predictors. Three hundreds observations (n = 300) were generated from

Y = 1n +

30∑

s=16

Xs + 2

45∑

s=31

Xs + 3

60∑

s=46

Xs + ǫ,



994 JUNNI L. ZHANG, MING T. LIN, JUN S. LIU AND RONG CHEN

where 1n is a n × 1 vector with all elements 1, and ǫ ∼ N(0, 202I). Table 3

summarizes the performance of all the methods. Since it is infeasible to obtain the

global minimum using the LB algorithm in this example, we report the number

of times each method reached the minimum BIC value found by all the tested

methods collectively. The results are similar to those of Example 1.

Table 3. For Example 2, each entry is the number of times each method
reached the minimum BIC value found by all the methods collectively. Rows
2–4: three ways of pre-ordering the predictors; Row 5: the average CPU time
used by each method.

F B FB ICM ICMP ICS ICSP

forward ordering 7 58 50 56 98 99 100

backward ordering 7 58 50 80 96 100 100

random ordering 7 58 50 53 96 100 100

time(sec.) - - - - 1.42 16.61 15.11

5.3. Example 3

In this example, we generated p = 100 predictors as follows: we first gener-

ated X∗
j ’s, Vj ’s and e independently from N(0, I), N(0, 2I) and N(0, I), respec-

tively, and then took

Xj = X∗
j + e, j = 1, . . . , 60,

X60+j = Xj + Vj + X∗
60+j , j = 1, . . . , 20,

X80+j = Xj − Vj + 0.5X∗
80+j , j = 1, 2, . . . , 20.

The dependent variable was generated by

Y =
20∑

s=11

Xs +
70∑

s=61

Xs +
90∑

s=81

Xs + ǫ,

where ǫ ∼ N(0, 202I). We used n = 1, 000 observations.

In general, we expect better results with more iterations for each algorithm.

For forward ordering, Table 4 reports the number of times each method reaches

the minimum BIC value, defined as the one found collectively by all the meth-

ods under all different settings, at Mth iteration for various M . The algorithms

appear to converge rather quickly, and the boldfaced numbers in the table cor-

respond to the values of M at which the algorithms ceased to make any further

improvement. It is instructive to see, for example, that in 98 out of 100 cases

the ICSP algorithm reached the minimum BIC value in 3 iterations.

Furthermore, we compared the effect of using different look-ahead sizes δ in

these methods. Setting the pilot look-ahead size to δ∗ = 1 for ICMP and ICSP ,
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and using forward ordering, we report in Table 5 the number of times each method

reached the minimum BIC obtained by all δ and all methods combined, and the

average CPU time. We can see that a larger δ does improve the performance,

albeit at the expense of higher computational cost. It is also seen that the

improvement of δ = 3 over δ = 2 is limited. Hence, we recommend taking δ no

greater than 3 in practice.

Table 4. For Example 3 with forward ordering, each entry is the number of
times the corresponding method with the corresponding value of M reaches
the minimum BIC value. The boldfaced numbers correspond to the values
of M needed for convergence.

M 2 3 6 10 15 25 40 60 100

ICM 9 16 16 - - - - - -

ICMP 73 82 82 - - - - - -

ICS 27 35 46 56 74 82 92 93 93

ICSP 93 98 99 100 100 100 - - -

Table 5. For Example 3 with forward ordering, each entry is the number of
times each method, with different δ and with the automatic stopping rule,
reaches the minimum BIC value obtained by all methods and all δ combined,
and the average CPU time used by each method.

ICM ICMP ICS ICSP

δ = 0 performance 11 81 75 99

time(sec.) - 2.53 32.08 58.89

δ = 1 performance 16 82 85 99

time(sec.) - 5.31 61.68 121.32

δ = 2 performance 16 82 91 100

time(sec.) - 10.82 135.54 249.33

δ = 3 performance 16 82 93 100

time(sec.) - 21.93 304.66 512.84

Using our search algorithms as tools, we can perform comparison studies

of different selection criteria. In this example we compared BIC with LASSO

(Tibshirani (1996)). LASSO finds coefficients βj ’s that minimize

(
Y −

p∑

j=1

Xjβj

)T (
Y −

p∑

j=1

Xjβj

)

subject to
p∑

j=1

|βj | ≤ ρ

p∑

j=1

|βOLS
j |,
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where βOLS
j is OLS coefficients of the full model, and where the parameter ρ ∈

[0, 1] controls the size of model selected by LASSO.
We first used ρ = 0.20 so that the models selected by LASSO have similar

sizes as those selected by BIC (using the ICSP method). On average, a model
selected by BIC has 18.7 variables with 11.9 selected variables in the true model,
and a model selected by LASSO has 21.2 variables with 8.9 selected variables in
the true model.

We generated a testing set (X̃ , Ỹ ) with n1 = 10, 000 observations from the
same model, and then compared the prediction error rate

PE =
(Ỹ −

∑p
j=1 X̃jβj)

T (Ỹ −
∑p

j=1 X̃jβj)

Ỹ T Ỹ

of models selected by BIC with those selected by LASSO. Figure 1 shows the his-
togram of PEBIC/PELASSO over the 100 training sets. We can see that models
selected by BIC outperform those selected by LASSO (PEBIC/PELASSO < 1).
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Figure 1. Histogram of PEBIC/PELASSO for Example 3 (ρ = 0.20).

We then used a five-fold cross-validation procedure to choose the best pa-
rameter ρ in LASSO for each training set. Now, on average, a model selected
by LASSO has 48.6 variables, among which 21.2 variables are in the true model.
The histogram of PEBIC/PELASSO is shown in Figure 2, where it can be seen
that models selected by LASSO perform slightly better than those selected by
BIC (PEBIC/PELASSO > 1). Note that this comparison is not fair for BIC,
because the tuning parameter in the penalty term of BIC is not optimized, while
it was in LASSO. Further comparison is beyond the scope of this paper, but we
want to emphasize that it is our search algorithms that allow such comparisons
to be made.
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Figure 2. Histogram of PEBIC/PELASSO for Example 3 (ρ chosen by five-

fold cross-validation).

5.4. Example 4

Now we push our methods further to test the case with 1,000 predictors,

using an extended model from Fernández, Ley and Steel (2001): we first drew

X∗
j , j = 1, . . . , 1, 000, and e0 independently from N(0, I), and then took

Xj = X∗
j + e0, j = 1, . . . , 600,

X600+j = 0.3Xj + 0.5Xj+1 + 0.7Xj+2 + 0.9Xj+3 + 1.1Xj+4 + X∗
600+j ,

j = 1, . . . , 100,

X700+j = 0.3Xj − 0.5Xj+1 + 0.7Xj+2 − 0.9Xj+3 + 1.1Xj+4 + X∗
700+j ,

j = 1, . . . , 100,

X800+j = 0.3Xj+100 + 0.5Xj+101 + 0.7Xj+102 + 0.9Xj+103 + 1.1Xj+104 + X∗
800+j ,

j = 1, . . . , 100,

X900+j = 0.3Xj+100 + 0.5Xj+101 − 0.7Xj+102 + 0.9Xj+103 − 1.1Xj+104 + X∗
900+j ,

j = 1, . . . , 100.

The dependent variable was generated by

Y = 10 × 1n +
∑10

s=1 Xs+600 +
∑10

s=1 Xs+700 +
∑10

s=1 Xs+800 +
∑10

s=1 Xs+900 + ǫ,

where ǫ ∼ N(0, 302I). The sample size is n = 5, 000. We repeated the experiment

100 times. Performances of different methods with the automatic stopping rule

(with MSR = 20) are shown in Table 6.
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Table 6. The number of times each method with automatic stopping rule

reaches the minimum BIC value obtained by all methods combined for Ex-
ample 4. Rows 2 and 4: different ways of pre-ordering the variables; Rows 3

and 5: the average CPU time used by each method.

F B FB ICM ICMP ICS ICSP

forward ordering 0 7 0 13 74 53 95

time(sec.) - 31.42 - 4.38 998 4097 11389

backward ordering 0 7 0 12 74 58 95

time(sec.) - 31.42 - 2.92 1187 4186 10966

We also compared the BIC values between the true and the BIC-selected

models (using the ICSP method) for all 100 simulated cases, and observed that

the selected model was always “better” than the true model. Figure 3 shows the

histogram of BICselect−BICtrue. We also found that the selected model tended to

have fewer variables than the true model, indicating that BIC may have penalized

the number of parameters too much in this large-p-moderate-n case too much.

A systematic study of performances of different model selection criteria in this

setting is under way. To our knowledge, the method we developed here is the

first one that enables us to conduct such large-scale studies.
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Figure 3. Histogram of the difference between the BIC value of the model

selected by ICSP and that of the true model for Example 4.

In all of our simulation examples, ICSP outperformed all other methods,

especially when one considers both the performance in finding global modes and

the CPU time spent.
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6. An Application and Discussion

Conlon, Liu, Lieb and Liu (2003) analyzed the yeast amino acid starvation

data reported by Gasch et al. (2000) and intended to discover genomic “fea-

tures” in the form of short DNA sequence motifs in the promoter region of each

gene (about 500-800 base pairs upstream of a gene) that can help explain the

change in mRNA expression level of different genes before and after amino acid

starvation. The basic biology theory postulates that protein molecules called

“transcription factors (TFs)” bind to certain short DNA segments (i.e., motifs)

in the promoter region of a gene to help turn the gene’s transcription on or off

(Jensen, Liu, Zhou and Liu (2004), Biao and van der Laan (2004)). Thus, it is

reasonable to suspect that those differentially expressed genes may share certain

common motif patterns in their upstream sequences.

Conlon et al. (2003) developed a strategy called “Motif Regressor” for an-

alyzing the data. They first applied a fast motif discovery algorithm MD-

scan (Liu, Brutlag and Liu (2002)) to the sequences upstream of yeast genes

whose expression values were significantly changed after 30 min of amino acid

starvation (Gasch et al. (2000)). MDscan found 414 motifs, with lengths rang-

ing from 5 to 15, from these sequences. Each gene g’s upstream region (up to

800 base pairs before the translation start site) is scanned by each motif m and

its likelihood score for containing this motif, Sg,m, is computed. Here g ranges

from 1 to 5,970 and m ranges from 1 to 414. Treating gene expression levels

as the dependent variable and Sg,m as the predictors, they then used stepwise

regression to select 25 motifs from the 414 candidates, resulting in a linear model

with an R-square of 19.8%. After grouping similar motif patterns together, these

25 motifs were clustered into 15 distinctive patterns, among which 8 are experi-

mentally verified TF binding motifs with biological functions consistent with the

cell’s regulation of amino acid starvation.

Built on Conlon et al. (2003)’s analysis, we here apply our model selection

method to the same data set, with a minor modification. Based on the BIC

value, our method, ICSP with automatic stopping rule and forward or backward

ordering, selects the final model with 29 motifs, spending 33.3 minutes of CPU

time. These motifs can be clustered into 24 distinctive patterns, showing that

most of the redundant patterns found by the stepwise regression strategy in

Conlon et al. (2003) have been avoided. Among the 24 distinctive motifs, 14

correspond to experimentally known TF binding motifs. The new model has

an R-square of 21%, and a BIC value of 51,384.4 (the BIC value of the model

selected by the forward-backward method is 51,7387.9). Of interesting, when

ordered by the significance of their coefficients, 15 of the 18 most significant motifs

correspond to experimentally verified ones, which is also a strong indication of

the biological validity of our result. Compared with stepwise regression, our
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method is more successful in reducing highly correlated covariates, which then

gives room for other biologically important factors to be selected. The motifs we

selected are displayed in Figure 4 as sequence logos.

Figure 4. Motifs selected by ICSP (with automatic stopping rule). In

the first column, the first number is the rank of the motif, ordered by the
magnitude of t-statistics, and the second number is the index of its group.

The second column is the sequence logo of the motif. The third column lists

the names of experimentally known TF binding motifs that match with the

selected ones. A negative motif coefficient suggests that the corresponding

TF plays a repression role.

Motif Known Motif t
#,Group Motif Sequence Logo Motif Names Coefficients Statistics p-value

1,1 M3B -0.03288 -12.37 <0.0001

2,2 RAP1 -0.03065 -10.13 <0.0001

3,3 M3A -0.02311 -7.18 <0.0001

4,3 M3A -0.02231 -5.77 <0.0001

5,4 MET4 0.03099 5.74 <0.0001

6,5 STRE 0.03684 5.57 <0.0001

18,5 STRE 0.01967 3.78 0.0002

14,5 STRE 0.03322 4.30 <0.0001

11,6

PSfrag

PHO4 0.03027 4.45 <0.0001

7,6 PHO4 0.03333 5.07 <0.0001

15,6 PHO4 -0.03174 -4.19 <0.0001

8,7 -0.02600 -4.93 <0.0001

9,8 GCN4 0.02647 4.79 <0.0001

10,9 URS1 0.03401 4.63 <0.0001

12,10 -0.03424 -4.41 <0.0001

13,11 REB1 -0.01709 -4.40 <0.0001

16,12 NRG1 0.03148 4.17 <0.0001

17,13 -0.02670 -4.11 <0.0001

19,14 -0.02566 -3.74 0.0002

20,15 HSF1 -0.02743 -3.72 0.0002
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Motif Known Motif t
#,Group Motif Sequence Logo Motif Names Coefficients Statistics p-value

21,16 GLN3 0.02816 3.69 0.0002

22,17 MET31 0.01849 3.61 0.0003

23,18 -0.02221 -3.46 0.0005

24,19 0.02529 3.42 0.0006

25,20 0.02120 3.33 0.0009

26,21 0.02243 3.32 0.0009

27,22 -0.02022 -3.26 0.0011

28,23 -0.02053 -3.24 0.0012

29,24 RFX1 -0.02139 -3.10 0.0019

The new known motif patterns we discovered correspond to the binding

sites of transcription factors REB1, GLN3, NRG1, HSF1, Met31, and Rfx1. It

is known that HSF1p (Heat shock transcription factor 1 protein) plays a major

role in stress protection. It represses genes involved in growth and differentiation,

and has an elevation in expression during stress conditions (so that its targets are

repressed). Our model infers a negative coefficient for the HSF1p targets, which

fits perfectly with HSF1’s biological function. REB1p regulates mostly genes

involved in cell growth, and the negative coefficient for its targets suggests that

a cell slows down its growth during starvation. GLN3p plays a role in nitrogen

catabolite repression. Mutant GLN3p yeast is viable, but does not grow well on

poor nitrogen sources. NRG1 is a glucose-dependent repressor, and is impor-

tant to stress responses. Met31p (Blaiseau, Isnard, Surdin-Kerjan, and Thomas

(2002)) regulates expression of the methionine biosynthetic genes, and Rfx1p is

a repressor of DNA damage-inducible genes. Our model suggests that during

amino acid starvation, the cell becomes more active in producing methionine,

one of the amino acids, and represses the DNA-repair mechanism.

7. Summary

In this paper, we proposed several lookahead and piloting strategies to tackle

the variable selection problem. Using several synthetic examples and an appli-

cation, we demonstrated the superiority of these algorithms over deterministic

stepwise methods. The optimization framework given in Section 2-4 can work for

any variable selection criterion, and therefore is not comparable with algorithms

that are designed for a specific selection criterion, such as LASSO (Tibshirani

(1996)) or LARS (Efron et al. (2004)). The methodology we developed here can
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also be extended, for example, to dealing with the variable selection problem

for generalized linear models such as logistic regression. Because BIC was not

designed for the case when the sample size n is smaller than the number of pre-

dictors p, our search algorithms, when combined with BIC, cannot cope with the

n < p case, but they can potentially be applied in combination with variable

selection criteria that have good properties in the n < p case. More research is

needed to verify this speculation.
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