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Abstract: This paper focuses on the problem of maximum likelihood estimation in

linear mixed-effects models where outliers or unduly large observations are present

in clustered or longitudinal data. Multivariate t distributions are often imposed

on either random effects and/or random errors to incorporate outliers. A powerful

algorithm of maximum by parts (MBP) proposed by Song, Fan and Kalbfleisch

(2005) is implemented to obtain maximum likelihood estimators when the likeli-

hood is intractable. The computational efficiency of the MBP allows us to further

apply a profile-likelihood technique for the estimation of the degrees of freedom

in t-distributions. Comparison of the Akaike information criterion (AIC) among

candidate models provides an objective criterion to determine whether outliers are

influential on the quality of model fit. The proposed models and methods are

illustrated through both simulation studies and data analysis examples, with com-

parison to the existing EM-algorithm.
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1. Introduction

In the context of maximum likelihood inference, a widely used robust ap-

proach to handling outliers or unduly large observations is to invoke heavy-tailed

multivariate t distributions (Lange, Little and Taylor (1989)). In this paper we

consider robust mixed modeling of clustered or longitudinal data using multivari-

ate t distributions in the presence of influential outliers. A linear mixed-effects

model (LMM) takes the form

yi = X ′
iβ + Z ′

iαi + εi, i = 1, . . . , n, (1.1)

where yi = (yi1, . . . , yimi
)′ is the mi-element response vector, Xi = (xi1, . . . , ximi

)

is a p × mi matrix of covariates associated with the fixed effects, and Zi =

(zi1, . . . , zimi
) is a q×mi matrix of covariates associated with the random effects.

Moreover, the random effects αi are i.i.d. according to a q-dimensional density

p(·|η) with parameter vector η, and εi are i.i.d. mi-dimensional errors with den-

sity pi(·|σ) whose mean is zero and variance-covariance matrix is R(σ). The set
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of parameters to be estimated is θ = (β, η, σ). Depending on where outliers may

arise, they are called α-outliers if from the random effects, p(·|η), and ε-outliers
if from the random errors, pi(·|σ). In our model specification, either p(·|η), or

pi(·|σ), or both, may be assumed to be t-distributions.

Linear mixed models with non-normal random effects have drawn much at-

tention recently in the literature. For example Pinheiro and Bates (2000) have
provided an nlme library in R/Splus for fitting non-linear random effects mod-

els. The robustness of the LMM based on t-distributions has been discussed by

Pinheiro, Liu and Wu (2001). Clearly, this class of models extends the popular

normal random effects model because of the fact that a normal distribution is
a special case of a t-distribution when the degrees of freedom is large. Since

the t-distribution offers heavier tails than the normal distribution, the resulting

model is often used to accommodate unduly large values that may arise either

from sources of the random effects and/or the random errors.
Robust LMMs have also been studied in the literature by other researchers,

such as Wakefield (1996). However, the utilization of such robust mixed-effects

models is challenged by the difficulties of the maximum likelihood estimation
(MLE) under the mixture of the normal and t distributions. The currently avail-

able solutions of obtaining the MLE in the literature include the EM algorithm

and the Markov Chain Monte Carlo (MCMC) algorithm. Pinheiro et al. (2001)

considered the t-t mixed-effects model in that they studied the EM-algorithm and
other EM versions to accelerate the numeric convergence rate of MLE. Wakefield

(1996) considered the t-normal mixed-effects model and established a Bayesian

inference based on the MCMC algorithm. Both approaches are computationally

intensive and require much analytical and numerical effort to implement. More-
over, the EM and the MCMC algorithm for the normal-t mixed-effects model

have not been thoroughly studied, and are likely to be computationally intensive

as well. Therefore, a unified algorithm that is simple and flexible enough to ob-

tain the MLE under different combinations of t and normal distributions would
be of great interest.

The purpose of this paper is to examine and utilize the new algorithm of

maximization by parts (MBP) proposed by Song et al. (2005) for maximum like-

lihood inference in robust LMMs. The proposed procedure is simple, fast, and
flexible for finding the MLE under various candidate LMMs for different distri-

bution combinations. This fast numerical algorithm makes a joint comparison of

many candidate models feasible. We provide a model selection procedure to as-

sess candidate models by comparing the Akaike information (AIC) of each model.
This procedure allows us to determine whether the outlying observations arise

from the source of random effects and/or from the source of random errors, and

is essential to detecting influential cases in robust data analysis. Such a thorough

investigation has not yet been conducted in the literature.
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This paper is organized as follows. Section 2 introduces the robust LMM
and presents some basic discussion of maximum likelihood inference. Section 3
concerns the implementation of the BMP algorithm. Section 4 presents some nu-
merical examples to illustrate the method, and Section 5 gives some concluding
remarks. Some technical details are listed in the on-line supplementary docu-
ment.

2. Preliminaries

2.1. Formulation

For ease of exposition, we take mi = m for i = 1, . . . , n. Let θ = (β, η, σ) be
the set of model parameters to be estimated.

We consider four possible LMMs: the normal-normal LMM in the absence of
both α- and ε-outliers; the normal-t LMM in the presence of only ε-outliers; the
t-normal LMM in the presence of only α-outliers; the t-t LMM in the presence
of both α- and ε-outliers. To determine which LMM best fits the data, one can
utilize a model selection procedure based on, for example, the Akaike informa-
tion criterion (AIC). The AIC can be easily obtained if the maximum likelihood
approach is applied.

For the classical normal-normal LMM, where both p(·|η) and p(·|σ) are nor-
mal in model (1.1), the likelihood function has a closed form and the related the-
ory of the MLE has been studied extensively (e.g., McCulloch and Searle (2001)).
The numerical implementation is available in many statistical software packages
such as SAS PROC MIXED. Therefore, in the rest of this paper we focus on the
problem of MLE in the other three types of LMMs.

According to Fang, Kotz and Ng (1990), the density of an r-dimensional
t-distribution Mtr(d,D(τ)), with d degrees of freedom and a positive definite
variance matrix D(τ), is

p(x|τ) =
Γ(d+r

2 )

{π(d − 2)}
r
2 Γ(d

2)
|D(τ)|−

1
2

{
1 + (d − 2)−1xT D(τ)−1x

}− r+d
2 . (2.1)

Note that the assumption of a finite variance (i.e., d > 2) is needed in order
to ensure variance component parameters estimable in the setting of the mixed-
effects models considered in this paper.

2.2. Likelihood functions

In model (1.1), suppose the random effects αi follow a q-dimensional density
p(αi|η) and, conditionally on αi the response vector yi follows an m-dimensional
density p(yi|αi, θ). Then the likelihood function takes the form

L(θ) =

n∏

i=1

p(yi|θ) =

n∏

i=1

∫

Rq

p(yi|αi, θ)p(αi|η)dαi. (2.2)
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The maximum likelihood estimation for θ can be obtained by maximizing the

function L(θ) with respect to θ, which is done typically by solving the score

equation ℓ̇(θ) = 0, where ℓ̇(θ) is the first order derivative of the log-likelihood

ln L(θ). It is known that in general the related maximization procedure can be

numerically difficult, because it requires the calculation of the q-dimensional in-

tegrals in (2.2) that have no closed form expression in the case of the multivariate

t density p(·|η).

However, the t-t LMM is one exception, when the t distribution of the er-

rors has the same degrees of freedom as that of the random effects. Following

Pinheiro et al. (2001), given that αi|τi ∼ Nq(0,D(η)/τi), and that εi|αi, τi ∼

Nm(0, σIm/τi) and τi ∼ χ2
d/d, the resulting marginal density is m-dimensional t

given by

p(yi; θ) =
|Vi|

− 1
2 Γ(d+m

2 )

[Γ(1
2)]mΓ(d/2)dm/2

{
1 +

(yi − Xiβ)′V −1
i (yi − Xiβ)

d

}− d+m
2

,

with Vi = ZiD(η)Z ′
i + σIm, where Im is the m-dimensional identity matrix. It

follows immediately that the log-likelihood of θ is given, subject to a constant,

by

ℓ(θ) = −
n

2

n∑

i=1

ln |Vi| −
d + m

2

n∑

i=1

ln

{
1 +

(yi − Xiβ)′V −1
i (yi − Xiβ)

d

}
. (2.3)

The likelihood function (2.2) of the normal-t LMM is the mixture of the

m-variate normal distribution Nm(X ′
iβ + Z ′

iαi, R(σ)) for the errors and the q-

dimensional t distribution Mtq(d,D(η)) for the random effects. The likelihood

function (2.2) of the t-normal LMM can be similarly specified. In these two

LMMs, numerical evaluation of the integrals is required in order to calculate their

likelihood functions or the related derivatives. The MBP algorithm (Song et al.

(2005)) has numerical efficiency and stability in solving the score equation, and

only requires first order derivatives of the log-likelihood, which is very appealing.

Therefore, it is of interest to examine the performance of the MBP algorithm

that produces the MLE in all three types of LMMs.

3. Maximum Likelihood Estimation via MBP Algorithm

We choose the t-normal LMM to exemplify the implementation of the MBP

algorithm for MLE. The MLE for the remaining two LMMs may be similarly

carried out.

For the three models, we employ the method of profile likelihood to estimate

the degrees of freedom d. That is, for each value of d in an interval [3, B] with a

suitably large constant B, ℓ(θ|d) is maximized at the MLE θ̂(d). The estimator
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of d is chosen such that the likelihood function is maximum on the interval [0, B],
namely

d̂ = arg max
d∈[3,B]

ℓ(θ̂(d)|d).

This profile likelihood approach is numerically feasible using a sequence of dense
grid points on interval [3, B], since the MBP algorithm converges to the MLE
very quickly.

We now consider the MLE in the t-normal LMM. The MBP is by nature a
fixed point algorithm, which requires one to specify a working model that resem-
bles model (1.1) with t-distributed random effects. According to the information
dominance principle (Song et al. (2005)), the closer the working model to the
assumed model, the faster the MBP algorithm converges to the MLE. One ob-
vious choice of the working model here is the normal-normal LMM, in which
the distribution of the random effects is assumed to be normal Nq(µ,D). In
particular, in order to achieve the desirable closeness, the variance matrix D is
specified as being the same or close to that of the multivariate t. This matching
of the first two moments ensures that the working model produces a consistent,
although not fully efficient, estimator of θ. The utilization of the MBP algorithm
for full likelihood inference in the t-normal LMM is established by the following
derivation.

Let φ(·) denote a normal density function. First, the likelihood function of
the working normal-normal LMM is Lw(θ) =

∏n
i=1 φ(yi|θ), where

φ(yi|θ) =
φ(yi, αi|θ)

φ(αi|yi, θ)
=

p(yi|αi, θ)φ(αi|θ)

φ(αi|yi, θ)
.

Since yi is normally distributed conditional on the random effects αi, it follows
immediately that

p(yi|αi, θ) = φ(yi|αi, θ) = φ(yi|θ)
φ(αi|yi, θ)

φ(αi|η)
.

Entering this into (2.2), we can rewrite the likelihood function (2.2) as

L(θ) =

n∏

i=1

φ(yi|θ)

∫
p(αi|η)

φ(αi|η)
φ(αi|yi, θ)dαi = Lw(θ)Le(θ), (3.1)

where Le(θ) =
∏n

i=1

∫
[p(αi|η)/φ(αi|η)]φ(αi|yi, θ)dαi. Thus, the log-likelihood is

expressed as a sum of the working log-likelihood and the reminder log-likelihood
ℓ(θ) = ℓw(θ) + ℓe(θ), so the score equation is, ℓ̇(θ) = ℓ̇w(θ) + ℓ̇e(θ) = 0. Given
αi ∼ Nq(µ,D(η)), the working log-likelihood is given, subject to a constant, by

ℓw(θ) = −
1

2

n∑

i=1

log |Σi| −
1

2

n∑

i=1

(yi − Xiβ − Ziµ)′Σ−1
i (yi − Xiβ − Ziµ), (3.2)
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where Σi = ZiD(η)Z ′
i + R(σ).

A merit of this likelihood partition is that the MBP will utilize the dominant

piece ℓw to direct the search for the MLE, and the secondary piece ℓe only ensures

the full efficiency of the estimator at convergence. Clearly, the likelihood ℓw of

the working normal-normal LMM is analytically simple – we can easily obtain

its second order derivatives. It is noted that in the remainder piece ℓe, the

integral
∫
[p(αi|η)/φ(αi|η)]φ(αi|yi, θ)dαi can be viewed as essentially a weighted

average discrepancy measure between the assumed and working distributions of

the random effects under the working ‘posterior’ φ(αi|yi, θ) of the random effects.

When the t-distribution has a large d, the ratio p(αi|η)/φ(αi|η) will be virtually

1, so that the ℓe becomes zero. Therefore, comparing the deviation of ℓe from

zero for different candidate models will enable us to determine whether outliers

arise from the random effects or from the random errors, and whether they are

influential on the MLE, by assessing the difference in the estimation incurred

from the removal of outliers. Furthermore, we can determine whether outliers

have any impact on the quality of model fit via the AIC.

The integration evaluation in the ℓe is straightforward, because the φ(αi|yi, θ)

is multivariate normal. When the dimension q is high, one may employ the

Monte Carlo method; when q is low, one may instead apply the Gaussian-Hermite

quadrature method (Liu and Pierce (1994)). In all our numerical examples, we

adopt the quadrature method to evaluate related integrals. Note that the com-

putational complexity of the two numerical integration methods is comparable.

3.2. The MBP algorithm

Suppose the degrees of freedom d is fixed in the t-normal LMM. To solve

the score equation ℓ̇(θ) = 0 without using the second order derivatives of the

(complicated) log-likelihood ℓ, the MBP algorithm proceeds as follows:

Step 1: Acquire the consistent initial estimate θ1 = (β1, η1, σ1) by fitting the

working normal-normal LMM.

Step k: Update to θk that solves ℓ̇w(θ) = −ℓ̇e(θ
k−1). Liao and Qaqish (2005)

suggested a one-step Newton-Raphson update:

θk = θk−1 − {ℓ̈w(θk−1)}−1ℓ̇(θk−1), (3.3)

where ℓ̈w(θk−1) is the Hessian matrix of the working model evaluated

at the previous update θk−1. When this Hessian matrix is replaced

by the corresponding minus Fisher Information of the working model,

(3.3) becomes a one-step Fisher-scoring update. The Hessian matrix

ℓ̈w(θ) of the working normal-normal LMM has been derived by many

authors (for example, refer to Section 6.12 of McCulloch and Searle

(2001, p.178)).
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Iterate the above steps to convergence. According to Song et al. (2005), a

simple way to verify the information dominance condition is to monitor the se-

quence of differences between two consecutive updates. If the differences diminish

to zero over the iterations, this ensures the convergence of the MBP algorithm

to the MLE.

The score vector ℓ̇(θ) is given as follows:

l̇(θ)=
n∑

i=1

{∫
p(yi|αi)φ(αi)dαi

}−1∫ {
∂ ln p(yi|αi)

∂θ
+

∂ ln φ(αi)

∂θ

}
p(yi|αi)φ(αi)dαi,

where

ln p(yi|αi) = −2 ln σ −
d + 4

2
ln

{
1 +

(yi − Xiβ − Ziαi)
′(yi − Xiβ − Ziαi)

(d − 2)σ

}
,

ln φ(αi) = −
1

2
ln |D| −

1

2
α′

iD
−1αi.

The first order derivatives of ln p(yi|αi) and ln φ(αi) with respect to the param-

eters are provided in Section 1.1 of the on-line supplementary document.

3.3. The MBP in other LMMs

The MBP algorithm in the normal-t LMM or the t-t LMM can be imple-

mented similarly. Given the working normal-normal LMM, the true log-likelihood

of the assumed model ℓ(θ) is then decomposed in an additive form as ℓw(θ)+ℓe(θ),

where the reminder log-likelihood is given by the difference: ℓe(θ) = ℓ(θ)− ℓw(θ).

Again, the implementation of the MBP algorithm (3.3) in the normal-t LMM

requires scores that are provided in Section 1.2 of the on-line supplementary

document.

In the case of the normal-t LMM, since the distribution of the random ef-

fects, p(αi|η), is normal, the full likelihood L(θ) in (2.2) and all the above scores

can be directly evaluated by either the Gauss-Hermite quadrature method when

dimension q ≤ 5, or the Monte Carlo method when dimension q > 5.

In the case of the t-t LMM, even if the full likelihood function ℓ has a closed

form expression (2.3), the MBP algorithm is still desirable because it avoids the

derivation of second order derivatives, which may be tedious. The vector of

scores ℓ̇(θ) with respect to the parameter θ = (β, η, σ) is given in Section 1.3 of

the on-line supplementary document.

4. Simulation Experiment

This section presents a simulation study that aims to compare the MBP

algorithm to the EM algorithm in the t-normal LMM. Pinheiro et al. (2001)
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established the EM algorithm for the t-t LMM, which is different from the one

we derive in this section. A brief description of the EM algorithm is provided

below. The reason that we choose the t-normal mixture is that this model seems

to be the most difficult one among the three models for both MBP and EM

algorithms to handle. For simplicity, we only consider the case wherein the

random intercepts are included.

4.1. EM algorithm

The EM algorithm for the t-normal LMM can be derived by expressing the

model in a hierarchical form:

yi|αi, bi ∼ Nm(Xiβ + αi1m, σIm), αi|bi ∼ N(0,
η

bi
)

(4.1)
bi ∼ Gamma(

d

2
,
d

2
),

where 1m is the m-element vector of all elements being one, and Gamma(ξ, λ)

with the density function p(b) = λξbξ−1 exp(−λb)/Γ(ξ), b > 0, ξ > 0, λ > 0.

Integrating out the random effects αi in (4.1) leads to the following simplified

hierarchical representation:

yi|bi ∼ Nm(Xiβ, σIm +
η

bi
Jm), bi ∼ Gamma(

d

2
,
d

2
), (4.2)

where Jm = 1m1T
m. See Section 2 of the on-line supplementary document for the

proof of (4.2).

In the E-step, let Q(θ; θk) = E{ℓ(θ)|θk, Y }, where θk denotes a known update

value of the parameter from the previous iteration and Y denotes the entire set

of observations. By simple algebra, we obtain

Q(θ; θk) ∝ −
n(m − 1)

2
ln σ

−
1

2

n∑

i=1

E

{
ln

(
σ +

mη

bi
| yi, θ

k

)}
−

1

2σ

n∑

i=1

m∑

j=1

(yij − xT
ijβ)2

+
η

2σ

n∑

i=1

E

(
1

σbi + mη
| yi, θ

k

){ m∑

j=1

(yij − xT
ijβ)

}2

,

where the expectation is taken under the conditional distribution p(bi|yi, θ
k).

In the M-step, a new update value is obtained by maximizing the Q(θ, θk),

which may be performed by using the one-step Newton-Raphson algorithm

(Rai and Matthews (1993)):

θk+1 = θk −
{
Q̈(θ; θk)

}−1
Q̇(θ, θk)|θ=θk .
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In this EM algorithm, the most time-consuming step is the evaluation of

the conditional expectations involved in Q̇(θ; θk) and Q̈(θ; θk). With no closed

form expressions, they are evaluated by invoking the Monte Carlo method as

suggested in Wei and Tanner (1990), which leads to the so-called Monte Carlo

EM algorithm. Unfortunately, there are no simple formulas to generate a random

number from the conditional distribution p(bi|yi, θ
k). Hence, we have to adopt the

computationally intensive rejection-acceptance sampling algorithm (see details in

Section 2 of the on-line supplementary document).

It is worth commenting that the approach of numerical evaluation for the

expectations at the E-step is quite tedious. Difficulties arise from three aspects.

(i) Because the conditional density p(bi|yi, θ) does not appear to have the form

of h(b)e−b2 , there does not exist a common set of quadrature points to carry out

numerical integration collectively, as does the MBP algorithm. (ii) Each integral

has its own integrand that requires a different choice of a finite interval. The

different integrands will affect the decision on the number of knots, which divide

the chosen finite interval into subintervals as required by, for example, Romberg’s

algorithm. (iii) The adaptive Gaussian quadrature method iteratively divides the

chosen finite interval. In contrast, the Monte Carlo method generates one random

sample useful to all integration evaluations, and it is also free of the finite interval

constraint. All these differences lead to the popularity of the Monte Carlo EM

algorithm.

4.2. Simulation results

We implement the MBP algorithm and a Gauss-Newton (GN) type algorithm

(Ruppert (2005)) in this simulation study. Both algorithms require numerical

evaluations of integrals. The Gauss-Hermite quadrature method is chosen for this

task with 50 quadrature points at each evaluation. Table 1 lists the summary of

the simulation results from both MBP and EM algorithms based on the t-normal

LMM. The fixed effects were specified by one binary covariate (representing two

types of treatments) with n/2 subjects being assigned to 1 and n/2 subjects

assigned to 0. The true values of the parameters were β0 = 0.5, β1 = 1.0,

n = 100, and m = 5. The random effects included only the random intercepts

that were assumed to follow t(3) with η = 1, and the random errors were assumed

to be i.i.d. N(0, 0.52) with σ = 0.25. Due to the extremely slow convergence of

the EM algorithm, only 100 replicates were generated in this simulation. The

naive estimate refers to the estimate obtained from the normal-normal LMM that

has the same first two moments as those of the assumed t-normal LMM.

The simulation study provided the following result. (1) The MBP, GN and

EM algorithms took almost the same number of iterations to convergence under
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the convergence criterion: maxj |θ
k
j − θk−1

j | < 10−5. However, the MBP algo-

rithm took only 23 seconds to complete 20 iterations, while it took 2,983 seconds

(almost 1 hour) for the EM algorithm to complete 21 iterations. The contrast

in computational efficiency between the two algorithms strongly favors the MBP

algorithm. The MBP algorithm is also almost twice as fast as the GN algorithm.

(2) The naive, MBP, GN and EM methods performed well in the estimation of

of the fixed effects parameters and variance components. The results seem to be

similar, and unbiased. (3) The asymptotic covariance matrix of the estimators

was simply estimated by (1/n)
∑

ℓ̇i(θ̂)ℓ̇i(θ̂)′. When n was small, this estimation

did not seem to perform well, especially for the EM algorithm, based on the

estimated standard errors. However, with only 100 replications this conclusion

should be drawn with some reservation. The empirical standard errors of the

estimates are provided in Table 1.

Table 1. Simulation comparison among the MBP, GN and EM algorithms
based on the t-normal LMM over 100 replications. The t(3) distribution is
assumed for the random intercepts.

Observed CPU Time

Parameter Estimate Iteration Mean std. err. (in seconds)

β0 Naive 0 0.4330 0.0865 -

MBP 20 0.4782 0.1225 23.04
EM 21 0.4988 0.1358 2983.5

GN 15 0.4925 0.1162 51.01

β1 Naive 0 1.0608 0.1342 -

MBP 20 1.0098 0.1724 23.04
EM 21 0.9988 0.1791 2983.5

GN 15 0.9901 0.1688 51.01

η Naive 0 1.0529 0.2573 -

MBP 20 0.9511 0.2496 23.04

EM 21 1.0338 0.2846 2983.5
GN 15 1.0529 0.2632 51.01

σ Naive 0 0.2475 0.0127 -

MBP 20 0.2471 0.0096 23.04

EM 21 0.2488 0.0125 2983.5
GN 15 0.2627 0.0102 51.01

To examine the performance of the proposed four models in the presence of

α-outliers, ε-outliers, and both α- and ε-outliers, we conducted further simula-

tion studies that yielded similar findings to those given in Pinheiro et al. (2001),

where only the comparison between the t-t LMM and normal-normal LMM was

considered. A summary of the related results is presented in Section 3 of the

on-line supplementary document.
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5. Data Analysis

We re-analyze the orthodontic data analyzed previously by Pinheiro et al.

(2001). These data were originally reported in an orthodontic study by Potthoff

and Roy (1964). The measurements of the response variable included the distance

from the pituitary gland to the pterygomaxillary fissure taken repeatedly at 8,

10, 12 and 14 years of age on a sample of 27 children, comprised of 16 boys and 11

girls. In the analysis by Pinheiro et al. (2001) two outliers were reported, namely

boy M13 and boy M09 (respectively singled out in Figures 1 and 2). M13 was

judged as an α-outlier arising from the random effects, suggested by the panels

of individual intercepts and individual slopes in Figure 1. M09 was regarded as

an ε-outlier arising from the random errors, indicated by the plot of standardized

residuals obtained from individual regressions in Figure 2.
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Figure 1. Diagnosis of outlier M13 through the plot of individual intercepts

(left panel) and the plot of individual slopes (right panel) from a single

subject regression analysis.

Now let yij bet the orthodontic distance for the ith subject at age tj, and

let Ii(F ) be an indicator variable for girls. Following Pinheiro et al. (2001), we

consider the LMM of the form

yij = β0 + β1Ii(F ) + β2tj + β3Ii(F ) × tj

+α0i + α1itj + εij , j = 1, . . . , 4, i = 1, . . . , 27,

where αi = (α0i, α1i) denotes the vector of the random effects for the ith subject,

and εij are i.i.d. within-subject errors.
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Figure 2. Diagnosis of outlier M09 through the plot of standardized residuals

from a single subject regression analysis.

Compared to Pinheiro et al.’s analysis that assumed the t-t LMM, our anal-

ysis is more comprehensive, as we considered all four possible candidate LMMs

with the mixtures of normal-normal, t-t, normal-t, and t-normal. The contrasts

among the four models provide relevant evidence for us to determine outliers and

their influence on the MLE using AIC. Note that only the t-t LMM was consid-

ered in Pinheiro et al.’s analysis, which could not assess whether certain outliers

are influential because of the restriction of having equal degrees of freedom for

both t distributions. Obviously, the estimated degrees of freedom will be small

even if there is only one source of influential outliers.

Table 2 summarizes the estimates and standard errors of the fixed effects and

the variance components under the four candidate LMMs via the MBP algorithm.

The degrees of freedom, d, of the t distribution was estimated by the method of

profile likelihood discussed in Section 3.

Since the difference of the AIC between the normal-normal and t-normal

LMMs is marginal, the latter model accommodating the α-outlier M13 did not

seem to improve the quality of fit much, although the actual estimates are slightly

different. However, the difference of the AIC between the t-t and the normal-t

is much smaller than that between the t-normal (or the normal-normal) and t-t

(or normal-t). This indicates that accommodating the ε-outlier M09 appeared to

have gained substantial improvement in the quality of fit. Relatively speaking,

outlier M09 seems to be more troublesome or more influential than outlier M13

in the model selection. Based on the AIC, the normal-t LMM would provide
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the best fit among the four candidate models. A formal test for the normal-

normal versus normal-t is not trivial. Here we are testing H0 : d−1 = 0 (infinite

degrees of freedom) against H1 : d−1 > 0. The null pertains to the parameter on

the boundary of the parameter space. However, we can apply Self and Liang’s

(1987) mixture of chi-squares test. In this case, the observed likelihood ratio test

statistic was found to be 17.605, which is greater than the critical value of 2.71

obtained from the 50:50 mixture of χ2
0 (a point mass at 0) and χ2

1 distributions

at the significance level of 0.05. This suggests that the parameter d (degrees of

freedom) in the t-distribution is finite.

Table 2. The results of orthodontic data analysis under four different linear

mixed models.

Model

N-N t-N t-t N-t

Parameter Estimate Std err Estimate Std err Estimate Std err Estimate Std err

β0 16.3406 1.0186 16.2543 1.3276 16.9468 0.9051 17.1653 0.8560

β1 1.0321 1.5958 1.3231 2.1085 0.6620 1.2688 0.3829 1.2064

β2 0.7844 0.0860 0.7517 0.0456 0.7156 0.0762 0.7108 0.0719
β3 −0.3048 0.1348 −0.2795 0.0934 −0.2567 0.1080 −0.2471 0.1003

σ 1.7162 0.2942 1.7151 0.0773 0.8880 0.2243 1.7301 0.7704

η1 4.5569 0.9623 5.4781 0.6190 3.2755 2.9897 2.7273 1.2422

η2 −0.1983 0.0957 0.0308 0.0318 −0.1336 0.2395 −0.0403 0.1382
η3 0.0238 0.0185 0.0013 0.0008 0.0197 0.0219 0.0121 0.0146

d (DF) – – 4.2 – 5.0 – 3.8 –

Iteration 0 – 9 – 12 – 14 –

AIC 448.5816 – 446.4510 – 432.4600 – 428.2418 –

To further illustrate the robustness of the estimates in the ultimately pre-

vailing normal-t LMM versus those in the naively selected normal-normal model,

we fit both models again to the orthodontic data with the influential ε-outlier

M09 removed. It was found that the estimated degrees of freedom increased by

two units to 5.8 from 3.8. To compare the results obtained under a different

data setting, we followed the DFBETA approach to influence analysis in classi-

cal regression analysis theory (Myers (1990)). That is, for each parameter we

calculated the ratio of relative change,

RC(θj) =
|θwith

j,N−N − θwithout
j,N−N |

s.e.(θwithout
j,N−N )

/
|θwith

j,N−t − θwithout
j,N−t |

s.e.(θwithout
j,N−t )

,

between the two cases of with and without outlier M09 and between the normal-t

and the normal-normal LMMs. A value of RC greater than 1 indicates that the



942 PETER X.-K. SONG, PENG ZHANG AND ANNIE QU

normal-normal LMM has a lower level of robustness than the the normal-t LMM.

The results are listed in Table 3.

Table 3. The ratio of relative change of the maximum likelihood estimates
for each parameter between the inclusion and exclusion of outlier M09. The
comparison is made between the normal-normal and normal-t LMMs.

Parameter

θj β0 β1 β2 β3 σ η1 η2 η3

RC(θj) 4.30 3.17 7.18 1.87 2.87 30.30 28.30 12.82

The estimates obtained by the normal-t LMM are evidently much more ro-

bust to the inclusion or exclusion of outlier M09 than those given by the normal-

normal LMM. This demonstrates the importance of accommodating influential
outliers via multivariate t-distributions in the analysis of longitudinal data by

means of mixed-effects models.

6. Concluding Remarks

One issue that challenges the MBP algorithm is the large dimension of ran-
dom effects q, say q > 5, when the numerical evaluation of integration becomes

difficult. In practice, linear mixed-effects models with more than five random ef-

fects are not very common, although they are not impossible. When the case of

high-dimensional random effects appears, one may invoke the t-t LMM that has
a closed form expression of the likelihood, regardless of the dimension of random

effects q. Again the MBP algorithm is recommended. However, for the t-N LMM

and N-t LMM the MBP needs to invoke the Monte Carlo method to evaluate

related integrals. More exploration is required to give satisfactory answers and
useful practical guidelines with this regard. This will be reported in our future

research.

The application of the MBP algorithm to other settings remains to be ex-
plored. In particular, it is unknown whether this algorithm may be helpful to

resolve some difficulties of statistical inference in models for survival or time

series data.
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