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Abstract: Identities about the wordlength patterns of regular sl−m designs and

their complementary designs are established through a first-order differential equa-

tion satisfied by a structure function. The identities are then generalized to sl−m

designs with multiple groups of factors. An advantage of using the structure func-

tion and partial differential equation is that it can easily adapt to some structural

constraints of designs. The application of this approach to regular blocked frac-

tional factorial designs generates identities relating the split wordlength patterns of

regular (sl−m, sr) blocked designs and their complementary blocked designs. Prac-

tical rules are proposed for selecting optimal blocking schemes in terms of their

complementary designs.
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1. Introduction

The sl−m fractional factorial designs (or briefly sl−m designs), where s is a

prime or a prime power, are among the most important factorial plans in prac-

tice. Maximum resolution (Box and Hunter (1961)) and minimum aberration

(Fries and Hunter (1980)) are commonly used criteria to select optimal designs.

The criteria were originally proposed for 2l−m designs only. Franklin (1984) ex-

tended them to sl−m designs. In the past two decades, much progress has been

made in understanding the properties and structure of sl−m designs with min-

imum aberration, especially for s=2. See, among others, Chen and Wu (1991),

Chen (1992), Chen, Sun and Wu (1993), Tang and Wu (1996), Suen, Chen and

Wu (1997), Cheng, Steinberg and Sun (1999) and Cheng and Mukerjee (1998).

Recently, the concepts of resolution and aberration have been further generalized

to nonregular designs. Generalized maximum resolution and minimum aberra-

tion criteria are proposed for selecting optimal nonregular fractional factorial

designs (Tang and Deng (1999) and Xu and Wu (2001)).

Tang and Wu (1996) suggested using complementary designs to characterize

2l−m designs with a large number of factors. This technique has led to many

interesting results and is a useful tool to unveil the intrinsic aliasing relations in
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fractional factorial designs. Using MacWilliams identities and Krawtchouk poly-

nomials from coding theory, Suen, Chen and Wu (1997) obtained some general

identities that relate the wordlength pattern of an sl−m design and that of its

complementary design. These identities were also established for nonregular de-

signs in Xu and Wu (2001) following a similar approach in Suen, Chen and Wu

(1997), and were further extended to nonregular blocked designs in Ai and Zhang

(2004).

The 2l−m designs with multiple groups of factors have received much atten-

tion lately. In several interesting types of designs such as blocked fractional fac-

torial design (Sun, Wu and Chen (1997)), split-plot design (Bingham and Sitter

(1999)) and robust parameter design (Wu and Zhu (2003)), factors under inves-

tigation consist of several groups whose differences should be taken into con-

sideration in experimental planning and data analysis. For example, in a ro-

bust parameter design experiment, there are control factors and noise factors

(Wu and Hamada (2000)), and factorial effects involving different combinations

of control and noise factors play different roles in parameter design. Suppose

there exist two groups of factors in an experiment, which are denoted as Group I

and Group II and contain l1 and l2 factors, respectively. The fractional factorial

design used to investigate these factors is denoted as s(l1+l2)−m. Discriminat-

ing defining words involving different numbers of Group I and Group II factors,

Zhu (2003) proposed to use wordtype matrices instead of wordlength patterns

to characterize the aliasing patterns of 2(l1+l2)−m designs and established the re-

lationships between their wordtype patterns and those of their complementary

designs via a structure function and a first-order partial differential equation

satisfied by the structure function.

In this paper, we first extend the approach of Zhu (2003) to sl−m designs,

then to s(l1+l2)−m designs with multiple groups of factors, and finally apply it to

the study of regular (sl−m, sr) blocked designs. This approach can easily accom-

modate some structural constraints of factorial designs as demonstrated by its

application to blocked designs, and can handle multiple groups of factors in a uni-

fied fashion. Furthermore, the approach can be used to study the letter pattern

(Draper and Mitchell (1970)) and the aliasing structure of an sl−m design.

The rest of the paper is organized as follows. In Section 2, notation and

basic definitions are given. Several concepts like structure index array N and

structure function f are defined. Based on Tang and Wu (1996), a recursive

equation for N is derived. In Section 3, a first-order partial differential equation

in f will be derived. A main theorem about N and a closed form solution to

the partial differential equation are obtained. In Section 4, the results obtained

in Section 3 are generalized to sl−m designs with multiple groups of factors. In

Section 5, the theoretical results in the previous sections are employed to study
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regular (sl−m, sr) blocked designs. Identities relating a blocked design and its

blocked complementary design are also obtained. Practical rules are proposed

for selecting optimal blocked designs using the complementary design approach.

Concluding remarks on the potential use of the reported results are given in

Section 6.

2. Notation and Definitions

Let Fs denote a finite field with s elements and EG(k, s) denote a k-dimen-

sional vector space over Fs. Suppose u′ = (u1, . . . , uk) and v′ = (v1, . . . , vk)

are two vectors from EG(k, s), where u′ is the transpose of u. Vectors in this

paper are meant to be column vectors. If there exists t ∈ Fs and t 6= 0 such that

u = tv, then u and v are said to be equivalent. The set of equivalent classes forms

a (k−1)-dimensional projective geometry over Fs and is denoted by PG(k−1, s).

There are (sk − 1)/(s − 1) elements (or points) in PG(k− 1, s). An introduction

to general projective geometry theory can be found in Hirschfeld (1979). For the

applications of finite projective geometry in fractional factorial designs, see Bose

(1947) and Mukerjee and Wu (2001).

An sl full factorial design consists of all vectors in EG(l, s). An sl−m frac-

tional factorial design is an s−m fraction of the sl design. There are several

ways to generate sl−m designs, one of which is to use projective geometry. Let

k = l−m and assume that l ≤ (sk − 1)/(s − 1). Choose l points α1, . . . , αl from

PG(k− 1, s). Let G be a k× l matrix whose columns are the chosen points, that

is, G = (α1, . . . , αl). The linear space spanned by the rows of G forms an sl−m

design, which is denoted by D. Given a subset {αr1
, . . . , αri

} of the columns of

G, if there exist t1, . . ., and ti from Fs − {0} such that t1αr1
+ · · · + tiαri

= 0,

then w = αt1
r1
· · ·αti

ri
is called a generalized defining word. Two generalized defin-

ing words w = αt1
r1
· · ·αti

ri
and w′ = α

t′
1

r′
1

· · ·α
t′i
r′i

are equivalent if there exists τ

in Fs − {0} such that αrj
= αr′j

and tj = τt′j for 1 ≤ j ≤ i. The set of

equivalent classes of generalized defining words and the identity element form

the defining contrasts subgroup G associated with D. Let Ai(D) be the num-

ber of defining words in G that involve i different columns (points). The vector

A(D) = (A1(D), . . . , Al(D)) is called the wordlength pattern of D. The resolu-

tion of D is the smallest i such that Ai(D) > 0. Two designs D1 and D2 with

the same resolution can be further discriminated by their wordlength patterns

A(D1) and A(D2). Let i0 be the smallest integer i such that Ai(D1) 6= Ai(D2).

If Ai0(D1) < Ai0(D2), then D1 is said to have less aberration than D2. An sl−m

design has minimum aberration if no other sl−m designs have less aberration.

The points in PG(k − 1, s)−{α1, . . . , αl}, denoted by {β1, . . . , βl̄}, can gen-

erate another design D̄, where l̄ = (sk − 1)/(s − 1)− l. And D̄ is called the com-

plementary design of D. The defining contrasts subgroup Ḡ and the wordlength
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pattern Ā for D̄ can be defined similarly. It is clear that an sl−m design induces

a partition of PG(k − 1, s), that is,

PG(k − 1, s) = {α1, . . . , αl} ∪ {β1, . . . , βl̄} = D ∪ D̄. (1)

For any fixed pair (i, j) with 0 ≤ i ≤ l and 0 ≤ j ≤ l̄, i points αr1
, . . . , αri

chosen

from D, and j points βt1 , . . . , βtj from D̄ are said to have a [i, j]-relation if there

exist u′ = (u1, . . . , ui) and v′ = (v1, . . . , vj), both with nonzero coordinates, such

that

u1αr1
+ · · · + uiαri

+ v1βt1 + · · · + vjβtj = 0.

To indicate the dependence on u and v, this [i, j]-relation is called a [i, j;u, v]-

relation. A [i, 0]-relation corresponds to a generalized defining word for D and

a [0, j]-relation corresponds to a generalized defining word for D̄. Let Ni,j be

the total number of distinct [i, j]-relations and N be the (l + 1) × (l̄ + 1) matrix

with entries Ni,j. N is called the structure index array (Zhu (2003)). Clearly,

Ni,0 = (s − 1)Ai(D) and N0,j = (s − 1)Ai(D̄), where 1 ≤ i ≤ l and 1 ≤ j ≤ l̄.

For convenience, define N0,0 = 1 and Ni,j = 0 when the [i, j]-relations are not

defined.

Lemma 1. {Ni,j} satisfy the following iterative equation:

(i + 1)Ni+1,j + (j + 1)Ni,j+1 + Ci,jNi,j

= (s − 1)i+j

(

l

i

)(

l̄

j

)

−[(s−1)(l−i+1)Ni−1,j +(s−1)(l̄−j+1)Ni,j−1], (2)

where Ci,j = (s − 2)i + (s − 2)j + 1.

Remark. Similar equations with Ci,j = 1 have been derived for 2l−m designs in

Tang and Wu (1996) and Zhu (2003). However, the (s − 2)i + (s − 2)j part in

Ci,j is missing in two-level designs. This shows the major difference between the

wordlength pattern of a general sl−m design and that of a 2l−m design.

Proof. Recall the partition in (1). Suppose i points are selected from D and

j points from D̄ to form linear combinations with nonzero coefficients over Fs.

We call them nonzero linear combinations. This results in (s − 1)i+j

(

l

i

)(

l̄

j

)

combinations. Suppose one of the combinations is given by

l(u, v) = u1αr1
+ · · · + uiαri

+ v1βt1 + · · · + vjβtj ,

where all the coordinates of u′ = (u1, . . . , ui) and v′ = (v1, . . . , vj) are nonzero.

Let A = {αr1
, αr2

, . . . , αri
} ⊂ D, and C = {βt1 , βt2 , . . . , βtj} ⊂ D̄. Define B =

{αri+1
, . . . , αrl

} = D − A and E = D̄ − C = {βtj+1
, . . . , βtl̄

}. Clearly l(u, v) is a
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vector in EG(k, s). Suppose there exist τ0 ∈ Fs − {0} and αri0
in A such that

l(u, v) = τ0αri0
. Then

l(u, v)−τ0αri0
=u1αr1

+· · · (ui0−τ0)αri0
+· · ·+uiαri

+v1βt1 +· · ·+vjβtj =0.

If ui0 = τ0, then A − {αi0} and C form a [i − 1, j, ũ, v]-relation where ũ′ =

(u1, . . . , ui0−1, ui0+1, . . . , ui). Then l(u, v) is said to be a nonzero linear combina-

tion of type A. Conversely, every [i−1, j, ũ, v]-relation can generate (s−1)(l−i+1)

nonzero linear combinations of type A. Hence, the total number of type A

nonzero linear combinations is equal to (s − 1)(l − i + 1)Ni−1,j . If ui0 6= τ0,

then l(u, v)− τ0αri0
is indeed a [i, j, û, v]-relation, where û = (u1, . . . , ui0−1, ui0 −

τ0, ui0+1, . . . , ui). This l(u, v) is said to be a nonzero linear combination of type

Â. Conversely, every [i, j, û, v]-relation can generate (s− 2)i nonzero linear com-

binations of type Â. In total there are (s−2)iNi,j nonzero linear combinations of

type Â. Suppose there exist τ0 ∈ Fs−{0} and αri0
∈ B such that l(u, v) = τ0αri0

.

Then

l(u, v) − τ0αri0
= u1αr1

+ · · · + uiαri
+ (−τ0)αri0

+ v1βt1 + · · · + vjβtj = 0.

Note that l(u, v)− τ0αri0
is a [i+1, j]-relation, and the linear combination l(u, v)

is said to be of type B. Conversely, every [i + 1, j]-relation can generate (i + 1)

nonzero linear combinations of type B. There are (i + 1)Ni+1,j nonzero linear

combinations of type B. In summary, the total number of nonzero linear combi-

nations of types A, Â, and B is (s−1)(l−i+1)Ni−1,j +(s−2)iNi,j +(i+1)Ni+1,j.

Similarly, nonzero linear combinations l(u, v) of types C, Ĉ and E can be defined,

and their total number is (s − 1)(l̄ − j + 1)Ni,j−1+ (s − 2)jNi,j +(j + 1)Ni,j+1.

Finally, if l(u, v) = 0, then it is a [i, j]-relation and there are Ni,j linear combi-

nations of this type. Note that a nonzero linear combination l(u, v) can belong

to only one type. Summing the numbers of l(u, v)’s of different types, we have

equation (2).

The structure index array N of an sl−m design describes its structure and

property. The moment generating function of N is defined as

f(x, y) =
l

∑

i=0

l̄
∑

j=0

Ni,jx
iyj = 1 +

∑

i+j≥3

i≥0,j≥0

Ni,jx
iyj. (3)

We call f(x, y) the structure function of the sl−m design.

3. Main Results

In this section, we derive a first-order partial differential equation satisfied

by f based on (2). The differential equation unveils an intricate relation among
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the Ni,j. Then an explicit expression for f is obtained by solving the equation

under certain conditions.

Theorem 1. The structure function f of an sl−m design satisfies the following

first-order partial differential equation

[1 + (s − 2)x − (s − 1)x2]
∂f

∂x
+ [1 + (s − 2)y − (s − 1)y2]

∂f

∂y

+[1 + (s − 1)lx + (s − 1)l̄y]f − [1 + (s − 1)x]l[1 + (s − 1)y]l̄ = 0, (4)

where l̄ = (sl−m − 1)/(s − 1) − l.

Proof. Multiplying both sides of (2) by xiyj, summing over i, j, and rearranging

terms, we have

∑

i,j

(s − 1)i(s − 1)j
(

l

i

)(

l̄

j

)

xiyj

=
∑

i,j

(s − 1)(l − i + 1)Ni−1,jx
iyj +

∑

i,j

(i + 1)Ni+1,jx
iyj

+
∑

i,j

(s − 1)(l̄ − j + 1)Ni,j−1x
iyj +

∑

i,j

(j + 1)Ni,j+1x
iyj

+
∑

i,j

((s − 2)i + (s − 2)j + 1)Ni,jx
iyj. (5)

Denote the five terms in the right-hand side of (5) by R1, R2, R3, R4 and R5

from left to right, respectively. Let R0 be the left-hand side of equation (5). It

is clear that

R0 = [1 + (s − 1)x]l[1 + (s − 1)y]l̄,

R1 = (s − 1)l
∑

i,j

Ni−1,jx
iyj − (s − 1)

∑

i,j

(i − 1)Ni−1,jx
iyj

= (s − 1)lx
∑

i,j

Ni−1,jx
i−1yj − (s − 1)

∑

i,j

(i − 1)Ni−1,jx
iyj

= (s − 1)lxf − (s − 1)x2 ∂f

∂x
,

R2 =
∑

i,j

∂

∂x
(Ni+1,jx

i+1,j) =
∂f

∂x
.

Similarly, R3 = (s − 1)l̄yf − (s − 1)y2 ∂f
∂y

, R4 = ∂f
∂y

, and

R5 = (s − 2)x
∑

i,j

iNi,jx
i−1yj + (s − 2)y

∑

i,j

jNi,jx
iyj−1 +

∑

i,j

Ni,jx
iyj
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= (s − 2)x
∂f

∂x
+ (s − 2)y

∂f

∂y
+ f.

Because R0 = R1 + R2 + R3 + R4 + R5, (4) follows.

Recall that an sl−m design D induces the partition PG(k − 1, s) = D ∪ D̄.

The structure index array {Ni,j} contains information about the aliasing within

the designs D and D̄ as well as information about the relationship between D and

D̄. Intuitively, it is not difficult to see that, if the wordlength pattern of either

D or D̄ is known, that is, either {Ni,0} or {N0,j} is given, the other structure

indices can be determined uniquely. The following theorem validates this, and

the dependence can be derived explicitly by solving (4).

Theorem 2. Given {N0,j}, there exists a unique structure function f that sat-

isfies (4). Furthermore,

f(x, y) = s−k[1 + (s − 1)x]l−sk−1

[1 + (s − 1)y]l̄{[1 + (s − 1)x]s
k−1

− (1 − x)s
k−1

]

+[1 + (s − 1)x]l−sk−1

(1 − x)s
k−1−l̄[1 + (s − 2)x − (s − 1)xy]l̄

×h((y − x)[1 + (s − 2)x − (s − 1)xy]−1), (6)

where h(t) =
∑

j N0,jt
j.

A sketch of the proof is given in the Appendix.

The explicit connections between Ni,j and N0,j can be derived by applying

the Taylor expansion to the terms in (6) and comparing them to the definition of

f in (3), or by calculating ∂i+jf/∂xi∂yj |x=0,y=0. When the parameters s, l, m,

k and l̄ are given, much simplified formulas can be obtained. General formulas

similar to those in Zhu (2003) can also be obtained. An important feature of this

approach is that it reveals not only how Ni,0 and N0,j are related to each other,

but also the relationship between Ni,j and N0,j with j > 0, which has further

implications regarding the structure and properties of D.

4. Design with Multiple Groups of Factors

As discussed in Section 1, many important designs involve multiple groups of

factors. Aliasing between effects within the same groups and between the groups

has different implications for design and analysis. This distinction should be

considered in the choice of design. Readers are referred to Suen, Chen and Wu

(1997) for discussions on blocked design, Bingham and Sitter (1999) on split-plot

design, and Wu and Zhu (2003) on robust parameter design. In this section, we

assume that an sl−m design is employed to investigate l factors, among which l1
factors belong to Group I and l2 belong to Group II. Let D1,2 and G1,2 denote

the design and its defining contrasts subgroup. D1,2 can also be generated by a
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collection of l1 + l2 points from PG(k − 1, s) as in Section 2. Suppose the set
of points corresponding to the factors in Group I is L1={α1, α2, . . . , αl1}, and
the set of points corresponding to the factors in Group II is L2={β1, β2, . . . , βl2}.
There are l3 = (sk − 1)/(s − 1)− l1 − l2 points remaining in PG(k − 1, s), which
are denoted by L3={γ1, . . . , γl3}. Hence, D1,2 induces a three-way partition:
PG(k − 1, s) = L1 ∪ L2 ∪ L3. Note that D1,2 is the design generated by L1 and

L2. Let D1,3 denote the design generated by L1 and L3 and D2,3 by L2 and L3.
Both D1,3 and D2,3 can be considered as complementary designs of D1,2. The
properties and structures of these three designs depend on each other.

For any fixed triplet (i1, i2, i3) with 0 ≤ ij ≤ lj for j = 1, 2, 3, a collection of
ij points from Lj for j = 1, 2, 3, respectively, is said to have a [i1, i2, i3]-relation,
if there exists a nonzero linear combination of them, which is equal to the 0-
vector in EG(k, s). Similarly, define Ni1,i2,i3 to be the total number of distinct
[i1, i2, i3]-relations. It is clear that {Ni1,i2,0}, {N0,i2,i3} and {Ni1,0,i3} correspond
to the generalized wordtype patterns of D1,2, D2,3 and D1,3, respectively. Again

we call {Ni1,i2,i3} the structure index array associated with D1,2. The structure
function f is then defined as

f(x1, x2, x3) =

l1
∑

i1=0

l2
∑

i2=0

l3
∑

i3=0

Ni1,i2,i3x
i1
1 xi2

2 xi3
3 = 1 +

∑

i1+i2+i3≥3

i1≥0,i2≥0,i3≥0

Ni1,i2,i3x
i1
1 xi2

2 xi3
3 .

(7)
Following the same arguments and derivations as in Sections 2 and 3, the follow-
ing results can be established.

Lemma 2. The Ni1,i2,i3 satisfy

(i1 + 1)Ni1+1,i2,i3 + (i2 + 1)Ni1,i2+1,i3 + (i3 + 1)Ni1,i2,i3+1 + Ci1,i2,i3Ni1,i2,i3

= (s − 1)i1+i2+i3

(

l1
i1

)(

l2
i2

)(

l3
i3

)

− [(s − 1)(l1 − i1 + 1)Ni1−1,i2,i3

+(s − 1)(l2 − i2 + 1)Ni1,i2−1,i3 + (s − 1)(l3 − i3 + 1)Ni1,i2,i3−1], (8)

where Ci1,i2,i3 = (s − 2)i1 + (s − 2)i2 + (s − 2)i3 + 1.

Theorem 3. The structure function f defined in (7) satisfies the first-order

differential equation

3
∑

j=1

[1+(s−2)xj−(s−1)x2
j ]

∂f

∂xj
+[1+

3
∑

j=1

(s−1)ljxj]f−

3
∏

j=1

[1+(s−1)xj ]
lj = 0. (9)

Theorem 4. Given {N0,i2,i3}, there exists a unique structure function f that

satisfies (9); it may be written as

f(x1, x2, x3) = s−k[1 + (s − 1)x1]
l1−sk−1

[1 + (s − 1)x2]
l2 [1 + (s − 1)x3]

l3
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×{[1 + (s − 1)x1]
sk−1

− (1 − x1)
sk−1

}

+[1 + (s−1)x1]
l1−sk−1

(1−x)s
k−1−l2−l3 [1+(s−2)x1−(s−1)x1x2]

l2

×[1 + (s − 2)x1 − (s − 1)x1x3]
l3h(x1, x2, x3), (10)

where

h(x1, x2, x3)

=

l2
∑

i2=0

l3
∑

i3=0

N0,i2,i3

[

x2 − x1

1+(s−2)x1−(s−1)x1x2

]i2
[

x3 − x1

1+(s−2)x1−(s−1)x1x3

]i3

.

The proofs of Lemma 2, Theorem 3 and Theorem 4 are similar to those of

Lemma 1, Theorem 1 and Theorem 2. These results can be easily extended to

more than two groups of factors. The explicit relationship between Ni1,i2,i3 and

N0,i2,i3 can be obtained, but they are not reported here due to limited space.

The subsets L1, L2 and L3 in the partition of PG(k − 1, s) are arbitrary subsets

in general. However, for some designs, these subsets may possess certain struc-

tures or satisfy certain constraints, and simplified and direct relationships can

be obtained by considering these structures and constraints. In the next section,

we use blocked designs to illustrate how the approach using structure function

and partial differential equation can accommodate the structure in the partition

induced by a blocked design and lead to identities relating the blocked design

and its complementary design.

5. Regular (sl−m
, s

r) Blocked Design

Blocking is a commonly used strategy to eliminate systematic variations due

to inhomogeneities of experimental units. Typical block factors include time,

location, batch, operator and so on. In the recent literature, much attention has

been given to the issue of characterization of blocked fractional factorial designs

and optimal blocking schemes. See, Bisgaard (1994), Sun, Wu and Chen (1997),

Sitter, Chen and Feder (1997),Mukerjee and Wu (1999),Chen and Cheng (1999),

Cheng and Wu (2002) and Ai and Zhang (2004). In a blocked fractional facto-

rial design, there are two different types of effect aliasing, the aliasing between

treatment effects and the confounding between treatment effects and block ef-

fects (Wu and Hamada (2000)). Because of this complexity, it is not immediately

clear whether popular criteria for regular fractional factorial designs such as max-

imum resolution and minimum aberration can be directly generalized to blocked

designs. Useful optimality criteria should be based on a good understanding of

the properties of blocked designs.
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In this section, we do not intend to propose any new optimality crite-

ria. Instead, the results from the previous sections are employed to investi-

gate regular (sl−m, sr) blocked designs and their complementary designs. Using

the MacWilliams identities from coding theory, Chen and Cheng (1999) studied

(2l−m, 2r) blocked designs, and Ai and Zhang (2004) studied nonregular blocked

designs that cannot generally be generated by defining relations. The latter pro-

posed a concept called blocked consulting design and generated identities that

relate blocked designs and their consulting blocked designs. Although the results

of Ai and Zhang (2004) are probably the best one can hope for general nonregular

blocked designs, when applied to regular blocked designs the concept of blocked

consulting design is not appropriate, and the identities can be complicated and

redundant. The primary reason that such results are not the best possible for

regular blocked designs is that they do not consider the linear structure of regu-

lar blocked designs. This will be clear when we compare the blocked consulting

design and the blocked complementary design in the next paragraph.

A regular (sl−m, sr) blocked design can be viewed as an sl−m design that

is partitioned into sr blocks, each with sk−r experimental units, where k =

l − m (Mukerjee and Wu (1999)), or an s(l+r)−(m+r) design with l treatment

factors and r block factors, such that the main effects of the treatment factors

are not confounded with block main effects or interactions (Chen and Cheng

(1999)). Following the second viewpoint and the discussion in Section 4, a regular

(sl−m, sr) blocked design induces a three-way partition of PG(k − 1, s), that is,

PG(k − 1, s) = {αi}
l
i=1 ∪ {βj}

r
j=1 ∪ (PG(k − 1, s) − ({αi}

l
i=1 ∪ {βj}

r
j=1)),

where {αi}
l
i=1 correspond to the treatment factors and {βj}

r
j=1 correspond to the

block factors. Clearly {αi}
l
i=1 ∪ {βj}

r
j=1 generates the original blocked design.

Ai and Zhang (2004) referred to the design generated by {βj}
r
j=1 ∪ (PG(k −

1, s) − ({αi}
l
i=1 ∪ {βj}

r
j=1)) as the blocked consulting design with (sk − 1)/(s −

1) − l − r treatment factors and r block factors. The blocked consulting design

is not a legitimate blocked design, because some of its treatment factors are

confounded with the interactions of the block factors. This explains why the

identities between a blocked design and its consulting design are not the best

possible in regular cases. Let B be the subspace spanned by {βj}
r
j=1 in PG(k −

1, s), and let D = {αi}
l
i=1. B contains (sr−1)/(s−1) points and must be disjoint

with D. Let D̄ = PG(k − 1, s) − D − B. Then we arrive at a more appropriate

partition for studying the blocked design,

PG(k − 1, s) = D ∪ B ∪ D̄. (11)

For convenience, we let l1 = l, lr = (sr−1)/(s−1), and l3 = (sk−1)/(s−1)−lr−l1,

the cardinalities of D, B, and D̄ respectively.
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The partition in (11) is similar to the three-way partition in Section 4, how-

ever B is not just an arbitrary subset but rather a (r−1)−dimensional subspace of

PG(k−1, s). This is a unique feature of blocked fractional factorial designs. The

structure indices Ni,j,k and the structure function f can be defined in the same

way as in Section 4. Note that {(s−1)−1Ni,0,0}
l1
i=1 and {(s−1)−1Ni,1,0}

l1
i=1 form

the split wordlength patterns of the blocked design (Sun, Wu and Chen (1997)).

B and D̄ generate another blocked design, which is referred to as the blocked

complementary design of (D,B) and denoted by (B, D̄). (B, D̄) was called the

blocked residual design in Chen and Cheng (1999). Then {(s − 1)−1N0,0,k}
l3
k=1

and {(s − 1)−1N0,1,k}
l3
k=1 are the split wordlength patterns of (B, D̄). Here, only

the subsets of {Ni,j,k} with j = 0, 1 are relevant for blocked designs. According

to Lemma 1 in Mukerjee and Wu (1999) or Lemma 2 in Chen and Cheng (1999),

we have

Ni,j,k = γ(j)Ni,0,k + (s − 1)−1α(j)Ni,1,k, (12)

where γ(j) is the number of distinct nonzero linear combinations of j points in B

that are equal to zero, and α(j) is the number of distinct nonzero linear combina-

tions of j points (or vectors) in B that are equivalent to a given point (or vector) in

B. Note that α(j) does not depend on the given point (Mukerjee and Wu (1999)).

Define γ(y) =
∑

j≥0 γ(j)yj , α(y) =
∑

j≥0 α(j)yj , f1(x, z) =
∑

i,k Ni,0,kx
izk, and

f2(x, z) =
∑

i,k Ni,1,kx
izk. Let f be the structure function based on {Ni,j,k}.

Then we have

f(x, y, z) = γ(y)f1(x, z) + (s − 1)−1α(y)f2(x, z), (13)

according to (12). Equation (13) indicates that the structure function f possesses

a simplified expression due to the fact that B is a (r − 1)-dimensional subspace.

Note that only f1(x, z) and f2(x, z) are relevant for a blocked design and its

blocked complementary design.

Lemma 3.

(i) γ(y) = s−r
{

[1 + (s − 1)y]lr +(sr − 1)[1+(s−1)y]lr (1 − y)s
r−1

}

, (14)

(ii) α(y) = l−1
r [1 + (s − 1)y]lr − l−1

r γ(y), (15)

(iii) γ(y) and α(y) satisfy the following equations:

[1+(s−2)y−(s−1)y2]
dγ(y)

dy
+[1+(s−1)lry]γ(y)−[1+(s−1)y]lr = 0, (16)

[1+(s−2)y−(s−1)y2]
dα(y)

dy
+[1+(s−1)lry]α(y)−(s−1)[1+(s−1)y]lr =0. (17)
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Proof. (i) is a well-known result for the weight distribution of the Hamming

code [(sr − 1)/(s − 1), (sr − 1)/(s − 1) − r, 3]. (ii) can be derived from Lemma 1

(b) in Mukerjee and Wu (1999). Equations (16) and (17) can be verified directly.

According to Theorem 3, f(x, y, z) satisfies

[1 + (s − 2)x − (s − 1)x2]
∂f

∂x
+ [1 + (s − 2)y − (s − 1)y2]

∂f

∂y

+[1 + (s − 2)z − (s − 1)z2]
∂f

∂z
+ [1 + (s − 1)l1x + (s − 1)lry + (s − 1)l3z]f

−[1 + (s − 1)x]l1 [1 + (s − 1)y]lr [1 + (s − 1)z]l3 = 0. (18)

Equation (18) holds for any structure function for two groups of factors, but

it does not take into consideration that f has a simplified expression as at (13).

Replacing f in (18) with its expression in (13), and further simplifying (18) with

the help of Lemma 3, we derive the following theorem regarding f1(x, z) and

f2(x, z).

Theorem 5. f1 and f2 satisfy

[1 + (s − 2)x − (s − 1)x2]
∂f1

∂x
+ [1 + (s − 2)z − (s − 1)z2]

∂f1

∂z

+[1 + (s−1)l1x + (s−1)l3z]f1 + f2−[1 + (s−1)x]l1 [1 + (s−1)z]l3 = 0, (19)

[1 + (s − 2)x − (s − 1)x2]
∂f2

∂x
+ [1 + (s − 2)z − (s − 1)z2]

∂f2

∂z
+[sr − 1 + (s − 1)l1x + (s − 1)l3z]f2

+(sr − 1)f1 − (sr − 1)[1 + (s − 1)x]l1 [1 + (s − 1)z]l3 = 0. (20)

Using the MacWilliams identities, Chen and Cheng (1999) obtained com-

binatorial identities that govern the relationship between the split wordlength

pattern {Ni,j,0}0≤i≤l1,0≤j≤1 of a blocked 2l−m design and the split wordlength

pattern {N0,j,k}0≤j≤1,0≤k≤l3 of its blocked complementary design. Next we de-

rive similar identities for blocked sl−m designs based on (19) and (20). Note that

f1(x, 0), f2(x, 0), f1(0, z) and f2(0, z) are the moment generating functions of

{Ni,0,0}, {Ni,1,0}, {N0,0,k}, and {N0,1,k}, respectively, and f1(x, z) and f2(x, z)

satisfy (19) and (20). Following similar arguments and derivations as in Sections

3 and 4, solving (19) and (20) lead to identities between {f1(x, z), f2(x, z)} and

{f1(0, z), f2(0, z)}. Without loss of generality, we assume that {f1(0, z), f2(0, z)}

are known in the following.

Theorem 6. Given f1(0, z) and f2(0, z), there exist unique solutions f1(x, z)

and f2(x, z) to (19) and (20), and

(sr − 1)f1(x, z) − f2(x, z)
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= [1 + (s − 1)x]l1−(sk−1−sr−1)(1 − x)(s
k−1−sr−1)−l3h(x, z), (21)

f2(x, z) = (sr − 1)s−k[1 + (s − 1)x]l1−sk−1

[1 + (s − 1)z]l3

×{[1 + (s − 1)x]s
k−1

− (1 − x)s
k−1

}

−s−r[1 + (s − 1)x]l1−sk−1

(1 − x)s
k−1−sr−1−l3

×{[1 + (s − 1)x]s
r−1

− (1 − x)s
r−1

}h(x, z)

+[1 + (s − 1)x]l1−sk−1

(1 − x)s
k−1−l3g(x, z), (22)

in which

h(x, z) = [1 + (s − 2)x − (s − 1)xz]l3

×{(sr − 1)f1(0, (z − x)[1 + (s − 2)x − (s − 1)xz]−1)

−f2(0, (z − x)[1 + (s − 2)x − (s − 1)xz]−1)}, (23)

g(x, z) = [1 + (s−2)x−(s−1)xz]l3f2(0, (z−x)[1 + (s−2)x−(s−1)xz]−1). (24)

A sketch of the derivations of (21) and (22) is included in the Appendix.

Note that (21) and (22) provide exact relationships between {f1(x, z),f2(x, z)}

and {f1(0, z), f2(0, z)}. Identities between {f1(·, 0), f2(·, 0)} and {f1(0, ·), f2(0, ·)}

can be easily obtained by setting z = 0 in (21)−(24). In the rest of the paper, if

=c instead of = is used in an equation, it indicates that a function or a constant

that does not depend on {N0,0,j} and {N0,1,j} may be omitted from the equation.

These functions and constants can be calculated, but are omitted to save space.

Setting z = 0 in (21)−(24), we have

(sr−1)f1(x, 0) = [1+(s−1)x]l1−(sk−1−sr−1)(1−x)(s
k−1−sr−1)−l3h(x, 0)+f2(x, 0),

f2(x, 0) = c − s−r[1 + (s − 1)x]l1−sk−1

(1 − x)s
k−1−sr−1−l3

×{[1 + (s − 1)x]s
r−1

− (1 − x)s
r−1

}h(x, 0)

+[1 + (s − 1)x]l1−sk−1

(1 − x)s
k−1−l3g(x, 0),

where

h(x, 0) = [1+(s−1)x]l3{(sr−1)f1(0,−x[1+(s−2)x]−1)−f2(0,−x[1+(s−2)x]−1)}

= (sr − 1)
∑

j

N0,0,j(−x)j [1 + (s − 2)x]l3−j

−
∑

j

N0,1,j(−x)j [1 + (s − 2)x]l3−j ,

g(x, 0) = [1 + (s − 2)x]l3f2(0,−x[1 + (s − 2)x]−1)

=
∑

j

N0,1,j(−x)j [1 + (s − 2)x]l3−j.
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Because f1(x, 0) =
∑

i Ni,0,0x
i and f2(x, 0) =

∑

i Ni,1,0x
i, exact identities

between {Ni,0,0,Ni,1,0} and {N0,0,j ,N0,1,j} can be obtained by applying the Taylor

expansion to the polynomial terms in the equations above. Define P and Q by

P (j4; l3) =

j4
∑

j=0

(−1)j(s − 2)j4−j

(

l3 − j

j4 − j

)

N0,0,j,

Q(j4; l3) =

j4
∑

j=0

(−1)j(s − 2)j4−j

(

l3 − j

j4 − j

)

N0,1,j.

Then one has

Ni,1,0 = c

∑

j1+j2+j4=i

(−1)j2(s − 1)j1
(

l1 − sk−1

j1

)(

sk−1 − sr−1 − l2
j2

)

Q(j4; l3)

−
∑

j1+j2+j3+j4=i

s−r(−1)j2+1(s − 1)j1 [(s − 1)j3 − (−1)j3 ]

×

(

l1−sk−1

j1

)(

sk−1−sr−1−l3
j2

)(

sr−1

j3

)

((sr−1)P (j4; l3)−Q(j4; l3)),(25)

Ni,0,0 = c(s
r−1)−1Ni,1,0+(sr−1)−1

∑

j1+j2+j4=i

(−1)j2(s−1)j1

×

(

l1−sk−1+sr−1

j1

)(

sk−1−sr−1−l3
j2

)

((sr−1)P (j4; l3)−Q(j4; l3)). (26)

Under the assumption that factorial effects with order three or higher are negligi-

ble, the split wordlength patterns with i = 2, 3 and 4 are of practical importance.

Specifying i = 2, 3, 4 respectively in (25) and (26) results in the following corol-

lary.

Corollary 1. The following identities hold:

N2,1,0 =c N0,1,2, (27)

N3,1,0 =c −(sr + 2s − 5)N0,1,2 − N0,1,3, (28)

N3,0,0 =c −N0,1,2 − N0,0,3, (29)

N4,0,0 =c
1

2
(sr + 5s − 10)N0,1,2 + N0,1,3 + (3s − 5)N0,0,3 + N0,0,4. (30)

We use N s
i,j,k to indicate the dependence on s. For (2l1−(l1−k), 2r) blocked

designs:

N2
2,1,0 =c N2

0,1,2, (31)

N2
3,1,0 =c −(2r − 1)N2

0,1,2 − N2
0,1,3, (32)
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N2
3,0,0 =c −N2

0,1,2 − N2
0,0,3, (33)

N2
4,0,0 =c 2r−1N2

0,1,2 + N2
0,1,3 + N2

0,0,3 + N2
0,0,4. (34)

Equations (31), (33) and (34) were also reported in equation (19) in Chen and

Cheng (1999). (However, there is an error: αr(2) should be equal to 2r−1 − 1,

not to 2r−1(2r−1 − 1).) For (3l1−(l1−k), 3r) blocked designs,

N3
2,1,0 =c N3

0,1,2, (35)

N3
3,1,0 =c −(3r + 1)N3

0,1,2 − N3
0,1,3, (36)

N3
3,0,0 =c −N3

0,1,2 − N3
0,0,3, (37)

N3
4,0,0 =c

1

2
(3r + 5)N3

0,1,2 + N3
0,1,3 + 4N3

0,0,3 + N3
0,0,4. (38)

Since there are two types of wordlength patterns in a regular (sl−m, sr)

blocked design, it is crucial to find a criterion to rank-order the relative im-

portance of the defining words. Three ordering criteria have been proposed

(Sitter, Chen and Feder (1997), Chen and Cheng (1999) and Cheng and Wu

(2002))):

WSCF = (N3,0,0, N2,1,0, N4,0,0, N3,1,0, N5,0,0, N4,1,0, . . . ), (39)

WCC = (N3,0,0, N2,1,0, N4,0,0, N5,0,0, N3,1,0, N6,0,0, . . .), (40)

WCW = (N3,0,0, N4,0,0, N2,1,0, N5,0,0, N6,0,0, N3,1,0, · · · ). (41)

The wordlength patterns can be used to define optimality criteria and discrim-

inate blocked designs. For each of WSCF , WCC and WCW , sequentially mini-

mizing the ordered wordlength patterns leads to the corresponding generalized

minimum aberration blocked designs. Discussions and comparison of these cri-

teria can be found in Cheng and Wu (2002). In this paper, only WCW will be

considered, and the corresponding minimum aberration design is called minimum

WCW aberration design. Based on Corollary 1, some general rules for identifying

minimum WCW aberration (sl−m, sr) blocked designs can be established using

their complementary designs, as follows.

Rule 1. A regular (sl−m, sr) blocked design (D∗,B∗) has minimum WCW aber-

ration if

(i) N0,1,2 +N0,0,3 is the maximum among all the blocked complementary designs

(B, D̄),

(ii) (D∗,B∗) is the unique design satisfying (i).

Rule 2. A regular (sl−m, sr) blocked design (D∗,B∗) has minimum WCW aber-

ration if

(i) as in Rule 1,



1252 YU ZHU AND C. F. J. WU

(ii) (sr +5s−10)N0,1,2/2+N0,1,3 +(3s−5)N0,0,3 +N0,0,4 is the minimum among

all the blocked designs satisfying (i),

(iii) (D∗,B∗) is the unique design satisfying (i) and (ii).

Rule 3. A regular (sl−m, sr) blocked design (D∗,B∗) has minimum WCW aber-

ration if

(i) (ii) as in Rule 2,

(iii)N0,1,2 is the minimum among all the blocked complementary designs satisfy-

ing (i) and (ii),

(iv)(D∗,B∗) is the unique design satisfying (i), (ii) and (iii).

Based on (25) and (26), it is not difficult to derive general rules involving

higher order wordlength patterns. Taking s to be 2 or 3, Rules 1-3 can be

used to construct two-level or three-level blocked designs with minimum WCW

aberration. The construction of some three-level blocked designs is illustrated in

the following example.

Example 1. (39−6, 31) blocked designs can be employed to investigate nine treat-

ment factors in three blocks with 27 runs. There is only one block factor denoted

by b, let B = {b}. D consists of nine points from PG(2, 3) that are different from

b. Since PG(2, 3) contains 13 points, there are three points left. Denote them by

D̄ = {r1, r2, r3}. Because the blocked complementary designs (B, D̄) have only

four points, it is easy to verify that there exist four non-isomorphic designs:

(1) (B1, D̄1), where b and r1 are independent, r2 = br1 and r3 = br2
1;

(2) (B2, D̄2), where b, r1 and r2 are independent, and r3 = br1;

(3) (B3, D̄3), where b, r1 and r2 are independent, and r3 = r1r2;

(4) (B4, D̄4), where b, r1 and r2 are independent, and r3 = br1r2.

The associated split wordlength patterns can also be obtained:

(1) N0,0,3 = 2, N0,0,4 = 0, N0,1,2 = 6, N0,1,3 = 0;

(2) N0,0,3 = 0, N0,0,4 = 0, N0,1,2 = 2, N0,1,3 = 0;

(3) N0,0,3 = 2, N0,0,4 = 0, N0,1,2 = 0, N0,1,3 = 0;

(4) N0,0,3 = 0, N0,0,4 = 0, N0,1,2 = 0, N0,1,3 = 2.

Note that (B1, D̄1) has N0,1,2 + N0,0,3 equal to 8, which is the maximum among

the four blocked complementary designs, and the maximum is unique. Applying

Rule 1, the blocked design (D1,B1) is the minimum WCW aberration (39−6, 31)

blocked design; remaining designs can be further discriminated based on WCW .

Because N0,0,2 + N0,1,2 is equal to 0 for (B4, D̄4) and equal to 2 for both (B2, D̄2)

and (B3, D̄3) , (D4,B4) has the maximum WCW aberration. We further compare

the second term N4,0,0 of WCW in order to distinguish (B2, D̄2) and (B3, D̄3).

Applying (38), N4,0,0 =c 4N0,1,2+N0,1,3+4N0,0,3+N0,0,4 = 8 for both (B2, D̄2) and

(B3, D̄3). So the third term N2,1,0 of WCW has to be employed. Because N2,1,0 =c
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N0,1,2 = 0 for (B3, D̄3), and equal to 2 for (B2, D̄2), (D3,B3) has less WCW

aberration than (D2,B2). Hence these four designs can be rank-ordered using

the WCW aberration from the minimum to the maximum as (D1,B1),(D3,B3),

(D2,B2), (D4,B4). By deleting points from PG(2, 3), it is straight-forward to

derive the defining words for the original blocked designs. Note that (D1,B1),

(D3,B3) and (D2,B2) are listed as 9-6.1/B1.1, 9-6.2/B1.1 and 9-6.3/B1.1 in Table

4 in Cheng and Wu (2002).

We give another example to demonstrate the power of our approach to re-

cover all the structure indices besides the split patterns of a regular blocked

design. A (26−2, 23) blocked design is used for illustration.

Example 2. Suppose six treatment factors A, B, C, D, E and F and three

block factors b1, b2 and b3 are involved in a (26−2, 23) blocked design. Assume

that A, B, C and D are independent in the design. The defining words for E,

F and the block factors are E = ABC, F = ABD, b1 = AB, b2 = AC, and

b3 = AD. Hence the defining relation is

I = ABCE = ABDF = CDEF = ABb1 = CEb1 = DFb1 = ACb2 = BEb2

= ADb3 = BFb3 = AEb1b2 = BCb1b2 = BDb1b3 = AFb1b3 = CDb2b3

= EFb2b3 = CFb1b2b3 = DEb1b2b3 = ADEFb2 = BCDFb2 = ACEFb3

= BCDEb3 = ACDFb1b2 = BDEFb1b2 = ACDEb1b3 = BCEFb1b3

= ABCFb2b3 = ABDEb2b3 = ABCDb1b2b3 = ABEFb1b2b3 = ABCDEFb1.

The induced partition of PG(3, 2) is D ∪ B ∪ D̄, where D = {A,B,C,D,E, F},

B = {b1, b2, b3, b1b2, b1b3, b2b3, b1b2b3} , D̄ = {r1, r2}, and r1 and r2 are the two

remaining points r1 = ACD and r2 = BCD. The partition is summarized in the

following table.

D B D̄

A B C D E F b1 b2 b3 b1b2 b1b3 b2b3 b1b2b3 r1 r2

1 0 0 0 1 1 1 1 1 0 0 0 1 1 0

0 1 0 0 1 1 1 0 0 1 1 0 1 0 1

0 0 1 0 1 0 0 1 0 1 0 1 1 1 1

0 0 0 1 0 1 0 0 1 0 1 1 1 1 1

Since D̄ contains only two points, it is very easy to derive the split wordlength

patterns of (B, D̄): N0,0,0 = 1, N0,0,1 = 0, N0,0,2 = 0, N0,1,0 = 0. N0,1,1 = 0 and

N0,1,2 = 1. Thus f1(0, z) = 1 and f2(0, z) = z2. Using Theorems 5 and 6 and

some algebraic simplification, we have

f1(x, z) = 1 + 3x4 + 8x3z + (3x2 + x6)z2, (42)
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f2(x, z) = 15x2 + 12x4 + x6 + (12x + 32x3 + 12x5)z + (1 + 12x2 + 15x4)z2. (43)

Using (42) and (43) and the definition of f1 and f2, all the structure indices Ni,j,k

can be immediately recovered. For example, setting z = 0 in (42) and (43) leads

to f1(x, 0) = 1 + 3x4 and f2(x, 0) = 15x2 + 12x4 + x6. The split wordlength

patterns of (D,B) immediately follow: N3,0,0 = 3, N2,1,0 = 15, N4,1,0 = 12,

and N6,1,0 = 1. This can be easily verified by the defining relation given above.

Furthermore, it is also easy to verify that N3,1,1 = 32, N2,1,2 = 12, etc. This

example shows explicitly how the structure indices Ni,j,k are determined by the

two simple functions f1(0, z) = 1 and f2(0, z) = z2.

6. Concluding Remarks

In Section 3, a general framework is given to relate the aliasing pattern

of a design to that of its complementary design through the structure function

and a first-order partial differential equation satisfied by the structure function.

The results in Sections 4 and 5 demonstrate that the framework is flexible and

powerful enough to accommodate special design structures like multiple groups

of factors and blocking. There is ongoing work to employ this framework to study

detailed properties of fractional factorial designs like letter patterns and aliasing

structures. The results will be reported elsewhere.
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Appendix

Proof of Theorem 2. Because {N0,j} is given, f(0, y) =
∑

j yj is known.

The existence and uniqueness of the solution to (6) with f(0, y) given follow

from standard results on first-order partial differential equations (John (1982)).

Introduce two auxiliary variables τ and t. Let x = x(τ, t), y = y(τ, t) and

w = f(x, y) = f(x(τ, t), y(τ, t)). It is well-known that equation (6) with f(0, y)

given is equivalent to the following system of ordinary differential equations (John

(1982, Chap. 1)):

dx

dt
= 1 + (s − 2)x − (s − 1)x2, (44)

dy

dt
= 1 + (s − 2)y − (s − 1)y2, (45)

dw

dt
= −[1 + (s − 1)lx + (s − 1)l̄y]w + [1 + (s − 1)x]l[1 + (s − 1)y]l̄, (46)
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with the initial conditions

x(τ, 0) = 0, (47)

y(τ, 0) = τ, (48)

w(τ, 0) = f(0, τ) =
∑

j

N0,jτ
j. (49)

Solving (44) with (47) leads to

1 + (s − 1)x

1 − x
= est or, equivalently, x =

−1 + est

(s − 1) + est
. (50)

Similarly solving (45) with (48) leads to

y =
−1 + cest

(s − 1) + cest
, with c =

1 + (s − 1)τ

1 − τ
. (51)

The solution of (46) under (49) is

w(τ, t) =

(
∫ t

0
[1+(s−1)x]l[1+(s−1)y]l̄ exp

{

∫ t

0
[1+(s−1)lx+(s−1)l̄y]dt

}

dt

+f(0, τ)

)

exp
{

−

∫ t

0
[1 + (s − 1)lx + (s − 1)l̄y]dt

}

. (52)

Based on (50) and (51), (52) can be simplified to

w(τ, t) = sl+l̄−kcl̄[1 + (s − 1)e−st]−l[c + (s − 1)e−st]−l̄(1 − e−skt)

+sl[c + (s − 1)]l̄[1 + (s − 1)e−st]−l[c + (s − 1)e−st]−l̄e−sktf(0, τ). (53)

From (50) and (51) again, t, c and τ can be written as functions of x and y as

follows:

e−st = [1 + (s − 1)x]−1(1 − x),

c = [1 + (s − 1)x]−1(1 − x)[1 + (s − 1)y](1 − y)−1,

τ = (y − x)[1 + (s − 2)x − (s − 1)xy]−1.

Hence,

w(τ(x, y), t(x, y))

= s−k[1 + (s − 1)x]l−sk−1

[1 + (s − 1)y]l̄{[1 + (s − 1)x]s
k−1

− (1 − x)s
k−1

}

+[1 + (s − 1)x]l−sk−1

(1 − x)s
k−1−l̄[1 + (s − 2)x − (s − 1)xy]l̄

×f(0, (y − x)[1 + (s − 2)x − (s − 1)xy]−1). (54)
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Noting that f(x, y) = w(τ(x, y), t(x, y)) concludes the proof.

Proof of Theorem 6. Define f̃(x, z) = (sr − 1)f1(x, z) − f2(x, z). Subtracting

(20) from (19) multiplied by sr − 1, we have

[1+(s−2)x−(s−1)x2]
∂f̃

∂x
+[1+(s−2)z−(s−1)z2 ]

∂f̃

∂z
+[(s−1)l1x+(s−1)l3z]f̃ =0. (55)

Equation (20) can be rewritten as

[1 + (s − 2)x − (s − 1)x2]
∂f2

∂x
+ [1 + (s − 2)z − (s − 1)z2]

∂f2

∂z
+[sr + (s − 1)l1x + (s − 1)l3z]f2

= (sr − 1)[1 + (s − 1)x]l1 [1 + (s − 1)z]l3 − f̃ . (56)

The system of equations (19) and (20) for f1 and f2 is equivalent to the system

of equations (55) and (56) for f̃ and f2. Because f1(0, z) and f2(0, z) are given,

f̃(0, z) = (sr −1)f1(0, z)-f2(0, z) and f2(0, z) are also known. Note that equation

(55) only involves f̃ . Therefore, (55) and (56) can be solved sequentially. Solving

(55) with given f̃(0, z) leads to the expression of f̃(x, z) in (21). (Techniques

similar to the proof of Theorem 2 are used to derive the solution.) Replacing f̃

in (56) with its expression in (21), (56) becomes an equation f2 only involving.

Given f2(0, z), the solution of (56) is (22).
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