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Abstract: The permutation test is one of the oldest techniques for making statis-

tical inferences. Monte Carlo methods and asymptotic formulas have been used

to approximate the associated p-values. When data are truncated, however, the

permutation null distribution is difficult to handle. We describe here an efficient se-

quential importance sampling strategy for generating permutations with restricted

positions, which provides accurate p-value approximations in all examples we have

tested. The algorithm also provides good estimates of permanents of zero-one matri-

ces, which by itself is a challenging problem. The key to our strategy is a connection

between allowable permutations and zero-one tables with structural zeros.

Key words and phrases: Importance sampling, Markov chain Monte Carlo, perma-

nent, permutation test, structural zero, zero-one table.

1. Introduction

Randomization and permutation are at the heart of statistical inference. Us-

ing permutations to generate the null distribution of a test statistic is one of the

oldest and perhaps still the most popular statistical techniques. When assuming

a parametric distribution for the underlying data is unsafe, permutation tests

provide a solid probabilistic basis for making inference. One “inconvenience” of

using permutation tests is that their null distributions are usually not in closed

form, and some asymptotic or numerical approximations are needed to provide

valid p-values. Still, except for some special cases, no good approximations are

available for permutation tests with truncated data. The goal of this paper is to

develop efficient Monte Carlo methods to approximate the p-values of permuta-

tion tests.

According to Stigler (1992) and Diaconis, Graham and Holmes (2001), Karl

Pearson in 1913 already considered the problem of testing independence with

truncated data. More specifically, he was interested in whether, among those

families with one or more mentally disabled children, the birth order Y of the

first such child is related to the family size X. Apparently, the birth order

of the first such child is truncated up by the family size, i.e., 1 ≤ Y ≤ X

by design. Thus, the usual correlation coefficient measure will only reveal a
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spurious relationship between X and Y . To obtain the null distribution of the

chi-square statistic under the truncation constraint, Karl Pearson suggested an

“urn-drawing” randomization law under the constraint Y ≤ X, which is just

the uniform distribution on all permutations of the Y that satisfy the constraint

(Diaconis et al. (2001)).

A more challenging case was studied in Efron and Petrosian (1999), in which

they were interested in whether the redshift X and the logarithm of luminosity

Y for quasars are independent. The answer to this question can shed light on

the suggested theory that earlier quasars were brighter. Due to experimental

constraints, we can observe Y if and only if Y ∈ [l(X), u(X)]. Figure 1 shows

the quasar data of Efron and Petrosian (1999), in which n = 210. The “ap-

parent” relationship between X and Y may be due to the truncation effect.

Truncated data also arise in many other situations, such as survival analysis

(McLaren, Wagstaff, Brittegram and Jacobs (1991) and Bilker and Wang (1996)).

Astronomers have developed permutation tests based on Kendall’s tau for dealing

with these problems (Lynden-Bell (1971)).
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Figure 1. Doubly truncated data from an astronomical study of Efron and

Petrosian (1999). Redshifts and log-luminosities for 210 quasars are denoted
by points. Upper and lower truncations for log-luminosities are indicated by
“-”.

A general setting of the problem is as follows. Let (X,Y ) be a pair of

random variables, and observe n independent realizations, (x1, y1), . . . , (xn, yn),

under the constraint that we can observe (X,Y ) if and only if Y ∈ S(X),

where S(X) is a set dependent on X. Of interest is whether X and Y are
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independent. Intuitively, if X and Y are indeed independent, then the inde-

pendent realizations (x1, y1), . . . , (xn, yn) are as likely as any permuted version:

(x1, yσ(1)), . . . , (xn, yσ(n)), provided that

yσ(i) ∈ S(xi), for all i = 1, . . . , n. (1)

Here we let σ = (σ(1), . . . , σ(n)) denote a permutation of (1, . . . , n).

Permutation tests are natural choices for testing independence nonparametri-

cally because of their optimality properties for data without truncation (Romano

(1989)). Efron and Tibshirani (1993) emphasize that “when they (permutation

methods) apply, . . . . . ., they give gratifying exact answers without parametric

assumptions. . . . . . . When there is something to permute, . . . . . ., it is a good idea

to do so, even if other methods like the bootstrap are brought to bear.” When

truncation occurs, a main difficulty is the lack of reliable asymptotic distribu-

tions of test statistics under the permutation distribution, except for the case

with one-sided truncation (Diaconis et al. (2001)). For the quasar data, Efron

and Petrosian ((1999), p.218) employed a simple Markov chain Monte Carlo

(MCMC) strategy to estimate the p-value. However, more complicated MCMC

moves are needed to handle data with more complex truncation constraints be-

cause the Markov transitions proposed in Efron and Petrosian (1999) may not

be irreducible (Diaconis et al. (2001)). The mixing rate of the resulting Markov

chain can be too slow to give a satisfactory estimation accuracy.

As noted in Diaconis et al. (2001), one can record the constraints (1) by a

restriction matrix A, in which a “1” at its (i, j)-th entry indicates that yj ∈ S(xi),

and a “0” otherwise. Then the total number of allowable permutations (i.e., all

σ’s that satisfy (1)) is equal to the permanent of the zero-one matrix A. In

general, the permanent of a matrix A = (aij)n×n is defined as

perm(A) =
∑

σ∈P

n
∏

i=1

aiσ(i), (2)

where P is the set of all permutations of {1, . . . , n}.

Approximating permanents is one of the most challenging and well-studied

problems in theoretical computer science and applied mathematics. It is known

that the exact calculation of the permanent is a #P-complete problem (Valiant

(1979)). #P-complete problems are a class of intractable counting problems; if

one of them is solved in polynomial time, then all other problems in the class

can be solved in polynomial time. So far there is no polynomial time algorithm

available for solving #P-complete problems. Much effort has been devoted to

approximating the permanent by randomized algorithms (Jerrum and Sinclair

(1989); Karmarkar, Karp, Lipton, Lovász and Luby (1993), Rasmussen (1994),
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Jerrum and Sinclair (1996) and Barvinok (1999)), some of which are based

on MCMC. Several algorithms based on the importance sampling principle have

also been developed (Kuznetsov (1996), Beichl and Sullivan (1999) and Smith

and Dawkins (2001)). However these algorithms are not efficient for matrices as

large as the 210 × 210 constraint matrix of the quasar data.

In this paper, we propose an efficient sequential importance sampling (SIS)

approach to implement permutation tests for truncated data. Here we use the

term “truncation” to refer to the general restriction set S(X) instead of only

intervals. As a byproduct, our algorithm can also give accurate estimates of

permanents of zero-one matrices. We show in both data and simulations that our

algorithm significantly outperforms the existing ones in both computing speed

and estimation accuracy. In Section 2 we set up the formal problem. In Section

3 we describe the connection of the permutation test problem with the counting

of zero-one tables with structural zeros, which gives rise to the two simple SIS

strategies to be discussed in Section 4 for generating allowable permutations. We

demonstrate the power of the new approaches by several examples in Section 5.

2. Problem Setting

Suppose we have n independent realizations of a pair of random variables,

(x1, y1), . . . , (xn, yn). For each x, we can observe the pair (x, y) if and only if

y ∈ S(x). Following Diaconis et al. (2001), we use the restriction matrix A =

(aij)n×n to represent the constraints, where aij equals 1 if yj ∈ S(xi), and 0

otherwise. For example, A4 is the restriction matrix for the artificial data in

Table 1.

A4 =









1 1 0 0

0 1 1 1

1 0 1 1

1 0 1 1









Table 1. An artificial example of truncated data.

xi yi S(xi)

1.7 3.2 [2.5, 4.1]
2.2 2.7 [2.0, 3.0]∪[4.5, 6.0]

3.6 5.5 [2.9, 5.7]

4.9 4.6 [3.1, 6.0]

Let x = (x1, . . . , xn), y = (y1, . . . , yn), and let Σxy be the set of permutations

satisfying the truncation constraints, i.e.,

Σxy = {σ=(σ(1), . . . , σ(n)) : σ is a permutation of (1, . . . , n) and yσ(i) ∈ S(xi),

i = 1, . . . , n}.
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We call (a1,σ(1), . . . , an,σ(n)) a permutation sequence of A if σ = (σ(1), . . . , σ(n))
is an element of Σxy. Clearly, the total number of elements in Σxy is equal to
perm(A).

The p-value for the permutation test can be written as

µ = Epf(x,yσ) =
∑

σ∈Σxy

f(x,yσ)p(σ), (3)

where p(σ) is the uniform distribution on Σxy, and f(x,yσ) is a function of the
test statistic. One popular way of testing independence is to use Kendall’s tau
statistic

τ(x,yσ) =
∑

(i,j)∈C(x,yσ)

sign[(yσ(i) − yσ(j))(xi − xj)]

|C(x,yσ)|
, (4)

where
C(x,yσ) = {(i, j) : yσ(i) ∈ S(xj), yσ(j) ∈ S(xi)}. (5)

In this case,

f(x,yσ) = 1{τ(x,yσ)≥τ(x,y)}. (6)

Tsai (1990) and Efron and Petrosian (1999) used Kendall’s tau statistic for one-
sided truncation and doubly truncated data.

Since sampling from p(σ), i.e., drawing a permutation uniformly from Σxy,
is difficult, we can use the importance sampling approach: sample σ ∈ Σxy from
a different distribution q(σ) with q(σ) > 0 for all σ ∈ Σxy, and estimate µ by

µ̂ =

∑N
i=1 f(x,yσi

)p(σi)
q(σi)

∑N
i=1

p(σi)
q(σi)

=

∑N
i=1 f(x,yσi

)
1{σi∈Σxy}

q(σi)
∑N

i=1

1{σi∈Σxy}

q(σi)

, (7)

where σ1, . . . , σN are i.i.d. samples from q(σ). We can also estimate the total
number of elements in Σxy, i.e., the permanent of A, by

p̂erm(A) =
1

N

N
∑

i=1

1{σi∈Σxy}

q(σi)
, (8)

because of the simple identity |Σxy| =
∑

σ∈Σxy
[q(σ)]−1q(σ).

A key to successful importance sampling is the design of the sampling dis-
tribution q(σ), which should be both easy to sample from, and close enough to
the target distribution p(σ). Since our goal here is to provide accurate estimates
for the expected values of a variety of functions under p(σ), we use the square of
the coefficient of variation (cv)

cv2 =
varq{

p(σ)
q(σ)}

E2
q{

p(σ)
q(σ)}

(9)



862 YUGUO CHEN AND JUN S. LIU

to evaluate the efficiency of our importance sampling algorithms (Kong, Liu and

Wong, (1994)). A low cv2 indicates that q(σ) is close to p(σ).

3. Connection Between Permutations and Zero-One Tables

In the search of an efficient importance sampling distribution, we notice the

following connection between permutation sequences (see definition in Section

2) and zero-one tables with structural zeros. Let Ω be a subset of {(i, j) : i =

1, . . . , n; j = 1, . . . , n}, and let Σn(Ω) be the set of n × n zero-one tables with

all row and column sums equal to 1 and the set of structural zeros Ω. That

is, a zero-one table Z = (zij)n×n ∈ Σn(Ω) if zij = 0 for all (i, j) ∈ Ω, and
∑n

l=1 zlj =
∑n

l=1 zil = 1, for i = 1, . . . , n; j = 1, . . . , n.

Theorem 1. Let A = (aij)n×n be a restriction matrix and

Ω = {(i, j) : aij = 0, 1 ≤ i ≤ n; 1 ≤ j ≤ n}. (10)

Then there is a one-to-one correspondence between the set of permutation se-

quences of A and the set of zero-one tables in Σn(Ω).

Proof. For a permutation sequence (a1,σ(1), . . . , an,σ(n)), we can construct a

zero-one table T = (tij)n×n such that tk,σ(k) = 1, k = 1, . . . , n, and all other

entries equal to 0. Since (σ(1), . . . , σ(n)) is a permutation of (1, . . . , n), all row

and column sums of the zero-one table T are 1. Since
∏n

k=1 ak,σ(k) = 1, we have

(k, σ(k)) /∈ Ω, k = 1, . . . , n. Therefore T ∈ Σn(Ω). On the other hand, for any

T ∈ Σn(Ω), the non-zero entries of T can be written as (t1,σ(1), . . . , tn,σ(n)), where

(σ(1), . . . , σ(n)) is a permutation of (1, . . . , n). Since (k, σ(k)) /∈ Ω, k = 1, . . . , n,

it follows that
∏n

k=1 ak,σ(k) = 1. Therefore (a1,σ(1), . . . , an,σ(n)) is a permutation

sequence of A. We thus established a one-to-one mapping between permutation

sequences of A and zero-one tables in Σn(Ω).

The connection established in Theorem 1 transforms the problem from the

uniform sampling of permutation sequences of A to the uniform sampling of

zero-one tables in Σn(Ω). If we sample a table T from Σn(Ω) and denote those

non-zero entries in T as (t1,σ(1), . . . , tn,σ(n)), then (a1,σ(1), . . . , an,σ(n)) is a per-

mutation sequence of A, and thus (σ(1), . . . , σ(n)) is a permutation satisfying

the truncation constraint. This observation is the key to the development of new

SIS algorithms for sampling allowable permutations (see Section 4), which makes

use of the general SIS strategies for handling zero-one tables with fixed marginal

sums and a given set of structural zeros (Chen (2007)).

An immediate application of Theorem 1 is an asymptotic formula for the

permanent of a zero-one matrix. Bender (1974) provides an asymptotic approx-

imation to the number of tables in Σrc(Ω
∗): the set of zero-one tables with row
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sums r = (r1, . . . , rm), column sums c = (c1, . . . , cn), and a set of structural zeros

Ω∗:

|Σrc(Ω
∗)| ≈ ∆rc(Ω

∗) ≡
M !

∏m
i=1 ri!

∏n
j=1 cj !

× exp

{

−

(

∑m
i=1 r2

i −M
)(

∑n
j=1 c2

j−M
)

2M2
−

∑

(i,j)∈Ω∗

ricj

M

}

, (11)

where M =
∑m

i=1 ri =
∑n

j=1 cj. This approximation works well for large sparse

zero-one tables with bounded row and column sums and bounded total number

of structural zeros in each row and column.

Corollary 1. An asymptotic formula for the permanent of an n × n restriction

matrix A is:

perm(A) = |Σ11(Ω)| ≈ ∆11(Ω) ≡ n! exp
{

−
1

n

n
∑

i=1

(n−Ci)
}

, (12)

where C1, . . . , Cn are the column sums of A, and Ω is defined in (10).

Proof. Theorem 1 shows that perm(A) equals to the total number of n × n

zero-one tables with row and column sums equal to 1 and a set of structural

zeros Ω, defined in (10). Replacing r and c in (11) by 1 = (1, . . . , 1) and noticing

that the total number of structural zeros in Ω is
∑n

i=1(n − Ci), we immediately

have the approximation (12).

4. Importance Sampling for Permutations with Constraints

4.1. Sampling strategies

Let R1, . . . , Rn and C1, . . . , Cn be the row and column sums of the con-

straint matrix A. To sample a table from Σn(Ω), we need to choose n cells

(t1,σ(1), . . . , tn,σ(n)) to put 1’s in, where (σ(1), . . . , σ(n)) is a permutation of

(1, . . . , n). We can start by sampling σ(1) from all available positions in row

1, and, conditional on the realization of σ(1), we continue to sample σ(2), and

so on. More precisely, we have to choose σ(1) = j from one of the R1 columns

such that (1, j) /∈ Ω, i.e., a1,j = 1. The true marginal distribution of σ(1) is

p(σ(1) = j) ∝ |Σn−1(Ω−j)|, j ∈ {k : (1, k) /∈ Ω}, (13)

where Ω−j is the set of structural zeros in the restriction matrix A with the first

row and the j-th column removed, and Σn−1(Ω−j) is the set of (n− 1)× (n− 1)

zero-one tables with all marginal sums equal to 1 and a set of structural zeros

Ω−j.
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The approximation (12) works well for zero-one tables with all marginal sums
equal to 1, because such tables are sparse with bounded row and column sums.
Applying (12) to (13), we have

p(σ(1) = j) ∝ |Σn−1(Ω−j)|

≈ (n − 1)! exp

{

−
1

n − 1

[

n
∑

i=1

(n − Ci) − (n − Cj)
]

}

∝ exp
{n − Cj

n − 1

}

, (14)

for j ∈ {k : (1, k) /∈ Ω}. Thus this approximation suggests that we should
sample σ(1) according to the multinomial distribution on {j : (1, j) /∈ Ω} with
probabilities proportional to exp{(n − Cj)/(n − 1)}. After we sample a number
j for σ(1), we remove the first row and the j-th column of the table, and then
sample σ(2) from the remaining (n−1)×(n−1) subtable in the same way. Thus,
our sampling distribution can be written as

q(σ = (σ(1), . . . , σ(n))) = q(σ(1))q(σ(2)|σ(1)) · · · q(σ(n)|σ(1), . . . , σ(n − 1)),

which gives rise to the name sequential importance sampling. We refer to the
sequential sampling strategy based on (14) as SIS-1. The following theorem,
which is a special case of Theorem 1 in Chen (2007), provides the rationale for
another SIS strategy.

Theorem 2. Consider the uniform distribution over all n × n zero-one tables

with given column sums 1, . . . , 1, first row sum 1, and the set of structural zeros

Ω. Let Cj be the number of non-structural zeros in the j-th column. Assume

Cj > 1 for j ∈ {k : (1, k) /∈ Ω}, then

p(σ(1) = j) ∝
1

Cj − 1
, j ∈ {k : (1, k) /∈ Ω}, (15)

where σ(1) is the column index of the nonzero element in the first row.

Proof. We note that, because there are no constraints on the row sums, p(σ(1) =
j) is proportional to the number of ways to pick an arbitrary position not in Ω
for each column (to put a “1” in) after the first row and the j-th column are
removed. Therefore

p(σ(1) = j) ∝

∏n
i=1(Ci − 1{(1,i)/∈Ω})

Cj − 1
∝

1

Cj − 1
,

and the theorem is proved.

The simple result of Theorem 2 is derived by ignoring the constraints on the
row sums for row 2 to row n. It suggests that we can sample σ(1) according to
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the multinomial distribution on {j : (1, j) /∈ Ω} with probabilities proportional

to 1/(Cj − 1). If Cj = 1 for some {j : (1, j) /∈ Ω}, then σ(1) should be set to j (if

Ck also equals to 1 for some k 6= j, then there is no valid permutation sequences

of the zero-one table, and we refer to it as an invalid table). After we sample a

number j for σ(1), we remove the first row and the j-th column from the table,

and then sample σ(2) from the remaining (n− 1)× (n− 1) subtable in the same

way. We refer to this strategy as SIS-2.

Although it is not clear if the approximation based on (14) or (15) is accurate

for a given table, the importance weights in the SIS procedure can correct for the

biases and therefore can still perform well even when the approximation accuracy

is inadequate. We observed that the importance sampling based on approxima-

tion (14) (SIS-1) tends to perform better than that based on approximation (15)

(SIS-2) in most examples, especially when the marginal sums of the constraint

matrix vary a lot. SIS-2 can sometimes give slightly better results than SIS-1

when the marginal sums of the constraint matrix do not vary much.

4.2. Further improvements and complications

If the rows of the constraint matrix A are re-ordered before implementing the

sequential sampling, we can easily transform the sampled permutation back to

the original order. We found that arranging the rows in an ascending order of the

row sum Ri usually can improve the efficiency greatly. In fact, the best strategy

we found is to re-arrange the rows at every step of sequential sampling so that

the row to be sampled always has the smallest updated row sum. However, after

arranging the rows in the ascending order of the row sum Ri at the beginning

of the sampling, there are often very few re-arrangements needed in later steps.

Such re-ordering usually leads to more valid tables and smaller variation of the

importance weights.

One explanation of the efficiency improvement of the above ordering strategy

is to look at the monotone case, i.e., the case that Si1 ⊆ · · · ⊆ Sin , where Sil =

{j : ailj = 1}, for l = 1, . . . , n, and i1, . . . , in is a permutation of 1, . . . , n. This

implies, of course, that Ri1 ≤ · · · ≤ Rin . Both SIS-1 and SIS-2 produce perfect

samples from the uniform distribution of all allowable permutations provided

that we first rearrange the rows in the ascending order of the row sum. This

fact is easy to see since the conditional sampling distribution implied by both

formulas (14) and (15) is uniform. Thus, all the importance weights are equal.

In the above SIS algorithms, we proposed to sample row by row to generate

a table from Σn(Ω). It is also possible to sample column by column, and the

columns can be sampled in an arbitrary order.

Neither SIS-1 nor SIS-2 can guarantee to always sample a valid table from

Σn(Ω). Sometimes the sequential sampling cannot proceed after a few rows have
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been generated because no valid zero-one table can be produced. When this

happens, we can simply throw away this partially generated table and start sam-

pling a new one. This is equivalent to assigning a zero weight to this bad sample.

If we want to always generate good tables, we need to check the existence of

subtables with updated constraints, which is equivalent to checking the exis-

tence of a perfect matching for a bipartite graph (Diaconis et al. (2001)). Cook

(1998, pp.134-143) gives several algorithms for finding perfect matchings in such

graphs. However, these algorithms are too slow to implement. Sampling tables

without checking the existence of subtables is usually more efficient, as long as

the percentage of invalid tables is not too large.

4.3. Some existing procedures

Several importance sampling strategies have been proposed in the literature

(Kuznetsov (1996), Beichl and Sullivan (1999) and Smith and Dawkins (2001)).

The goal of these algorithms is to give an accurate estimate within a fixed running

time. This is different from the algorithms developed by Jerrum and Sinclair

(1996), Karmarkar et al. (1993), and Barvinok (1999), which are randomized

polynomial time algorithms. In general it is hard to compare these two types of

algorithms, and there is no proof that the algorithms based on importance sam-

pling are randomized polynomial time algorithms. However, Smith and Dawkins

(2001) compared their importance sampling method with Barvinok’s (1999) and

Karmarkar, et al.’s (1993) algorithms on many different types of matrices, and

showed that the importance sampling method gives more precise estimates for a

fixed amount of computing time. Another difference is that algorithms based on

importance sampling can estimate both the permanent and the p-value for per-

mutation tests simultaneously by using (8) and (7), whereas many randomized

algorithms are designed to estimate only the permanent.

Kuznetsov (1996)’s algorithm is similar to SIS-2, but it chooses σ(1) uni-

formly from all possible values {j : (1, j) /∈ Ω}, instead of using (15). Beichl

and Sullivan (1999) use Sinkhorn balancing to derive the proposal distribution.

Smith and Dawkins (2001) suggest several proposal distributions, and the most

sophisticated and efficient one is equivalent to sampling p(σ(1) = j) ∝ 1/Cj .

This is only slightly different from (15), and its performance is similar to SIS-2

(based on (15)). Therefore in the next section, we only compare SIS-1, SIS-2,

Kuznetsov’s algorithm, and Beichl and Sullivan’s algorithm.

5. Numerical Examples

In this section, we apply the SIS strategies developed in the previous section

to approximate permanents and p-values of the Kendall’s tau statistic for permu-

tation tests with restricted positions. All algorithms were coded in C language
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except Beichl and Sullivan’s algorithm, which was implemented in their Matlab
program. Their code used a handy Matlab internal function and it is not obvious
how to rewrite it in C. All algorithms were run on a Pentium 4 computer with
2.4 GHz processor.

5.1. Approximating permanents

Permanents have connections with many interesting problems, such as the
perfect matching in a bipartite graph (Diaconis et al. (2001)), the dimer covering
problem in physics (Beichl and Sullivan (1999)), and the performance bound
of certain digital mobile radio systems in communications theory (Smith and
Dawkins (2001)). Bapat (1990) and Diaconis et al. (2001) provide more examples
in statistics and probability where permanents play an important role. Here we
show that our methods can estimate the permanent of a zero-one matrix very
accurately.

The first example is an n×n matrix with all diagonal elements equal to 0 and
all non-diagonal elements equal to 1. A restriction matrix of this type is called a
derangement because it represents permutations with σ(i) 6= i for all i = 1, . . . , n.
The true value of the permanent for an n × n derangement matrix is known to
be n![1 − (1/2!) + (1/3!) − · · · + (−1)n−1(1/n!)]. For n = 100, the true value
is 3.43328 × 10157 (only the first six digits are given here). Table 2 summarizes
the estimates based on 1,000 samples using different methods, where the number
after ± is the standard error of the estimate. All 1,000 samples are valid tables
for the four methods. SIS-1 gave the smallest cv2, indicating that the proposal
distribution is closest to the target distribution among the four methods. From
the standard error and running time, we can see that SIS-1 is about four times
faster (to produce the same standard error) than SIS-2, about 500,000 times
faster than Kuznetsov’s method. SIS-1 appears to be 300,000 times faster than
Beichl and Sullivan’s method, but this is not a fair comparison because they were
written in different languages.

The second example is an n × n tri-diagonal zero-one matrix, i.e., A =
(aij)n×n with aij = 1 if |i − j| ≤ 1, and 0 otherwise. The theoretical value of
perm(A) is the (n + 1)-th Fibonacci number Fn+1 (Diaconis et al. (2001)). For

Table 2. Comparison of different methods on the 100 × 100 derangement
matrix.

Estimate cv2 Time

SIS-1 (3.43329± 0.00002)× 10157 6.5 × 10−8 2 sec

SIS-2 (3.43332± 0.00004)× 10157 1.7 × 10−7 2 sec

Kuznetsov (3.42 ± 0.02)× 10157 3.0 × 10−2 1 sec

Beichl & Sullivan (3.43 ± 0.0004)× 10157 1.2 × 10−5 25 min
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n = 100, this value is 5.73148×1020 (only the first six digits are given here). Table

3 summarizes the estimates based on 1,000 samples using different methods. All

1,000 samples are valid tables for all methods. In this case, SIS-2 is a little better

than SIS-1. Both SIS-1 and SIS-2 are more efficient than Kuznetsov’s method

and Beichl and Sullivan’s algorithm (coded in Matlab).

Table 3. Comparison of different methods on the 100 × 100 matrix of Fi-

bonacci permutations.

Estimate cv2 Time

SIS-1 (5.9 ± 0.8)× 1020 8.0 0.5 sec

SIS-2 (5.6 ± 0.2)× 1020 1.1 0.5 sec

Kuznetsov (5.1 ± 1.2)× 1020 27.8 0.5 sec

Beichl & Sullivan (5.6 ± 0.08)× 1020 0.21 7.4 min

For Efron and Petrosian’s (1999) quasar data, the restriction matrix is a

210× 210 matrix. The permanent of this matrix is unknown. Another feature of

the restriction matrix is that the row and column sums vary a lot. Kuznetsov’s

method was not able to generate any allowable permutations in 2,000 samples.

Therefore we only compared SIS-1, SIS-2, and Beichl and Sullivan’s method.

Table 4 summarizes the estimates based on 1,000 samples, which took about the

same amount of time for SIS-1 and SIS-2. However, the cv2 of the tables from

SIS-2 ranged from 100 to 1,000, compared to a cv2 for SIS-1 of about 3. The

standard errors indicate that SIS-1 is about 300 times more efficient than SIS-2

for this example. SIS-1 in C appears to be 250,000 times faster than Beichl and

Sullivan’s algorithm in Matlab. In this example, we arranged the columns of the

constraint matrix in an ascending order of the column sums and sampled the

permutations column by column.

To further challenge our method, we randomly generated a 1, 000 × 1, 000

table for which the probability for each cell to be 1 is 0.1. SIS-1 gave a cv2 of

23.8; and SIS-2 gave a cv2 of 1.4. This shows that both of our SIS algorithms

are still very efficient in this case.

Table 4. Comparison of SIS-1 and SIS-2 on the restriction matrix of the
quasar data.

Estimate cv2 Time

SIS-1 (1.53 ± .08)× 10280 3 5 sec

SIS-2 (3.6 ± 1.4) × 10280 514 5 sec

Beichl & Sullivan (3.0 ± .9) × 10280 85.7 134 min
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5.2. Permutation test on Efron and Petrosian’s quasar data

Efron and Petrosian (1999) implemented a permutation test with Kendall’s

tau statistic (defined in (4)) for the independence between log-luminosity and

redshift. To approximate the p-value of the statistic, they designed the follow-

ing simple MCMC algorithm to generate allowable permutations. Starting with

the identity permutation (σ(1), . . . , σ(n)) = (1, . . . n), at each iteration step one

randomly picks a pair of elements, σ(i) and σ(j), and proposes to transpose

them. If the new permutation resulting from the transposition is an allowable

one, i.e., yσ(j) ∈ [l(xi), u(xi)] and yσ(i) ∈ [l(xj), u(xj)], then the new permuta-

tion is accepted; otherwise, one stays put. Diaconis et al. (2001) showed that

the proposed moves do result in an irreducible Markov chain with the uniform

distribution as its invariant distribution. However, for truncations more complex

than the interval ones, they also showed that more complicated Markov moves

need to be designed in order to guarantee irreducibility.

The SIS strategy we developed is a more efficient way to estimate the p-value

using (7). SIS-1 took about 10 seconds to generate 2,000 tables (permutations),

based on which we estimated the p-value to be 0.016 ± 0.002. Among the 2,000

tables, only two tables were invalid. The MCMC algorithm took about 12 minutes

to generate 1,100,000 samples (with 100,000 samples as burn-in period), and

estimated a p-value of 0.015 ± 0.002. Thus, for this example SIS-1 appeared to

be about 70 times more efficient than the MCMC algorithm.

5.3. Permutation test on Vidmar’s data on juror verdicts

Vidmar (1972) did an experiment to study the effects of limiting the num-

ber of available alternatives on the verdicts reached by jurors. A murder trial

was presented to students in an introductory social psychology course, they were

asked to act as individual jurors. Then the students were divided into seven

groups with 24 students each, and they were asked to give their verdicts under

the set of decision alternatives available to their group. For example, students

in the first group could choose between first-degree murder and not guilty; stu-

dents in the second group could choose between second-degree murder and not

guilty. Table 5 shows the number of times each alternative was chosen under

different conditions. Based on the data he collected, Vidmar concluded “that

under conditions of restricted decision alternatives, the more severe the degree

of guilt associated with the least severe guilt alternative, the greater were the

chances of obtaining a not guilty verdict.” Later this conclusion was challenged

by Larntz (1975).

From a statistical point of view, we may use the test of (quasi) independence

to test whether the number and nature of the available alternatives has an effect

on decision making. This was suggested in an exercise of Bishop, Fienberg and
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Holland (1975, pp.205-206). Instead of using the standard chi-square goodness

of fit test which relies on asymptotics, here we treat the data in Table 5 as 168

realizations of the pair (X,Y ) and implement the permutation test.

Table 5. Decision alternatives and frequency of verdicts (Vidmar (1972);

Columns are reordered). Here “−” means that decision alternative was not

available to subjects in that condition.

Condition (X)

Alternative (Y ) 1 2 3 4 5 6 7

First degree (Y=4) 11 − 2 − − 7 2

Second degree (Y=3) − 20 22 − 11 − 15
Manslaughter (Y=2) − − − 22 13 16 5

Not guilty (Y=1) 13 4 0 2 0 1 2

We treat condition X and alternative Y as ordinal variables and use Kendall’s

tau statistic. The seven levels 1, 2, . . . , 7 for X are ordered according to the

chances of obtaining a not guilty verdict based on Vidmar’s conclusion. The four

levels 1, 2, 3 and 4 for Y are ordered according to the severity of the alternative.

For each condition X, only certain alternatives of Y are allowed due to the design

of the experiment. For example, if X = 2, then Y can only be 1 and 3. Note

that the permutation test for this example is a type of exact test for a two-way

contingency table, because each allowed permutation leads to a two-way table

with fixed marginal sums and given structural constraints (i.e., the entries with

“−” are structural zeros).

The truncation pattern in Table 5 is more complicated than one-sided or

two-sided truncations. Therefore, Efron and Petrosian’s (1999) MCMC method

cannot be applied directly here. Based on 2,000 sampled tables using SIS-1,

which took about 6 seconds, we estimated that the p-value is 0.097± 0.007. The

cv2 is about 0.24. All 2,000 samples were valid tables.
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