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Abstract: Estimation methods are suggested to estimate the population size in pro-

portional trapping removal and recapture models when the capture times are ob-

served. With this additional information, the maximum likelihood estimate and the

optimal martingale estimation of population size are derived. The ill-conditioning

problem in Good’s estimator is avoided. The asymptotic properties of the proposed

estimators are obtained. The effect of allowing for trap availability and the role of

capture times are examined through a simulation study. The asymptotic efficiency

for the estimates are compared, and the methods are applied to a data set.
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1. Introduction

Capture-recapture and removal methods are often used in ecology to estimate
population size (Otis, Burnham, White and Anderson (1978)). Usually, traps
are set up to capture animals (Moran (1951), Darroch (1958) and Good, Lewis,
Gaskins and Howell (1979)). One of the potential problems of using a limited
number of traps is that once an animal is trapped, the trap cannot catch other
animals until the trap is cleared. There is always a delay in clearing the traps.
Hence, the capture intensity not only depends on the animal abundance but
also on the availability of traps over the course of the experiment. Ignoring the
availability of traps leads to a biased estimate of population size (Good et al.
(1979) and Liu and Yip (2003)). However, in papers on the subject, this issue is
seldom considered and nearly all have made the implicit assumption of infinite
trap availability.

We consider a removal experiment in discrete time with K trapping periods.
For the ith trapping period, mi traps are available in the beginning and ni ani-
mals are trapped and removed (i = 1, . . . ,K). The capture density that a specific
animal is trapped at a given time is assumed to be proportional to the number
of unoccupied traps. This assumption is called proportional trapping of animals

and an exact formula for the likelihood is given in Good et al. (1979). However,
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the formula is illed-conditioned and requires extremely high precision for its nu-
merical evaluation. No algorithm is available for searching for the maximum of
the likelihood function.

In a continuous-time proportional trapping model with known capture times,
Liu and Yip (2003) proposed a martingale estimate of population size which
avoids ill-conditioning difficulties. The availability of the capture times in a
recapture and removal experiment is quite feasible: for example, a timer can be
installed in each trap, so that the capture time is recorded automatically when
an animal is trapped. By the end of each trapping period, when the trapped an-
imals are cleared from the traps, the capture times are recorded and the timers
are reset for the next trapping period. Here we consider a proportional trapping
model with the availability of capture times as in Liu and Yip (2003).

In Section 2, the maximum likelihood estimate for the population size is
obtained. This is also the optimal martingale estimate. The asymptotic proper-
ties of the estimator are given, and simulation studies are conducted to examine
its performance. It is shown that the ill-conditioning inherent in the method
of Good et al. (1979) is avoided. We also reanalyse the data set on Rattus in
Good et al. (1979). In Section 3, we extend the experimental setting from re-
moval to recapture, i.e., at the end of each trapping period the trapped animals
are marked, released and thus subject to recapture in the next trapping pe-
riod. Under the two common cases, with or without behavioral response (due to
trapping), we obtain maximum likelihood estimates, as well as their asymptotic
properties. Comparison is made between the two designs, removal and recap-
ture, by simulation and asymptotic efficiency comparison. We also compare the
proposed estimators with the discrete type estimators in the recapture settings.
In Section 4, we allow for time-dependent baseline capture hazards that may
be different for different trapping periods. Optimal martingale estimators for
the population size are obtained. Simulation studies, asymptotic properties and
some comparisons of the proposed estimates are given. A conclusion is given in
Section 5.

2. Removal experiment in proportional trapping model

We deal with the estimation problem in the removal experiment as in Good
et al. (1979), i.e. trapped animals are removed from the area, at least over the
experimental period. Let ν denote the unknown population size, the parameter
of interest. The capture times in all the trapping periods are assumed known.

2.1. Notations and estimation procedure

Let τi denote the duration of the ith trapping period and Ni(t) denote the
number of trapped animals in [0, t] in the ith trapping period (i = 1, 2 . . . ,K).
So Ti(t) = mi − Ni(t−) is the number of available traps and ν − Ri(t) is the
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number of untrapped animals just before time t, where Ri(t) = Ri(0) + Ni(t−)
and Ri(0) =

∑i−1
j=1 Nj(τj) (or

∑i−1
j=1 nj) denotes the total number of trapped

and removed animals prior to the start of the ith trapping period. We define
R1(0) = 0. The likelihood function for all trapping occasions is then given by

L ∝

K
∏

i=1

{

∏

t∈[0,τi]

[αTi(t)(ν − Ri(t))]
dNi(t) exp

[

−

∫ τi

0
αTi(t)(ν − Ri(t))dt

]}

,

where α is a constant baseline capture hazard that can be interpreted as hazard
rate being captured if there is only one trap and only one animal. For K = 1,
this reduces to the model of Liu and Yip (2003). Taking derivatives of the log-
likelihood function with respect to ν and α, and equating them to zero, we obtain

∂ log L

∂ν
=

K
∑

i=1

(

∫ τi

0

dNi(t)

ν − Ri(t)
−

∫ τi

0
αTi(t)dt

)

= 0, (1)

∂ log L

∂α
=

K
∑

i=1

Ni(τi)

α
−

K
∑

i=1

∫ τi

0
Ti(t)(ν − Ri(t))dt = 0. (2)

From (2), we have

α̂ =

∑K
i=1 Ni(τi)

∑K
i=1

∫ τi

0 Ti(t)(ν̂ − Ri(t))dt
, (3)

and by substituting (3) into (1), we obtain an equation for the MLE of ν as

Z
∑

j=1

1

ν − j + 1
=

Z

ν − C
, (4)

where Z =
∑K

i=1 Ni(τi), and C = (
∑K

i=1

∫ τi

0 Ti(t)Ri(t)dt)/(
∑K

i=1

∫ τi

0 Ti(t)dt).
From (4), the MLE of ν can be readily obtained numerically. The inverse of
the observed information matrix can be used to estimate the variance-covariance
matrix for the unknown parameters. In addition, the necessary and sufficient
condition for the existence and uniqueness of the solution of (4) is:

1

2
(Z − 1) < C ≤

(

1 −
1

hZ

)

Z, (5)

where hZ =
∑Z

i=1 1/i. This necessary and sufficient condition is a direct result
of Theorem 1 in Liu and Yip (2003).

Using martingale estimation equations with optimal weights (see Godambe
(1985)), the estimating equations (1) and (2) can also be obtained, a detailed
derivation can be found in Yip, Xi and Liu (2005).
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As ν → ∞, if mi remains unchanged, then all traps will soon be occupied.
Therefore, when considering the asymptotic properties of the proposed estimator,
a reasonable assumption is that mi/ν → ri, i = 1, 2, . . . ,K, as ν → ∞. The
following theorem describes the asymptotic properties of the proposed estimator.

Theorem 1. Suppose ν → ∞ and mi/ν → ri. Let ν̂ and α̂ denote the maximum

likelihood estimates of ν and α, respectively. If G =
∑K

i=1 ri < 1, then ζ̂ =

(ν−1/2(ν̂ − ν), ν1/2(α̂ − α))′
d
→ N2(0,Ω−1

1 ), where

Ω1 =







G

1 − G

1

α
log

1

1 − G
1

α
log

1

1 − G

G

α2






.

If G ≥ 1, then ν̂/ν
p
→ 1 with a speed faster than ν−1/2.

Proof. See Appendix 1 in Yip et al. (2005).

2.2. Simulation study

Simulation studies were conducted to examine the performance of the pro-
posed estimator. Several combinations of parameter values were used in the
simulations. Without loss of generality, all τi were fixed at 1 and all mi were
equal to m. In this paper, all simulation results were based on 2,000 repetitions.
Let PT (%) denote the average total removal proportion by the end of experi-
ment, and pf (%) denote the proportion of failures among 2,000 repetitions. A
failure means that no solution is obtained from the estimating equations, i.e., (5)
is not satisfied. Let CP (%) denote the coverage proportion of the 95% confi-
dence intervals for ν which are calculated using the log transformation presented
in Chao (1987). When a failure occurs, we say that ν lies outside the 95% confi-
dence interval for CP ; while the average values are based only on the successful
repetitions. Some simulation results are listed in Table 1 where we denote the
proposed estimator as ν̂(rm).

As the number of traps or the number of trapping periods increase, the
performance of the proposed estimator is improved. The bias for ν̂ is small, and it
diminishes as PT increases. There were very few failures. Some failures appeared
when PT was less than about 60% and 50% for ν = 200 and 500, respectively.
Overall, the coefficient of variation (CV) (i.e se(ν̂)/ν̂) mainly depends on the
value of PT . In order for the CV to be less than 10% the capture proportion PT

need to be increased to about 78% and 70% for ν = 200 and 500, respectively.
Although ν̂/ν

p
→ 1 and se(ν̂) /ν → 0 as ν → ∞ (from Theorem 1), the simulation

studies show that, even for a fairly large ν, a high removal proportion is needed
to obtain a reliable estimate.
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Table 1. Simulation results for the proposed estimator (ν̂(rm)) for removal
experiments. with known capture times.

ν = 200, α = 0.0025

m K PT (%) ν̂(rm) CP (%) pf (%)

100 5 65.8 207.3 (53.6, 44.9) 95.0 0.0
100 6 72.9 202.4 (26.9, 26.5) 95.9 0.0

100 7 78.6 201.0 (20.1, 18.8) 94.1 0.0

150 5 80.9 200.1 (16.4, 15.9) 94.5 0.0

200 5 89.5 199.5 ( 8.3, 8.4) 95.5 0.0

ν = 500, α = 0.001

m K PT (%) ν̂(rm) CP (%) pf(%)

200 5 57.1 516.0 (114.1, 98.8) 95.2 0.0

200 6 64.2 504.2 ( 63.7, 62.1) 95.5 0.0

200 7 70.3 503.2 ( 46.1, 45.4) 95.6 0.0

300 5 72.8 501.7 ( 39.2, 39.2) 95.8 0.0
400 5 83.0 500.2 ( 21.8, 21.6) 95.1 0.0

The first number in the parentheses is the empirical standard deviation and the second is
the average of the estimated standard errors.

In the case of the same duration and same number of traps for all the trap-
ping periods, if the availability of traps is ignored, the capture probabilities for
the different trapping periods could be regarded as the same. Here, we apply
the MLE estimate without taking the effect of trap into account, i.e., Moran’s
estimator, ν̂M (Moran (1951)). It is to be expected that ν̂M would produce a pos-
itively biased result since the capture probability for each trapping period would
increase since there are the same number of traps but fewer available animals
for a later trapping period. Table 2 shows that in the case of a large number of
traps and a small α, the improvement of using the proportional trapping model
is marginal, the bias of using ν̂M is not serious (see the first row of Table 2). But
as the number of traps decreases and α increases, the effect of traps availabil-
ity becomes more important. The ν̂M which assumes that capture probability
remains unchanged produces a positively biased estimate.

Table 2. Simulation results for Moran’s estimator (ν̂M) and the proposed
estimate (ν̂(rm)) for the proportional trapping removal model.

ν = 500, K = 6, τ1 = τ2 = τ3 = τ4 = τ5 = τ6 = 1

m α PT ν̂(rm) RMSE ν̂M RMSE

500 0.0005 75.4 500.8 (35.3, 34.0) 35.3 518.5 (39.0, 40.1) 43.2

300 0.0009 76.2 501.7 (33.5, 32.8) 33.5 533.7 (39.4, 43.4) 51.8

200 0.0015 77.2 501.5 (32.1, 30.9) 32.1 556.4 (42.1, 48.9) 70.4
100 0.0040 76.7 502.5 (32.4, 32.0) 32.5 697.7 (66.3, 108.7) 208.5

RMSE: the sample root mean squared error.
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Using the capture times only, and without incorporating the information on

the availability of traps into the model, gives the counting process Ni(t) with the

intensity λ(ν − Ri(t)). Simulation results (not reported here) showed that the

resulting estimate is strongly negatively biased, due to the decreasing intensity

λ(t) = α(mi − Ni(t−)).

2.3. The Rattus example

Good et al. (1979) considered the trap effect but their resulting estimator

requires high precision for its numerical evaluation, and no algorithm is available

for searching for the maximum of the likelihood function. For this reason, no

numerical simulation was given in Good et al. (1979), and only an example was

considered. In an area of 22.5 acres in Freetown, Sierra Leone, Rattus were

captured by traps on 18 successive occasions over a period of 6 weeks, 210 traps

being set on each occasion. The trapped animals were not released after being

cleared from traps at the end of each trapping occasion. The numbers of captures

for each occasion are given in Table 3.

Table 3. Data on the number of Rattus trapped on eighteen occasions in
Good et al. (1979).

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ni 49 32 31 34 16 33 22 27 17 19 18 16 18 12 14 12 17 7

In applying Good’s estimator to this data set, the arithmetic needs 52 sig-
nificant digits; see Good et al. (1979). Since the double precision of FORTRAN
only provides 16 significant digits, a complex codes was needed. By assum-
ing all the durations of trapping occasions (or trapping periods) were equal to
1, they calculated the values of the log-likelihood for a wide range of possible
(ν, α) and found, for ν = 505 and α = 0.000422, the corresponding value of the
log-likelihood is the largest among those values considered. The corresponding
estimated standard errors for ν̂ and α̂ were 29 and 0.000052. Here, we make a
comparison with the proposed estimator. Since no capture times were available
in the original data set, we simulated capture times by setting the values of ν
and α. We set ν to be 485, 495, 505, 515, 525 respectively, and α×104 to be 3.0,
3.5, 4.0, 4.5, 5.0 respectively. For each combination of the ν and α, with K = 18,
m = 210 and τi = 1 (for all i), the capture times based on a time-dependent
Poisson process depending on the number of capture and traps available over the
course of the experiment were simulated. For each given (ν, α), 100 such data
sets were generated with the same number of trapped numbers for each occasion,
as in Table 3. The average of ν̂, α̂ and the corresponding estimated standard
errors were obtained (based on these 100 data sets) and are listed in Table 4.
We also list the simulated probability that, given (ν, α), the trapped numbers in
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Table 3 occur once. This simulated probability is the reciprocal of the average
repetition numbers to obtain such data once.

For different simulated capture times with the different values of (ν, α), Ta-
ble 4 shows that ν̂ varies from 500 to 510, the average values of ν̂, α̂, se(ν̂) and
se(α̂) are almost equal to the estimated values obtained by Good et al. (1979),
and all the standard deviations are quite small. From the likelihood, the capture
times do provide information for estimating ν. Through computing the C in
(4) and analysing its form, it was found that with known values of mi and τi,
given ni (i = 1, . . . ,K), C varies not much for different ni capture times within
τi. Therefore, given mi, τi and ni (i = 1, . . . ,K), the capture times provide
less information. However, with the additional information of capture times, the
ill-conditioning difficulty in Good’s estimator is avoided, the estimate is more
stable, and easily obtained.

Since the results for various ν and α values in Table 4 are very close, we
turn to the simulated probabilities. At the point (515, 0.0004), the simulated
probability is the largest among those listed. This suggests that the true value of
(ν, α) is around (515, 0.0004). Further extensive simulation studies around this
point (not reported here) show that it is likely that ν is between 505 and 515,
and α is between 0.0004 and 0.0045. Moran’s estimator gives ν̂M = 525 (se = 33)
and, as analyzed in the last subsection, it is expected to be positively biased.

3. Recapture in proportional trapping model

We extend the proportional trapping model to a recapture setting, i.e., the
trapped animals are marked, released and subject to recapture again in the next
trapping period. Recapture experiments usually provide more information than
that of removal experiments (Lloyd, Yip and Chan (1998)). However, the results
are different in the proportional trapping model.

3.1. Estimation procedure

In the ith trapping period, let Ni(t) be the number of trapped animals during
[0, t] (0 < t ≤ τi), Ni0(t) be the number of trapped animals that were previously
untrapped, and Ni1(t) be the number of trapped animals that had been previously
trapped and marked (1 ≤ i ≤ K). For i = 1, N10(t) = N1(t) and N11(t) = 0.
Obviously, Ni(t) = Ni0(t)+Ni1(t). The number of available traps at time t in the
ith period is Ti(t) = mi − Ni(t−). For i = 2, . . . ,K, let Mi(0) =

∑i−1
j=1 Nj0(τj),

the number of previously trapped and marked animals at the start of the ith
trapping period. We define M1(0) = 0 so that Mi(t) = Mi(0) + Ni0(t−) is
the number of trapped and marked animals at time t of the ith period. Then
the intensity processes of Ni0(t) and Ni1(t) are αTi(t)(ν −Mi(t)) and βTi(t)Li(t)
respectively, where Li(t) = Mi(0)−Ni1(t−), and β is the baseline capture hazard
for the previously captured animals.
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Table 4. Estimates for the Rattus data using the proposed estimator in which the capture times were simulated

by a combination of different values of ν and α.

ν = 485 ν = 495 ν = 505 ν = 515 ν = 525

α × 104 506.4 (2.41) 4.20 (0.05)

= * * * * 29.4 (0.68) 0.52 (0.00)

3.0 1.0×10−27

506.3 (1.96) 4.20 (0.04) 506.2 (2.40) 4.20 (0.05) 506.1 (1.94) 4.20 (0.04) 506.2 (2.06) 4.20 (0.05) 506.0 (2.31) 4.21 (0.05)

29.3 (0.55) 0.52 (0.00) 29.3 (0.68) 0.52 (0.00) 29.3 (0.54) 0.52 (0.00) 29.3 (0.58) 0.52 (0.00) 29.2 (0.65) 0.52 (0.00)

3.5 1.2×10−27 1.9×10−27 2.9×10−26 1.8×10−24 1.1×10−23

505.9 (2.21) 4.21 (0.05) 505.8 (2.04) 4.21 (0.05) 506.2 (2.36) 4.20 (0.05) 506.0 (1.88) 4.21 (0.04) 505.8 (2.05) 4.21 (0.05)

29.2 (0.62) 0.52 (0.00) 29.2 (0.57) 0.52 (0.00) 29.3 (0.66) 0.52 (0.00) 29.3 (0.53) 0.52 (0.00) 29.2 (0.58) 0.52 (0.00)

4.0 1.4×10−24 2.6×10−24
⋆ 2.6×10−22

⋆ 4.5×10−22
⋆ 2.2×10−22

505.6 (1.98) 4.22 (0.04) 505.4 (2.11) 4.22 (0.05) 505.6 (1.96) 4.22 (0.04) 505.6 (2.28) 4.22 (0.05) 505.3 (2.15) 4.22 (0.05)

29.1 (0.55) 0.52 (0.00) 29.1 (0.59) 0.52 (0.00) 29.1 (0.55) 0.52 (0.00) 29.1 (0.64) 0.52 (0.00) 29.0 (0.60) 0.52 (0.00)

4.5 1.2×10−23 4.2×10−23
⋆ 3.0×10−22 3.8×10−23 2.8×10−24

505.4 (1.96) 4.22 (0.04) 505.4 (2.03) 4.22 (0.05) 505.0 (2.05) 4.23 (0.05) 505.2 (2.22) 4.23 (0.05) 505.1 (2.40) 4.23 (0.05)

29.1 (0.55) 0.52 (0.00) 29.1 (0.57) 0.52 (0.00) 29.0 (0.57) 0.52 (0.00) 29.0 (0.62) 0.52 (0.00) 29.0 (0.67) 0.52 (0.00)

5.0 1.5×10−24 3.8×10−23 2.2×10−24 6.3×10−26 1.1×10−27

Note: A ( ) C ( ) denotes the respective positions in the cell, where
B ( ) D ( )

E
A: Average of ν̂ based on the 100 data sets.
B: Average of the estimated standard error of ν̂.
C: Average of α̂ × 104 based on the 100 data sets.
D: Average of the estimated standard error of α̂ × 104.
E: The simulated probability that, given (ν, α), the trapped numbers in Table 3 occur once.

⋆ : when E> 10−22

∗ : the simulated probability is smaller than 1.0×10−28, almost impossible to simulate data as in Table 3.

All the values in the parentheses are the corresponding standard deviation for 100 estimates of values.
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The likelihood function is given by

L =

K
∏

i=1

{

∏

t∈[0,τi]

[αTi(t)(ν − Mi(t))]
dNi0(t) exp

(

−

∫ τi

0
αTi(t)(ν − Mi(t))dt

)

×
∏

t∈[0,τi]

[βTi(t)Li(t)]
dNi1(t) exp

(

−

∫ τi

0
βTi(t)Li(t)dt

)

}

. (6)

In case there is no behavioral response to trapping for the previously trapped

animals, β = α, and we only have two parameters ν and α. The MLE estimates

of ν, α are obtained as the solution of the equations,

∂ log L

∂ν
=

K
∑

i=1

(

∫ τi

0

dNi0(t)

ν − Mi(t)
−

∫ τi

0
αTi(t)dt

)

= 0, (7)

∂ log L

∂α
=

K
∑

i=1

(Ni(τi)

α
−

∫ τi

0
Ti(t)(ν − Ni(t−))dt

)

= 0. (8)

From (8), we have

α̂ =

K
∑

i=1

Ni(τi)

K
∑

i=1

∫ τi

0
Ti(t)(ν − Ni(t−))dt

. (9)

Putting (9) into (7), the MLE ν̂ can be obtained numerically. The inverse of

the observed information matrix can be used to estimate the variance-covariance

matrix for the unknown parameters.

Using martingale estimation equations with optimal weights, the estimating

equations (7) and (8) can also be obtained. The following theorem describes the

asymptotic properties of the proposed estimator.

Theorem 2. Suppose ν → ∞, mi/ν → ri and g = max(r1, r2, . . . , rK). Let

ν̂ and α̂ denote the maximum likelihood estimates of ν and α in the case of no

behavioral response to trapping. If g < 1, then ζ̂ = (ν−1/2(ν̂−ν), ν1/2(α̂−α))′
d
→

N2(0,Ω−1
2 ), where

Ω2 =







1 − W

W
1
α log 1

W

1

α
log

1

W
G
α2






, (10)
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with W =
∏K

i=1(1 − ri) and G =
∑K

i=1 ri. If g ≥ 1, then ν̂/ν
p
→ 1 with a speed

faster than ν−1/2.

Proof. See Appendix 2 in Yip et al. (2005).

In the presence of behavioral response for trapped animals, the unknown
parameters are ν, α and β. The corresponding likelihood equations are

∂ log L

∂ν
=

K
∑

i=1

(

∫ τi

0

dNi0(t)

ν − Mi(t)
−

∫ τi

0
αTi(t)dt

)

= 0, (11)

∂ log L

∂α
=

K
∑

i=1

Ni0(τi)

α
−

K
∑

i=1

∫ τi

0
Ti(t)(ν − Mi(t))dt = 0, (12)

∂ log L

∂β
=

K
∑

i=2

Ni1(τi)

β
−

K
∑

i=2

∫ τi

0
Ti(t)Li(t)dt = 0. (13)

Note that ν and α appear in (11) and (12) only; β and Ni1(t) appear in (13)

only. This means that, with an unknown behavioral response, recaptures do not
provide any information for estimating ν. We only need to solve (11) and (12)
to obtain ν̂. From (12), we have

α̂ =

K
∑

i=1

Ni0(τi)

K
∑

i=1

∫ τi

0
Ti(t)(ν − Mi(t))dt

. (14)

Substituting (14) into (11), the equation for obtaining the MLE of ν is

Z
∑

j=1

1

ν − j + 1
=

Z

ν − D
, (15)

where Z =
∑K

i=1 Ni0(τi) and

D =

K
∑

i=1

∫ τi

0
Mi(t)(mi − Ni(t−))dt

K
∑

i=1

∫ τi

0
(mi − Ni(t−))dt

.

From (15), the MLE of ν can be obtained numerically. The inverse of the observed

information matrix can be used to estimate the variance-covariance matrix for the
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unknown parameters. Following Liu and Yip (2003), the necessary and sufficient
condition for the existence and uniqueness of the solution of (15) is that

1

2
(Z − 1) < D ≤

(

1 −
1

hZ

)

Z,

where hZ =
∑Z

i=1 1/i.
Using martingale estimation equations with optimal weights, the estimat-

ing equations (11), (12) and (13) can also be obtained. The following theorem
describes the asymptotic properties of the proposed estimator.

Theorem 3. Suppose ν → ∞, mi/ν → ri and g = max(r1, r2, . . . , rK). Let

ν̂ and α̂ denote the maximum likelihood estimates of ν and α in the case of

an unknown behavioral response to trapping. If g < 1, then ζ̂ = (ν−1/2(ν̂ −

ν), ν1/2(α̂ − α))′
d
→ N2(0,Ω−1

3 ), where

Ω3 =













∑K
i=1 ai

1 −
∑K

i=1 ai

1

α
log

(

1

1 −
∑K

i=1 ai

)

1

α
log

(

1

1 −
∑K

i=1 ai

)

∑K
i=1 ai

α2













,

ai is the solution of (1− [ai/(1− bi)])
β = (1− [(ri − ai)/bi])

α, and bi =
∑i−1

j=1 aj ,

a1 = r1. If g ≥ 1, then ν̂/ν
p
→ 1 with a speed faster than ν−1/2.

Proof. See Appendix 2 in Yip et al. (2005).

3.2. Simulation and comparison

Simulations were conducted to compare the removal setting and recapture
settings. All τi are fixed at 1, and the number of traps m is kept the same
for each trapping occasion. We denote the proposed estimators of ν as ν̂(rc1)

and ν̂(rc2), respectively, for the recapture settings without or with behavioral
response. Some results are listed in Table 5.

It is well known that a capture-recapture setting is always better or at least
not worse than the corresponding capture-removal setting. For the proportional
trapping experiments, because of the limited number of traps, recapture means
fewer new captures compared with the corresponding removal setting. The sit-
uation becomes tricky and there is a gain-and-loss relationship between the two
settings. Our aim is to study the effect on estimating population size of using
the information of trap availability and the role of the capture times. Some
observations and explanations are given as follows.

• With a significant behavioral response to trapping in the recapture setting,
the effect of the recapture setting is worse than that of the removal setting.
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Table 5. Simulation results for comparison of the removal and recapture

settings with or without behavioral response.

ν = 500, m = 200, α = 0.001

Settings K = 6 PT K = 10 PT

Recapture av(ν̂) RMSE CP pf av(ν̂) RMSE CP pf

ν̂(rc1) 760.8 269.8 0.1 0.0 670.5 173.1 0.0 0.0

β = 0.5α ν̂(rc2) 506.1 72.1 95.5 0.0 62.8 501.1 24.0 95.4 0.0 81.4

ν̂(rc1) 373.0 128.0 0.0 0.0 416.9 83.7 0.0 0.0

β = 2α ν̂(rc2) 513.3 94.8 94.4 0.0 59.6 501.0 30.1 94.7 0.0 76.9

ν̂(M0) 500.5 30.0 94.8 0.0 499.2 15.4 94.9 0.0

β = α ν̂(rc1) 500.5 29.8 95.2 0.0 61.6 499.2 15.1 95.1 0.0 79.9

ν̂(rc2) 509.8 82.8 95.9 0.0 499.6 25.8 95.0 0.0

ν̂(mt1) 500.7 29.9 95.2 0.0 499.2 15.1 94.8 0.0

ν̂(mt2) – – – 19.8 502.4 45.8 94.2 0.8

ν̂(rc1) 514.2 33.8 93.2 0.0 509.1 18.3 89.4 0.0

β = 0.95α ν̂(rc2) 510.9 76.2 95.7 0.0 61.7 501.6 26.7 95.2 0.0 79.9

ν̂(rc1) 487.8 30.5 92.5 0.0 491.6 16.6 92.4 0.0

β = 1.05α ν̂(rc2) 508.9 72.4 96.0 0.0 61.5 498.9 26.3 95.9 0.0 79.5

Removal ν̂(rm) 504.2 62.8 95.5 0.0 64.2 500.7 22.3 94.5 0.0 83.1

ν = 500, m = 100, α = 0.0025

Settings K = 6 PT K = 10 PT

Recapture av(ν̂) RMSE CP pf av(ν̂) RMSE CP pf

ν̂(rc1) 769.8 279.7 0.1 0.0 673.9 176.7 0.0 0.0

β = 0.5α ν̂(rc2) 508.5 79.3 95.4 0.0 62.1 501.0 25.4 95.3 0.0 80.6

ν̂(rc1) 360.6 140.5 0.0 0.0 400.8 99.9 0.0 0.0

β = 2α ν̂(rc2) 525.3 125.7 96.6 0.0 54.5 504.1 45.4 94.9 0.0 71.2

ν̂(M0) 500.1 32.4 95.6 0.0 499.8 16.9 94.8 0.0

β = α ν̂(rc1) 500.5 32.4 95.5 0.0 58.6 499.8 16.6 95.6 0.0 77.0

ν̂(rc2) 514.4 97.7 96.4 0.1 501.1 31.8 94.8 0.0

ν̂(mt1) 500.6 32.4 95.6 0.0 499.8 16.6 95.6 0.0

ν̂(mt2) – – – 24.8 505.3 54.2 94.8 1.5

ν̂(rc1) 515.8 37.8 92.7 0.0 509.7 20.0 90.5 0.0

β = 0.95α ν̂(rc2) 518.1 92.7 95.8 0.0 58.8 502.0 31.8 94.6 0.0 77.3

ν̂(rc1) 488.3 33.0 93.6 0.0 491.3 18.7 92.0 0.0

β = 1.05α ν̂(rc2) 516.5 96.2 95.6 0.0 58.4 501.2 31.6 95.8 0.0 76.7

Removal ν̂(rm) 508.0 65.5 94.7 0.0 64.4 500.3 19.4 95.2 0.0 84.9

Note: the empirical standard deviations are very close to the averages of the estimated standard

errors, we only list RMSE for comparison. The exceptions are for ν̂(mt2) with K = 6, the results

are not presented for comparison due to many failures. In the recapture settings without

behavioral response, the average trap occupation rates are 36.8% and 68.4%, respectively, for

(ν,m, α) = (500, 200, 0.001) and (500, 100, 0.0025).

In the case of a behavioral response in the recapture setting, those previously

trapped do not provide any information for estimating ν (see (11), (12) and (13)),

and worse, they occupy traps so that the capture probability for the untrapped
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animals is reduced – the smaller the number of traps, the worse the recapture

setting. Besides, applying the estimator ignoring the behavioral response would

lead to a serious bias.

• When there is no behavioral response to trapping, in general, the recapture

setting is better than that of the removal setting, especially when the number

of traps is large or the total capture proportion is low.

When there is no behavioral response, although recapture means fewer new

captures, the recaptures provide information for estimating α. The total captures

(including the recaptures) is larger than that of the removal setting; the larger

the number of traps, the less loss from the reduction in new captures due to the

recaptures. In the case of a slight behavioral response, the performance of ν̂(rc1)

(assuming no behavioral response) is better than those of ν̂(rc2) and ν̂(rm) (based

on the corresponding removal setting), in term of a smaller mean square error,

especially when the capture proportion is low.

• As the number of trapping occasions K increases and a high capture pro-

portion is achieved for the removal setting, the effect of the removal setting

will exceed that of the corresponding recapture setting without behavioral re-

sponse. The smaller the number of traps, the earlier this exceedance happens;

see Table 6.

Table 6. The superiority of the removal setting as K increases.

ν = 500, m = 200, α = 0.001

Settings and Est. K = 14 PT K = 16 PT K = 18 PT

Removal ν̂(rm) (10.3, 10.2 ) 92.2 (7.38, 7.45) 94.7 (5.68, 5.61)△ 96.5

Recapture ν̂(rc1) ( 9.07, 9.20)△ 89.3 (7.29, 7.43) 92.2 (6.07, 6.08) 94.3

ν = 500, m = 100, α = 0.0025

Settings and Est. K = 11 PT K = 12 PT K = 13 PT

Removal ν̂(rm) (15.1, 15.1) 88.0 (12.2, 12.1) 90.5 ( 9.98, 9.91)△ 92.5

Recapture ν̂(rc1) (14.6, 14.8)△ 80.1 (12.9, 13.1) 82.9 (11.7, 11.7) 85.2

Note: the recapture setting is without behavioral response; we only list the empirical standard
deviation and the average of the estimated errors since the averages of ν̂ are almost unbiased.
△: the smaller of the removal and recapture.

In the case of no behavioral response, the recaptures provide information on

estimating α. Only new captures provide direct information on estimating ν. As

K increases, the number of recaptures increases, that of the new captures de-

creases (due to the availability of traps). Eventually, the gain from the recaptures

on estimating α is marginal, and the gain from recaptures cannot compensate to

the loss of information from the reduction in the new captures.

An asymptotic efficiency of the recapture setting (without behavioral re-

sponse) relative to the removal setting is considered here. Take the asymptotic



1228 PAUL S. F. YIP, LIQUN XI AND LIPING LIU

efficiency to be

a.eff. =

√

a. var(ν̂(rm))

a.var(ν̂(rc1))
.

For convenience of expression, let m1 = · · · = mK = m and m/ν → r. From

Theorems1 and 2, for Kr < 1,

a.var(ν̂(rm)) =
νKr

K2r2(1 − Kr)−1 − log2(1 − Kr)
,

a.var(ν̂(rc1)) =
νKr

Kr[(1 − r)−K − 1] − K2 log2(1 − r)
;

for Kr ≥ 1, the asymptotic efficiency is zero. Figure 1 plots the asymptotic

efficiency against K when r = 0.1.
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Figure 1. Asymptotic efficiency of ν̂(rc1) relative to ν̂(rm) against K, r = 0.1.

When K = 1, there is no difference between the two settings: as K increases,

the efficiency is much larger than 1 at first, but it decreases and eventually goes

to zero.

Now we check the role of the availability of capture times on the estimation.

Without capture times, the traditional discrete-type estimation methods are also

available for the recapture setting considered in this section. Intuitively, the

proposed estimators should be better than the discrete-type estimators due to

availability of the capture times. First, we consider the case that the trapping

duration and the number of traps are fixed for all the trapping occasions, and

there is no behavioral response to trapping. Then the capture probabilities for

all the trapping ocassions are the same for all the individuals, whether previously

trapped or not. This is the model M0; see Otis et al. (1978). ν̂(M0), the MLE of

ν based on the model M0, and the proposed estimator ν̂(rc1) are applied to such a
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setting for the sake of comparison. Simulation results show that the performances

of the two estimators are almost the same, whether ν and Pτ are large or small;

see Table 5.

We check the asymptotic efficiency of ν̂(M0) relative to ν̂(rc1). The asymptotic

variance of ν̂(M0) is given by

a.var(ν̂(M0)) =
ν

[(1 − p)−K − 1] − pK/(1 − p)
,

where p is the capture probability for all the individuals on all trapping occasions.

In the asymptotic situation p is just r, and the asymptotic efficiency of ν̂(M0)

relative to ν̂(rc1) is

a.eff. =

√

(1 − r)−K − 1 − Kr/(1 − r)

(1 − r)−K − 1 − K[log(1 − r)]2r−1
.

Figure 2 plots the asymptotic efficiency against K for r = 0.1, 0.3 and 0.5

respectively.

K

re
la

ti
v
e

e
ffi

c
ie

n
c
y

2 4 6 8 10

0
.9

4
0
.9

6
0
.9

8
1
.0

0

r=0.1

r=0.3

r=0.5

Figure 2. Asymptotic efficiency of ν̂(M0) relative to ν̂(rc1) against K, for
r = 0.1, 0.3 and 0.5.

It can be seen that the asymptotic efficiency is smaller than 1 but very

close to 1, especially for large K. In fact, the MLE for the model M0 makes

use of the information that the capture probability p is unchanged for all the

individuals over all occasions, but the proposed estimator ν̂(rc1) does not. There

is no difference for ν̂(rc1) when the number of traps and the trapping duration

vary from occasion to occasion, but as a discrete model it becomes the model Mt;

see Otis et al. (1978). The performance of the MLE based on the discrete model
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Mt is worse than that based on M0. When there is a behavioral response to

trapping, even the trapping duration and the number of traps stay unchanged for

all trapping occasions, due to the limited number of traps, the capture probability

for the previously untrapped individuals changes from occasion to occasion, as

well as the capture probability for the previously trapped individuals. As a

discrete model, this is the general form of the model Mtb described in Otis et al.

(1978). Without further assumption, there is no available estimator. But with

the capture times, the proposed estimator ν̂(rc2) performs satisfactorily as long

as the capture proportion is not too small.

In summary, when there is a significant behavioral response, the removal

setting is strongly recommended, and the information on capture times is crucial;

when there is no or slight behaviorial response to trapping, and the number of

traps is large, the recapture setting is strongly recommended. Here, keeping the

trapping duration and the number of traps unchanged for all trapping occasions,

the capture times are unnecessary. Otherwise, the capture times are important.

In the next section where arbitrary time-dependent baselines are considered, the

availability of capture times on estimation is shown to be crucial.

4. Time-dependent baseline capture hazard

In practice, the baseline capture hazards for each trapping occasion may be

different and even changing with time, for example different weather conditions.

For the removal setting with arbitrary time-dependent baselines, it is impossible

to give an estimate for ν due to an identifiability problem. In the recapture

settings, we assume that the baseline capture hazard for the ith trapping occa-

sion is αλi(t) for those previously uncaptured, and βλi(t) for those previously

captured. We have, for i = 1, . . . ,K, dNi0(t) = αλi(t)Ti(t)(ν − Mi(t))dt, and

dNi1(t) = βλi(t)Ti(t)Li(t)dt.

4.1. Estimation procedure

Let θ = α/β, and consider the martingale difference, for i = 2, . . . ,K,

dDi(t) = Li(t)dNi0(t) − θ(ν − Mi(t))dNi1(t),

which is such that E(dDi(t)|Ft−) = 0, where Ft = σ{Ni0(u), Ni1(u) : 0 ≤

u ≤ t}. The stochastic integral
∫ τi

0 Wi(t−)dDi(t) is a zero mean martingale,

where Wi(t−) is any locally bounded and predictable process with respect to Ft−.

Equating this integral to zero and evaluating it at time τi, gives an estimator of ν.

Obviously, only if the capture proportion for the ith trapping occasion is high will

the estimator perform satisfactorily (see Yip, Xi, Fong and Hayakawa (1999)).

But in practice, it is almost impossible to obtain a high capture proportion on



PROPORTIONAL TRAPPING REMOVAL AND RECAPTURE MODELS 1231

one trapping occasion. So we combine the K − 1 trapping occasions (from the

second occasion to the Kth occasion). The resulting estimating equation is

K
∑

i=2

∫ τi

0
Wi(t−)dDi(t) = 0.

(16)

In the case of no behavioral response to trapping, i.e., θ = 1, there is only one

unknown parameter ν. The weight function Wi(t−) can be chosen in an optimal

way to minimize the width of the confidence interval based on the estimate ν̂, as

suggested in Godambe (1985). The optimal weight is

Wi(t−) =
E(dDi

dν |Ft−)

var(dDi|Ft−)
=

1

(ν − Mi(t))[Li(t) + θ(ν − Mi(t))]

=
1

(ν − Mi(t))(ν − Ni(t−))
,

so the optimal martingale estimation equation is

K
∑

i=2

{

∫ τi

0

Li(t)dNi0(t)

(ν − Mi(t))(ν − Ni(t−))
−

∫ τi

0

dNi1(t)

ν − Ni(t−)

}

= 0, (17)

and ν̂ can be obtained numerically. Using a Taylor’s series expansion, the stan-

dard error of ν̂ can be estimated by
√

Ψ1(ν̂)/|Ψ2(ν̂)| where Ψ1(ν) is the pre-

dictable variance process of the optimal martingale, Ψ2(ν) is the derivative of

the optimal martingale with respect to ν.

In the case of a behavioral response we have two unknown parameters, ν and

θ. The corresponding optimal weight functions for the martingale difference in

(16), for estimators ν̂ and θ̂, are given by

W
(ν)
i (t−) =

E(dDi

dν |Ft−)

var(dDi|Ft−)
=

1

(ν − Mi(t))[Li(t) + θ(ν − Mi(t))]
,

W
(θ)
i (t−) =

E(dDi

dθ |Ft−)

var(dDi|Ft−)
=

1

θ[Li(t) + θ(ν − Mi(t))]
,

respectively. Substituting these into (16), we obtain

K
∑

i=2

{

∫ τi

0

Li(t)dNi0(t)

(ν−Mi(t))[Li(t)+θ(ν−Mi(t))]
−θ

∫ τi

0

dNi1(t)

[Li(t)+θ(ν−Mi(t))]

}

= 0, (18)

K
∑

i=2

{

∫ τi

0

Li(t)dNi0(t)

Li(t)+θ(ν−Mi(t))
−θ

∫ τi

0

(ν−Mi(t))dNi1(t)

[Li(t)+θ(ν−Mi(t))]

}

= 0. (19)
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We can then obtain ν̂ and θ̂ by solving (18) and (19) simultaneously. To measure
the precision of the estimates, let ϑ=(ν, θ), and let R(ϑ)=(

∑K
i=2 Ri1,

∑K
i=2 Ri2),

where
∑K

i=2 Ri1 and
∑K

i=2 Ri2 denote the left sides of (18) and (19), respectively.
Using a Taylor’s series expansion of R(ϑ) at ϑ̂, a measure of the dispersion of

ϑ̂ is given by Ṙ
−1

(ϑ̂)V(ϑ̂)Ṙ(ϑ̂)−T, where Ṙ(ϑ̂) denotes the first derivative of

R(ϑ) evaluated at ϑ̂, A
−T denotes the transpose of the inverse of a matrix A

and V(ϑ) is the dispersion matrix of R(ϑ), given by

V(ϑ) =





∑k
i=2〈Ri1, Ri1〉

∑k
i=2〈Ri1, Ri2〉

∑k
i=2〈Ri2, Ri1〉

∑k
i=2〈Ri2, Ri2〉



 .

The following theorems describe the asymptotic properties of the proposed
estimators in this section.

Theorem 4. Suppose ν → ∞, mi/ν → ri and g = max(r1, . . . , rK). Let ν̂
denote the martingale estimate of ν in the case of no behavioral response, and

assume that φi = λi(0+) > 0. If g < 1, then ζ̂ = ν−1/2(ν̂ − ν)
d
→ N(0, ω−1),

where

ω =
K
∑

i=2

biri

(1 − bi)(1 − ri)
and bi = 1 −

i−1
∏

j=1

(1 − rj).

If g ≥ 1, then ν̂/ν
p
→ 1 with a speed faster than ν−1/2.

Proof. See Appendix 3 in Yip et al. (2005).

Theorem 5. Suppose ν → ∞, mi/ν → ri and g = max(r1, . . . , rK). Let ν̂ and θ̂
denote the martingale estimates of ν and θ in the case of a behavioral response,

and assume that φi = λi(0+) > 0. If g < 1, then ζ̂ = (ν−1/2(ν̂−ν), ν1/2(θ̂−θ))′
d
→

N2(0,Ω−1
5 ), where Ω5 = (ωij)2×2, with

ω11 =

K
∑

i=2

∫

∞

0

αφi(ri − Ai(t))(bi − Ai1(t))

(1 − bi − Ai0(t))[(bi − Ai1(t)) + θ(1 − bi − Ai0(t))]
dt,

ω12 = ω21 =
K
∑

i=2

∫

∞

0

αφi(ri − Ai(t))(bi − Ai1(t))

θ[(bi − Ai1(t)) + θ(1 − bi − Ai0(t))]
dt, and

ω22 =

K
∑

i=2

∫

∞

0

αφi(ri − Ai(t))(1 − bi − Ai0(t))(bi − Ai1(t))

θ2[(bi − Ai1(t)) + θ(1 − bi − Ai0(t))]
dt,

ai and bi being the same as in Theorem 3. Here Aij(t) = limν→∞ Nij(t/ν)/ν
satisfies the differential equations

{

dAi0(t) = αφi(ri − Ai(t))(1 − bi − Ai0(t))dt,

dAi1(t) = βφi(ri − Ai(t))(bi − Ai1(t))dt,
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where Ai(t) = Ai0(t) + Ai1(t).

Proof. See Appendix 3 in Yip et al. (2005).

4.2. Simulation and comparison

We denote the proposed martingale estimators of ν as ν̂(mt1) and ν̂(mt2),

respectively, for the settings without or with behavioral response. They do not

depend on the form of λi(t), and only use the sequence of the captures, not the

capture times. (But, given the capture times, the capture sequence is available).

For convenience of comparison, we choose the scenarios with a constant baseline

and apply ν̂(mt1), ν̂(mt2), ν̂(rc1) and ν̂rct2). Some results are listed in Table 5.

With a slight behavioral response, the performance of ν̂(mt1) is better than

that of ν̂(mt2). Only with a high capture proportion is the martingale estimator

ν̂(mt2) reliable (e.g., for ν = 500, PT should be greater than 75%). In the case

of no behavioral response, the performance of the martingale estimator ν̂(mt1)

is almost the same as that of ν̂(rc1), the MLE. This means the proposed mar-

tingale estimator is highly efficient when there is no behavioral response. The

explanation is given as follows.

Each trapping occasion alone is a continuous-time removal experiment. After

the first occasion, there are two types of individuals: previously captured or not.

Therefore, starting at the second occasion, each trapping occasion is a seeded

continuous-time removal experiment where the individuals previously captured

are regarded as seeds. When the seeds have the same capture intensity (i.e., no

behavioral responses), it was shown in Lloyd et al. (1998) that such a martingale

estimator (using only the sequence of captures) is highly efficient relative to the

MLE with a known form baseline. For our case, that is starting at the second

occasion, the constant baseline provides little information for estimating ν. The

main difference is at the first occasion, a continuous-time removal experiment

without seeds. The MLE uses the information of the constant baseline through

the capture times, but the martingale estimator cannot. It is for arbitrary time-

dependent baselines, and without seeds, there is a identifiability problem in the

first occasion.

In the case of no behavioral response, with Theorems 2 and 4, the asymptotic

efficiency of the martingale estimator relative to the MLE is

√

ωGW

(1 − W )G − W (log W )2
.

Letting all the ri be 0.1 except for r1 which can be chosen as 0.3, 0.2 and 0.1,

respectively, Figure 3 plots the efficiencies.
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Figure 3. Asymptotic efficiency of ν̂(mt1) relative to ν̂(rc1) against K, all

the ri are equal to 0.1 except for r1 which is chosen as 0.3 0.2 and 0.1,

respectively.

For K = 2, the efficiency with (r1, r2) = (0.3, 0.1) is the smallest among

the three because the proportion of the information from the first occasion is

the largest. As K increases, the proportion from the first occasion is reduced,

and all efficiencies increase strictly and tend to 1. Letting K = 2, r1 = 0.6 and

r2 = 0.2, the relative efficiency is 0.73, there is a significant difference between

the performances of the two estimators. Simulation results (not reported here)

also confirm this point.

5. Conclusion

The non-linear relationship of the capture intensity function in the propor-

tional trapping model has complicated inference procedure. Without the capture

times, there is no algorithm to search for the solution for the MLE. There would

not be any ill-conditioning problem if capture times were available. It is im-

portant to record the capture times, especially in genuine continuous setting in

which the capture intensity does change with traps availability over the course

of the experiment.

Here we have extended the original model in Good et al. (1979) to recapture

model with possible behavioral response. In the case of a behavioral response,

the removal setting is strongly recommended and the information on capture

times is essential for estimating the population size.

In the case of no behavioral response and a plentiful number of traps, the

recapture setting is strongly recommended. Keeping trap number and trapping

duration unchanged for each occasion, the information on capture times is not
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necessary for estimating the population size. Otherwise, capture times are very

important.

When baselines are time-dependent and arbitrary, the removal setting is

not applicable due to an identifiability problem. Only the recapture setting can

provide information on population size, and the capture times are essential. In

the presence of a behavioral response, a high capture proportion is needed for

obtaining a reliable estimate.
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