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Abstract: A distribution function F is more peaked about a known point a than

the distribution G is about the known point b if F ((x + a)−) − F (−x + a) ≥

G((x + b)−) − G(−x + b) for every x. The statistical concept of dispersion plays

an important role in the theory and practice of statistics. For example, in statis-

tical genetics, the effect of a gene on a phenotype of interest can be ascertained

by regressing the squared phenotypical differences on the proportion of identical

by descent alleles shared by pairs of siblings (Haseman-Elston (1972)). This paper

proposes estimators for the distribution functions F and/or G, when F is more

“peaked” than G. The estimators are shown to be strongly uniformly consistent,

their asymptotic distribution theory is discussed, and an asymptotic test for equal-

ity in peakedness is provided. The case of censored data is also considered. Data

from various national and international studies are used to illustrate the new pro-

cedures.

Key words and phrases: Kaplan-Meier, peakedness ordering, Stochastic ordering,

symmetry, weak convergence.

1. Introduction

Body Mass Index (BMI) is a commonly used measure of obesity, and studies

have been conducted to correlate morbidity and mortality to BMI. The Depart-

ment of Preventive Medicine and Epidemiology at Loyola University in Chicago,

instituted an International Collaborative Study on Hypertension in Blacks (IC-

SHIB). This is an epidemiological multicenter, cross-sectional study of hyperten-

sion and associated risk factors in populations of African descent. Figure 1A

shows the BMI density estimates for the populations of men and women from

Nigeria and from Maywood, IL., and the corresponding empirical distributions

functions are shown in Figure 1B. The density estimates suggest that a “shift”

and a “spread” change have occurred for both African-American groups. The

location shift is likely due to environmental factors while the change in “spread”

can be attributed to an increase in genetic variability in the population.

Various concepts of spread, concentration, or dispersion have appeared in

the literature. For example, Brown and Tukey (1946), Fraser (1957), Bickel and

Lehmann (1979), Lehmann (1988), Doksum (1969) and Shaked (1980), define
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F to be more dispersive than G if F−1(u) − F−1(v) ≥ G−1(u) − G−1(v) for

every u > v. Shaked (1982), Bartoszewicz (1985a,b, 1986), Oja (1981) and

Rojo and He (1991), among others, have discussed various characterizations and

properties of the dispersive order, and Rojo (1995) has considered the problem

of estimating F−1 or G−1, or both, when F is more dispersed than G.

Figure 1. Density and cumulative distribution function estimates of BMI for

four groups in the ICSHIB study.

Birnbaum (1948) took a different approach and defined a distribution func-

tion F to be more peaked about the point a than the distribution function G is

about the point b if

F ((x + a)−) − F (−x + a) ≥ G((x + b)−) − G(−x + b) (1.1)

for all x ≥ 0, where, h(x−) = limε↓0 h(x − ε). Proschan (1965), Karlin (1968),

Bickel and Lehmann (1979), Shaked (1980, 1982) and Schweder (1982), among

others, have considered properties of the ordering defined by (1.1), and have

also studied connections with other orderings. When F and G are assumed

symmetric, (1.1) can be seen to be equivalent to

F−1(u) − F−1
(1

2

)

≥ (≤) G−1(u) − G−1
(1

2

)

depending on whether u ≥ (≤)1/2. If a and b in (1.1) represent, respectively, the

means of F and G, then (1.1) implies that the variance of F is smaller than the

variance of G.

The concept of spread, peakedness, or dispersion permeates the theory and

applications of statistics. For example, in the quantitative trait linkage anal-

ysis for sib-paired data literature, the Haseman-Elston model (1972), and its



INFERENCE UNDER PEAKEDNESS RESTRICTIONS 1167

modifications (see e.g., Elston, Boxbaum and Olson (2000)), are used to test for

linkage between a candidate locus and a specific phenotype. The model expresses

the expected value of the squared phenotypic differences as a linear function of

the proportion of alleles shared identical-by-descent (IBD) at the locus of inter-

est. The method of Haseman and Elston (1972) is based on the regression model

E(Xi|πi) = α+βπi, where Xi is the squared sib-pair difference for the ith sib-pair

conditional on πi, and πi is the proportion of alleles shared identical by descent

(πi = 0, 1/2, or 1). Writing Y1i = µ + g1i + ε1i and Y2i = µ + g2i + ε2i, where Y1i

and Y2i represent, respectively, the phenotype values for siblings one and two,

where µ is the population mean, and gij and εij are the genetic and the residual

effects, respectively, then

E(Xj |πj) = δ2
ε + 2(1 − πj)δ

2
g .

Here δ2
ε = E((ε1i−ε2i)

2), and δ2
g represents the variance in the trait due to allelic

variation at the locus of interest. Thus, when linkage exists, siblings sharing two

alleles IBD at the locus of interest will tend to be more similar than siblings

sharing one allele IBD, and siblings sharing one allele IBD will, in turn, be

more similar than siblings sharing no alleles IBD. It is clear from this model

that “similarity” is measured in terms of the spread of the distribution of the

differences in the siblings’ phenotypical measurements. In this paper, we use

the order defined through (1.1), applied to the distribution of the differences of

siblings’ phenotypes, to compare the similarity of siblings with 0, 1 and 2 alleles

IBD.

Since a and b will be assumed known, they are set equal to 0 without loss of

generality. In the linkage example to be considered in Section 5, this assumption

of known a and b is not as limiting as it may appear to be. Since it is customary

to make the assumption that the siblings’ phenotypes follow a bivariate normal

distribution with marginals having the same mean, known or unknown, the dif-

ference of the phenotypes is always symmetric about zero. Even in the absence

of the bivariate normal assumption, genetics models in common use, see e.g., Liu

(1988), Table 15.7, yield a zero mean for the phenotypic differences.

The goals of this paper are to develop estimators for F and G that satisfy

(1.1), and to delineate their asymptotic theory.

El Barmi and Rojo (1997) studied the nonparametric maximum likelihood

estimators of F and G under the assumption that F and G are discrete distribu-

tions satisfying (1.1), and tests were given to test the hypothesis of homogeneity

of F and G against the alternative that F and G satisfy (1.1). They, however,

did not examine the asymptotic distribution theory of the estimators, and the
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case of censored data was not considered. The organization of this paper is

as follows: Sections 2 and 3 consider the one-sample and the two-sample prob-

lems respectively, where strong uniform consistent estimators are constructed

and their asymptotic theory is developed. Section 4 considers the case of right-

censored data, and Section 5 illustrates the procedures with data from various

national and international biomedical studies. In addition, a test for equality

in peakedness is discussed in Sections 3 and 4. Finally, Section 6 discusses the

results of computer simulations which compare the mean squared error of the

new estimators with that of the empirical distribution function. It is worth-

while mentioning that, for positive stochastically ordered random variables, our

estimators defined by (2.1), (3.1), (4.1) and (4.3), reduce to those discussed in

Rojo (1995) and Rojo and Ma (1996). Thus, if the positive random variables

X and Y with respective distribution functions F and G satisfy the constraint

that F (x) ≥ G(x), for all x > 0, then F is more peaked about 0 than G is.

In that case, estimator (2.1) reduces, for example in the one-sample problem

case, to F ∗
n(x) = max{Fn(x), G(x)}, which is the estimator considered in Rojo

(1995) and Rojo and Ma (1996). All technical details have been relegated to an

appendix.

2. One-Sample Problem

Suppose that F and G satisfy (1.1) with a = b = 0. Let X1, . . . ,Xn be a ran-

dom sample from the distribution F . To fix ideas, G is first considered a known

continuous distribution. The case where G may be discontinuous and unknown

will be considered later in the two-sample problem, but with less technical detail,

as the technical arguments are similar. It is clear that the empirical distribution

function Fn need not satisfy (1.1), and estimators which satisfy (1.1) may be

needed.

At least two approaches have been proposed in the literature to address the

problem of estimating a distribution function F subject to constraints. One gen-

eral approach, the Nonparametric Maximum Likelihood Estimator (NPMLE),

maximizes the empirical likelihood subject to the given constraints. (See, e.g.,

Oh (2004)). While this approach yields useful results in many cases, such an

approach typically yields algorithmic procedures that are difficult to analyze.

More importantly, however, in many cases the NPMLE fails minimal optimal-

ity criteria such as consistency. Several examples in the literature illustrate this

point. There are additional reasons for preferring our procedures to the NPMLE.

One is that, in contrast with the discrete case, the NPMLE is non-unique when

dealing with continuous distributions. To see this, note that peakedness is equiv-

alent to stochastic order of the absolute values. But, under the restriction of
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stochastic ordering, the NPMLE remains undefined to the left of the first order

statistic, the restriction being that the NPMLE must be greater than or equal

to the benchmark distribution to the left of the first order statistic but without

specifying exactly how. A second additional reason is that, in the case of stochas-

tic ordering, the NPMLE can be shown to be pointwise smaller than estimators

similar to the one proposed here, and its mean squared error is larger. See, e.g.,

Rojo and Ma (1996). In particular, if peakedness is defined with respect to zero

and the random variables are non-negative, then our estimators reduce to those

discussed in Rojo and Ma (1996), and hence are better in terms of bias and mean

squared error than the NPMLE. Finally, our Lemma 2.1 provides strong support

for our procedures. That is, our estimator is the closest estimator to the empir-

ical distribution function that satisfies the constraints of the problem. Thus, in

particular, the NPMLE must have more absolute bias than our estimator (2.1).

A second approach consists of finding functionals of the empirical distribution

function Fn that satisfy the constraints of the problem, and which are “closest”

to the empirical distribution in some sense. For example, Kiefer and Wolfowitz

(1976), Wang (1986, 1987a,b, 1988) and Rojo (1998) provide examples of this

approach. More precisely, the idea is to find the majorant and/or minorant of

Fn closest to Fn and such that the constraints of the problem are satisfied.

In this paper, we opt for the second approach. In the present context, how-

ever, attention can be restricted to estimators F̂n satisfying (1.1), and are such

that F̂n ≤ Fn for x < 0 and F̂n ≥ Fn for x ≥ 0. For suppose that F̂n satisfies (1.1)

and F̂n > Fn for some x < 0 or F̂n < Fn for some x ≥ 0. Then the estimator

F̂ ∗
n(x) = min(F̂n(x), Fn(x)) for x < 0 and F̂ ∗

n(x) = max(F̂n(x), Fn(x)) for x ≥ 0,

satisfies (1.1) and is closer to Fn than F̂n. Now, note that when F satisfies (1.1),

then F (x) ≥ G(x)−G(−x)+F (−x) for x > 0 and F (x) ≤ F (−x)−G(−x)+G(x)

for x < 0. This motivates the following estimator,

F̂n(x) =







min(Fn(x), 1 − G(−x) + G(x)), x ≤ 0

max(Fn(x), sup
0≤y≤x

(G(y) − G(−y) + F̂n(−y))), x > 0.
(2.1)

The supremum in (2.1) is needed to guarantee the monotonicity of F̂n. It

can be shown that F̂n is the closest distribution to Fn in the following sense.

Lemma 2.1. Let f be right-continuous and g be continuous, both nondecreasing,

with 0 ≤ f , g ≤ 1. Define

f̂(x) =







min(f(x), 1 − g(−x) + g(x)), x ≤ 0

max(f(x), sup
0≤y≤x

(g(y) − g(−y) + f̂(−y))), x > 0.
(2.2)
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Then f̂(x) is the closest right-continuous nondecreasing function to f , 0 ≤ f̂ ≤ 1,

with

(1) f̂ ≤ f for all x ≤ 0;

(2) f̂ ≥ max{f(x), g(x) − g(−x) + h(−x))} for all x > 0, where h(x) =

min(f(x), 1 − g(−x) + g(x));

(3) f̂(x) − f̂(−x) ≥ g(x) − g(−x) for all x ≥ 0;

(4) f(x) − f(−x) ≥ g(x) − g(−x) for all x ≥ 0, then f̂ = f .

As a consequence of the lemma, F̂n is the closest estimator to Fn satisfying

properties (1)−(4). Also note that F̂n(x) → 1 as x → ∞ and F̂n(x) → 0 as

x → −∞. For an arbitrary function g, we write ∆g(x) = g(x) − g(−x−), x ∈ R.

It is not difficult to write an explicit computational expression for F̂n(x).

Note that if x < 0 and X(i) ≤ x < X(i+1), then F̂n(x) = min{i/n, 1 + ∆G(x)}.
If x ≥ 0, and X(i) ≤ x < X(i+1), let j be the unique integer such that X(j) ≤
−x < X(j+1), and let k be the unique integer such that X(k) ≤ 0 < X(k+1). Since

sup0≤y≤x(min(Fn(−y) + ∆G(y), 1)) = min(sup0≤y≤x(Fn(−y) + ∆G(y)), 1), then

F̂n(x)=max{i/n,min{1,max{j/n + ∆G(x),maxj+1≤l≤k{l/n − ∆G(X(l))}}}}.
Before proceeding to the asymptotic theory of F̂n, note that following ideas

similar to those that lead to Lemma 2.1, it is possible to define the estimator,

F ∗
n(x) =

{

min(Fn(x), inf
x≤y≤0

(F ∗
n(−y) + ∆G(y))), x < 0

max(Fn(x),∆G(x)), x ≥ 0.
(2.3)

It turns out that F ∗
n satisfies (1.1), it is a distribution function, and it is

the closest distribution to Fn with the properties that (1) F ∗
n ≤ Fn for x ≤ 0;

(2) F ∗
n ≥ Fn for x > 0; and (3) F ∗

n(x) ≤ min(Fn(x),max(Fn(−x) + ∆G(x), 0))

for all x < 0. The proof of the statement is similar to the proof of Lemma 2.1

and will not be repeated. F̂n and F ∗
n share similar properties. They are strongly

uniformly consistent, converge weakly, under suitable conditions, to a Gaussian

process, and both render Fn inadmissible with respect to a large class of loss

functions. However, there is no clear choice between F̂n and F ∗
n in terms of their

mean squared error properties: F̂n dominates F ∗
n on the left tail, while the reverse

situation occurs on the right tail. This is not unlike what happens in several other

situations. For example, when estimating an IFRA distribution, the estimator of

Wang (1987a) behaves better than the isotonic regression estimator on the right

tail, while the latter has smaller mean squared error than the former on the left

tail of the distribution. We have opted for providing the asymptotic theory for F̂n

only, but the asymptotic theory for F ∗
n is similar. Since any convex combination

of F̂n and F ∗
n satisfies (1.1), our simulation work will also examine the mean
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squared error properties of (F̂n + F ∗
n)/2. The strong uniform convergence of this

average is immediately inherited from that of F̂n and F ∗
n . It will turn out that

the average of F̂n and F ∗
n behaves uniformly better than Fn, F̂n and F ∗

n in terms

of the mean squared error and, thus, it is a better choice than F̂n or F ∗
n .

Returning our attention to the asymptotic theory of F̂n, we now consider the

strong uniform consistency of F̂n. The following lemma validates our estimator in

the sense that it shows that it is closer to the true distribution than the empirical

is.

Lemma 2.2. Suppose that F and G satisfy (1.1) with G known. Then, for

every n, |F̂n(x) − F (x)| ≤ |Fn(x) − F (x)| for all x ≤ 0, and |F̂n(x) − F (x)| ≤
max{|Fn(x) − F (x)|, sup0≤y≤x |Fn(−y) − F (−y)|} for every x > 0.

Thus, F̂n is pointwise closer to F than Fn is for all x ≤ 0 and every n. Strong

uniform convergence of F̂n follows immediately from the previous lemma.

Theorem 2.3. Suppose that F and G satisfy (1.1) with G known. Then, for

every n, supx |F̂n(x) − F (x)| ≤ supx |Fn(x) − F (x)|.
Since the distribution of supx |Fn(x)− F (x)| is independent of F for F con-

tinuous, while the distribution of supx |F̂n − F | is not, it follows that for loss

functions of the form L(F,G) = V (supx |F −G|) where V (·) is nondecreasing on

(0,∞), F̂n dominates Fn in risk. Consider now the asymptotic distribution of

F̂n. Let H(y) = ∆G(y) + F (−y).

Theorem 2.4. Suppose that F and G satisfy (1.1) with F continuous and G

known.

(i) If x ≤ 0, or x > 0 with F (x) > sup0≤y≤x H(y),

√
n(F̂n(x) − F (x))

D→ N(0, F (x)(1 − F (x))).

(ii) If x > 0, with F (x) = H(x), and F is strictly increasing on (x − η, x) for

some η > 0,

√
n(F̂n(x) − F (x))

D→ max(X,Y ),

where (X,Y ) follows a mean zero bivariate normal distribution with

Variance(X) = F (x)F̄ (x), Variance(Y ) = F (−x)F̄ (−x) and Cov (X,Y ) =

F (−x)F̄ (x), where F̄ = 1 − F .

Pointwise confidence intervals may be computed using Theorem 2.4. To

develop confidence bands, the asymptotic behavior of the process {√n(F̂n(t) −
F (t)),−∞ < t < ∞} as n → ∞ is needed. Hereafter, the process {B(t),−∞ <
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t < ∞} will denote the Brownian motion with E(B(t)) = 0 and Cov (B(s), B(t))

= min(F (s), F (t)) − F (s)F (t).

Theorem 2.5. Let (1.1) hold with a = b = 0, and suppose F is continuous and

strictly increasing.

(i) If ∆F (x) > ∆G(x) for all x > 0 then the process {√n(F̂n(x)−F (x)), −∞ <

x < ∞} converges weakly to the process {B(x),−∞ < x < ∞}.
(ii) If ∆F (x0) = ∆G(x0) for some x0 6= 0, while ∆F (x) 6≡ ∆G(x), then the

process {√n(F̂n(x) − F (x)),−∞ < x < ∞} does not converge weakly.

(iii) If ∆F (x) = ∆G(x) for all x and F is strictly increasing, then the pro-

cess {√n(F̂n(x) − F (x)),−∞ < x < ∞} converges weakly to the process

{B(x)I{x<0} + max(B(x), B(−x)) I{x≥0},−∞ < x < ∞}.

Asymptotic confidence bands can be constructed for the distribution function

F in the cases dealt with in (i) and (iii) of the theorem. In the first case, the

distribution of supx |B(F (x))|, as discussed in Billingsley (1999), provides the

asymptotically exact confidence bands. In the case of (iii), the same approach

will yield asymptotically conservative bands for F . This follows since

sup
x

|B(F (x))I{x<0} + max(B(F (x)), B(F (−x)))I{x≥0}| ≤ sup
x

|B(F (x))|, (2.4)

and hence the level of confidence of the asymptotic coverage of the confidence

bands obtained from the distribution of supx |B(F (x))| is a lower bound for the

exact asymptotic level obtained from the distribution of the limiting process in

(iii). Thus an asymptotic test for equality of F and G in peakedness can be

obtained easily from (iii).

Corollary 2.6. For testing that F and G are equal in peakednes, a conservative

test may be obtained by rejecting the null hyphotesis when supx |
√

n(F̂n(x) −
F (x))| > kα where kα is the 1 − α quantile of supx |B(F (x))|.

3. The Two Sample Problem

Here X1, . . . ,Xn and Y1, . . . , Ym are independent random samples from F

and G respectively, where F and G satisfy (1.1) with a = b = 0. As an estimator

of G based on Y1, . . . , Ym we use the empirical distribution function Gm(·). To

estimate F , define

F̂n,m(x) =







min(Fn(x), 1 + ∆Gm(x)), x ≤ 0

max(Fn(x), sup
0≤y≤x

(∆Gm(y) + F̂n,m(−y−))), x > 0,
(3.1)
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where Fn is the empirical distribution function based on X1, . . . ,Xn. Similar

arguments to those used to demonstrate that (2.1) defines a cumulative distribu-

tion function show that (3.1) does as well. In addition, F̂n,m(x−) − F̂n,m(−x) ≥
Gm(x−)− Gm(−x). In case Fn and Gm satisfy (1.1) for all x ≥ 0, it is desirable

that F̂n,m(x) = Fn(x) for all x. To see that in fact F̂n,m(x) = Fn(x) for all x,

suppose that Fn(x−) − Fn(−x) ≥ Gm(x−) − Gm(−x) for all x > 0. Then, for

y < 0, Fn(y) ≤ Fn(−y−) + ∆Gm(y) ≤ 1 + ∆Gm(y). It follows that for x < 0,

F̂n,m(x) = Fn(x). On the other hand, when x > 0,

F̂n,m(x) = max{Fn(x), sup
0≤y≤x

(∆Gm(y) + F̂n,m(−y−))}

= max{Fn(x), sup
0≤y≤x

(∆Gm(y) + Fn(−y−))}.

Now, Fn(y) = lim
ε↓0

Fn(y + ε) ≥ lim
ε↓0

Fn((y + ε)−)

≥ lim
ε↓0

(−∆Gm(−(y + ε)) + Fn(−(y + ε)))

= ∆Gm(y) + Fn(−y−).

Therefore, Fn(x) = sup0≤y≤x Fn(y) ≥ sup0≤y≤x(∆Gm(y)+Fn(−y−)), and hence,

F̂n,m(x) = Fn(x). The computational formula for F̂n,m(x) is as follows.

For x < 0, suppose that X(i) ≤ x < X(i+1) and Y(j) ≤ x < Y(j+1), Y(k) <

−x ≤ Y(k+1), j ≤ k; then F̂n,m(x) = min{i/n, 1−[(k−j)/m]}. For x > 0, suppose

that X(i) ≤ x < X(i+1). Let j be the unique integer such that X(j) < −x ≤ X(j+1)

and let k be the unique integer such that X(k) < 0 ≤ X(k+1). Then, F̂n,m(x) =

max{i/n,min{1,max{j/n + ∆Gm(x),maxj+1≤l≤k{l/n − ∆Gm(X(l))}}}}.
The following Theorem provides the strong uniform convergence of F̂n,m.

Theorem 3.1. Let F and G be continuous distributions that satisfy (1.1) and let

F̂n,m be defined by (3.1). Then, with probability one, supx |F̂n,m(x) − F (x)| → 0

as n,m → ∞.

Theorem 3.2 provides the asymptotic distribution of F̂n,m, and is analogous

to Theorem 2.4.

Theorem 3.2. Suppose that F and G satisfy (1.1), with F and G continu-

ous.

(i) If x ≤ 0, or x > 0 with F (x) > sup0≤y≤x H(y), then as n,m → ∞,

√
n(F̂n,m(x) − F (x))

D→ N(0, F (x)(1 − F (x))).
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(ii) If x > 0, with F (x) = sup0≤y≤x H(y), then as n,m → ∞,

√
n(F̂n,m(x) − F (x))

D→ max(X,Y ),

where (X,Y ) is distributed as in (ii) of Theorem 2.4.

The weak convergence of {√n(F̂n,m(x)−F (x)),−∞ < x < ∞} is the content

of the next theorem, and will serve as the basis for an asymptotic test for equality

in peakedness.

Theorem 3.3. Suppose (1.1) holds with F and G continuous, and F strictly

increasing.

(i) If ∆F (x) > ∆G(x) for all x > 0, then {√n(F̂n,m(x)−F (x)),−∞ < x < ∞}
converges weakly to the process {B(x),−∞ < x < ∞}, as n,m → ∞.

(ii) If ∆F (x0) = ∆G(x0) for some x0 6= 0, while ∆F (x) 6≡ ∆G(x), then the

process {√n(F̂n,m(x) − F (x)),−∞ < x < ∞} does not converge weakly.

(iii) If ∆F (x) = ∆G(x) for all x ≥ 0, then the process {√n(F̂n,m(x) − F (x)),

−∞ < x < ∞} converges weakly as n,m → ∞ to the process {S(x),−∞ <

x < ∞}, where S(x) = B(x)I{x<0} + max(B(x), B(−x))I{x≥0}.

The previous Theorem, parts (i) and (iii), can thus provide asymptotic con-

fidence bands for F (x) based on the estimator F̂n,m, and item (iii), as a conse-

quence of (2.4), allows for a conservative Kolmogorov-Smirnov type test of the

hypothesis that ∆F (x) = ∆G(x) for all x. This last is stated as a corollary.

Corollary 3.4. For testing that ∆F (x) = ∆G(x) for all x > 0, a conservative

test is given by rejecting when supx |
√

n(F̂n,m(x) − F (x))| > kα where kα is as

defined in Corollary 2.6.

4. The Case of Censored Data

Let X1, . . . ,Xn be a random sample from the distribution F . As in Csörgő

and Horváth (1983), an independent sample Y1, . . . , Yn with left-continuous dis-

tribution L censors the distribution F on the right. Thus, the available data

consists of the pairs (Zi, δi), i = 1, 2, . . . , n, where Zi is the minimum of Xi and

Yi, and δi is the indicator function of the event {Xi ≤ Yi}. Let F̃n denote the

Kaplan-Meier product-limit estimator of F .

For F ∗ a probability distribution, let TF ∗ = inf{t : F ∗(t) = 1}, and assume

henceforth that F and L do not have jumps in common. The proposed estimators

are obtained by replacing the empirical cumulative distribution functions Fn and

Gm by their Kaplan-Meier counterparts, and the asymptotic distribution theory

for the estimators is based on that asymptotic theory. Let T ∗ = min(TF , TL).

The strong uniform convergence of F̃n on (−∞, T ∗] has been demonstrated by
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Stute and Wang (1993). Precisely, F̃n is strongly uniformly consistent for F on

(−∞, T ∗] if and only if either F{T ∗} = 0 or F{T ∗} > 0 but L(T ∗−) < 1. Note

that F and L are not required to be continuous. Under stronger conditions on F

and L, the weak convergence of {√n(F̃n(t)−F (t)),−∞ < x < T}, for T < T ∗, to

a mean zero Gaussian process Z∗ with covariance function Cov(Z∗(s), Z∗(t)) =

C(s)(1−F (s))(1−F (t)), s ≤ t, where C(s) =
∫ s

−∞ dF (t)/[(1−F (t))2(1−L(t))],

s < TF , was demonstrated by Breslow and Crowley (1974). Suppose that G is

known, and that F and G satisfy (1.1) with a = b = 0. Define

F̃ ∗
n(x)=min(F̃n(x), 1+∆G(x))Ix≤0+max(F̃n(x), sup

0≤y≤x

(∆G(y)+F̃ ∗
n (−y)))Ix>0.

(4.1)

The strong uniform convergence of F̃ ∗
n follows from Stute and Wang (1993) and

the following.

Theorem 4.2. When (1.1) holds, supx≤T ∗ |F̃ ∗
n(x) − F (x)| ≤ supx≤T ∗ |F̃n(x) −

F (x)| for every n.

If in addition F is continuous, it follows from Theorem 4.2 that F̃ ∗
n is better than

F̃n for loss functions of the form L(δ, F ) = v(supx≤T ∗ |δ(x) − F (x)|), where v is

nondecreasing.

Consider now the weak convergence of F̃ ∗
n . Both F and G are assumed to

be continuous. Define Zn(x) =
√

n(F̃ ∗
n(x) − F (x)) for −∞ < x ≤ T , where

T < T ∗ and W (T ) < 1, with 1 − W (t) = (1 − F (t))(1 − L(t)). Suppose that

∆F (x) > ∆G(x) for every x ≥ 0. Select, for arbitrary k, t1 < · · · < tk = T , and

consider the random vectors (Zn(t1), . . . , Zn(tk)) and (S∗
n(t1), . . . , S

∗
n(tk)), where

S∗
n(x) =

√
n(F̃n(x) − F (x)). It follows from Földes and Rejtő (1981), see also

Aly, Csörgő and Horváth (1985), that almost surely as n → ∞,

sup
−∞<x≤T

|F̃n(x) − F (x)| = O
(

n− 1

2 (log n)
1

2

)

. (4.2)

As a consequence of (4.2), (Zn(t1), . . . , Zn(tk)) = (S∗
n(t1), . . . , S

∗
n(tk)), eventu-

ally with probability one. Therefore, the finite-dimensional distributions of Zn

converge to those of the weak limit of the Kaplan-Meier process.

Arguments similar to those that led to tightness of {√n(F̂n(x)−F (x)),−∞ <

x < ∞} in Section 2, show that eventually, with probability one, supt≤s≤t+δ |Zn(s)

−Zn(t)| = supt≤s≤t+δ |S∗
n(s)− S∗

n(t)|. Since {S∗
n(x),−∞ < x ≤ T} is tight, weak

convergence of Zn follows.

Theorem 4.3. Suppose F and L are continuous with T < T ∗ and W (T ) < 1.

Let F̃ ∗
n be defined by (4.1). Suppose that F is strictly increasing.

(i) If ∆F (x) > ∆G(x) for all x, then {√n(F̃ ∗
n(x) − F (x)),−∞ < x ≤ T}

converges weakly to the weak limit Z∗ of the Kaplan-Meier process.
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(ii) If ∆F (x0) = ∆G(x0) for some x0 < T with ∆F (x) 6≡ ∆G(x), then

{√n(F̃ ∗
n(x) − F (x)),−∞ < x ≤ T} does not converge weakly.

(iii) If ∆F (x) = ∆G(x) for all x ≥ 0, then {√n(F̃ ∗
n(x) − F (x)),−∞ < x ≤

T} converges weakly to {S(x),−∞ < x ≤ T}, where S(x) = Z∗I{x<0} +

max{Z∗(x), Z∗(−x)}I{x≥0}.

In the two-sample problem let F , L, T , T ∗ and C be as in Theorem 4.3.

Also, let X
′

1, . . . ,X
′

m be a random sample from G which is censored on the right

by a (left-continuous) distribution function L
′

. Let T ∗∗ = min(TG, TL
′ ), and let

T
′

< T ∗∗. Let C
′

be defined by C
′

(s) =
∫ s

−∞ dG(t)/[(1 − G(t))2(1 − L
′

(t))],

s < T
′

, and let {Z ′

(t),−∞ < t < T
′} be a mean zero Gaussian process with

covariance function Cov(Z
′

(s), Z
′

(t)) = C
′

(s)(1 − G(s))(1 − G(t)), s ≤ t. Let

G̃m be the Kaplan-Meier estimator of G based on X
′

1, . . . ,X
′

m. Define

F̃ ∗
n,m(x) = min(F̃n(x), 1 + ∆G̃m(x))I{x≤0} + max(F̃n(x),

sup
0≤y≤x

(∆G̃m(y) + F̃n,m(−y−)))I{x>0}.

The proofs of Theorems 4.4, 4.5 are omitted as they follow from those of Theorems

3.2, 3.3.

Theorem 4.4. With probability one, supt<T ∗ |F̃ ∗
n,m(t)−F (t)| → 0 as n,m → ∞.

Theorem 4.5. Let the asumptions of Theorem 4.3 hold, and Wn,m(x) =√
n(F̃ ∗

n,m(x) − F (x)).

(i) If ∆F (x) > ∆G(x) for x > 0, {Wn,m(x),−∞ < x ≤ T} converges weakly,

as m,n → ∞ to the Gaussian process Z∗ of Theorem 4.3, where T < T
′

=

min(T ∗, T ∗∗).

(ii) If ∆F (x0) = ∆G(x0) for some x0 and ∆F (x) 6≡ ∆G(x), {Wn,m(x),−∞ <

x≤ T} does not converge weakly as n,m → ∞.

(iii) If ∆F (x)=∆G(x) for x ≥ 0 and T < T
′

= min(T ∗, T ∗∗), {Wn,m(x),−∞ <

x ≤ T} converges weakly, as m,n → ∞, to {S(x),−∞ < x ≤ T}, defined in

(iii) of Theorem 4.3.

5. Genetics Applications

The statistical concept of dispersion has played an important role in statis-

tical genetics as a way to measure genetic variability in a population of interest.

Typically, this genetic variability is manifested through the variability in a spe-

cific phenotype. This section deals with a data set to illustrate the estimators.

Quantitative Trait Linkage Analysis.- The search for genes that control

quantitative traits continues to be an important problem in the area of statistical
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genetics. Although there are various methods to locate these genes, depending on

type and availability of genomic information, a common non-parametric method

is the sib-pair method introduced by Haseman and Elston (1972). The essence of

this method is that the variation of the phenotype value between sibs is related

to the proportion of alleles shared identical by descent (IBD). The method of

Haseman and Elston (1972) makes precise these observations, and is based on

the regression model discussed in the introduction: E(Xi|πi) = α + βπi.

When the null hypothesis of no linkage is rejected, this model makes pre-

cise the intuitive notion that the more genetically similar the sibs are, as mea-

sured by the proportion of alleles IBD, the more similar they will be in their

phenotypical value. That is, siblings who share two alleles IBD have a more

peaked distribution of phenotypic differences than siblings who share one allele

IBD, and these, in turn, are more similar than siblings who share zero alleles

IBD. Using this approach Fabsitz, Carmelli and Hewitt (1992) concluded that

monozygotic twins are more similar then dizygotic twins in terms of their BMI.

Mooser, Scheer, Marcovina, Wang, Guerra, Cohen and Hobbs (1997) examined

the relationship between levels of Lipoprotein (a), or Lp(a), in African-American

families and a highly polymorphic glycoprotein, apolipoprotein (a). High levels of

Lp(a) lead to premature atherosclerosis, and therefore understanding the causes

that lead to high levels of Lp(a) has been of utmost importance. Analyzing the

plasma Lp(a) levels of 257 sibling pairs from 49 independent African-American

families from the Dallas metroplex area, and using the methodology developed

by Haseman and Elston (1972), it was concluded that the Lp(a) plasma levels

were much more similar in the siblings who inherited two alleles IBD, than in

the groups of siblings who inherited zero or one allele IBD.

Following a similar approach, and assuming that the conclusions reached

by Mooser et al. (1997) apply as well to Caucasian subjects, we examined the

same relationship utilizing a data set collected on 71 Caucasian families in the

Dallas metroplex area that consists of 75 sib-pair phenotype differences, of which

38 observations are in the group of pairs of siblings with zero alleles IBD, 34

observations in the group with one allele IBD, and 13 observations in the group

with two alleles IBD. Figure 2A shows the empirical distribution functions for

each of the three IBD groups for the Caucasian population. It is clear from Figure

2A, that the condition (1.1) is not satisfied by the empiricals of the groups IBD0

and IBD1. Our methodology modifies the empirical distribution function for the

group of one allele shared IBD with the restriction that it must be more peaked

about 0 than the distribution for the group of zero alleles shared IBD. Figure

2B presents the empirical and the new distribution function for the groups IBD0

and IBD1, calculated using the estimators defined earlier.
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Empirical CDFs for Caucasians by IBD New Estimator for Caucasian IBD 1

Sib-pair Differences in Lp(a) Sib-pair Differences in Lp(a)

Figure 2. Estimators of the distribution of the Sib-pair differences: A with-

out restrictions; B with peakedness restrictions.

6. Computer simulation

Computer simulations were performed to study the mean squared error

(MSE) behavior of the proposed estimators. Experiments were performed for a

wide class of underlying distributions. Gauss was used to run 10,000 repetitions

of the experiments in double precision. In the one-sample problem, Theorem 2.1

states that the new estimator is closer to the true distribution than the empirical,

in terms of the sup norm, and perhaps suggests that the new estimator is also

closer, point-wise, to the true distribution than the empirical distribution func-

tion. This of course is true for x < 0 as demostrated by Theorem 2.1. Similarly,

the estimator defined through (2.3) can be shown to be point-wise closer to F

than the empirical distribution function for x ≥ 0. As pointed out in the dis-

cussion leading to Lemma 2.2, the average (F̂n + F ∗
n)/2 of the estimators defined

by (2.1) and (2.3) behaves better in MSE than either F̂n or F ∗
n . Therefore, the

simulation work presented in Figure 3 shows the ratios of the mean squared error

of the empirical distribution function to the mean squared error of (F̂n + F ∗
n)/2.

Four cases are considered in Figure 3. In the one-sample problem, Figure 3

illustrates the gains in MSE of the estimator (F̂n + F ∗
n)/2 over the empirical dis-

tribution function for the case that F is the standard normal distribution and G

represents the normal distribution with mean zero and variance 1.21. The distri-

butions used to generate the second graph in the top row are: F is the standard

Cauchy distribution, G is Cauchy centered at zero and scale equal to 1.1, and the

censoring distribution is the standard exponential. For the two-sample problem,

the second row of Figure 3, the first case considers the logistic distribution with
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One sample: F∼N(0,1.0), G∼ (0,1.21) One sample: F∼Cauchy(1.0), G∼Cauchy(1.1)

Two sample: F∼Logistic(1.0), G∼Logistic(1.5) Two sample: F∼Cauchy(1.0), G∼Cauchy (2.0)

Figure 3. Ratios of Mean Squared Errors of the Empirical Distribution
Function or the Kaplan-Meier Estimator to the Constrained Estimators. In
the two sample problem, sample sizes are equal.

F the standard logistic, and G the logistic centered at zero and with scale pa-

rameter equal to 1.5; the second case takes F as a standard Cauchy distribution

while G is a Cauchy centered at zero and scale parameter equal to 2. It is clear

from Figure 3, that the new estimator behaves uniformly better than the empir-

ical in the one-sample problem - even under right censoring - while in the two

sample problem it behaves better than Fn except in a neighborhood of 0. The
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results are representative of the simulation results that were obtained and these

results can be accessed at http://www.stat.rice.edu/ ∼jrojo. The ratios of MSE

are evaluated at 19 quantiles (0.05, 0.10, . . ., 0.95) of the distribution function

F .

7. Appendix

The following notation, and simple observation (5), will be used throughout

the Appendix.

(1) H(x) = ∆G(x) + F (−x), and Hn(x) = ∆G(x) + F̂n(−x).

(2) For arbitrary probability distribution function F ∗, F̄ ∗ = 1 − F ∗.

(3) Let {An}∞n=1 represent a sequence of events. Then, An occurs eventually with

probability one - denoted as ewp1 - if P (lim infn→∞ An) = 1.

(4) en(F (x)) = Fn(x) − F (x) and ên(F (x)) = F̂n(x) − F (x).

(5) Condition (1.1) implies that H̄(x) ≥ F̄ (x) for all x ≥ 0.

Proof of Lemma 2.1. By (2.2), f̂ is nondecreasing with f̂ ≤ f for x ≤ 0 and

f̂(x) ≥ max{f(x),∆g(x)+ f̂ (−x)} for x > 0. The right continuity of f̂ for x ≤ 0

follows from the right continuity of f and the continuity of g. To confirm the

right continuity for x > 0, consider

f̂(x + ǫ) = max{f(x + ǫ), sup
0≤y≤x+ǫ

(∆g(y) + f̂(−y))}

≤ max{f(x + ǫ),max{ sup
0≤y≤x

(∆g(y) + f̂(−y)),∆g(x + ǫ) + f̂(−x)}},

and let ǫ ↓ 0. To show (3), consider, for x > 0 and ǫ > 0,

f̂(x − ǫ) − f̂(−x) ≥ max(f(x − ǫ),∆g(x − ǫ) + f̂(−x + ǫ)) − f̂(−x)

≥ ∆g(x − ǫ) + f̂(−x + ǫ)) − f̂(−x).

Letting ǫ ↓ 0, (3) follows from the right continuity of f̂ and the continuity of g.

To prove (4), when f satisfies (1.1), f(−x) ≤ f(x−) − ∆g(x) ≤ 1 − ∆g(x),

and thus for x < 0, f̂(x) = f(x). Similarly, for y > 0, f(y−) ≥ ∆g(y) + f(−y)

for all y > 0, and hence f(x) ≥ sup0≤y≤x(∆g(y) + f̂(−y)), since f̂(x) ≤ f(x) for

all x ≤ 0. Then f̂ = f if (1.1) holds.

It remains to show that f̂ is the closest function to f satisfying (1)−(4).

Let f∗ be another function satisfying the assumptions and conclusions of the

lemma. Using (3), for x ≤ 0, f∗(x) ≤ f∗(−x) + ∆g(x) ≤ 1 + ∆g(x), and

by (1) f∗ ≤ f for x ≤ 0. Therefore f∗ ≤ f̂ for x ≤ 0. For x > 0, since

f∗ ≥ f and f∗(x) = sup0≤y≤x f∗(y) ≥ sup0≤y≤x(∆g(y) + h(−y)), where h(x) =

min(f(−x), 1 + ∆g(x)), it follows that f∗(x) ≥ f̂(x) for all x > 0. Since f̂(0) =

f(0), f∗(x) ≥ f̂(x) for all x.
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Proof of Lemma 2.2. Suppose first that x ≤ 0, and define A(x) = {en(F (x)) ≥
0}. Then,

|ên(F (x))| = |min(en(F (x)), H̄(−x))|
= min(en(F (x)), H̄(−x))IA(x) + |en(F (x))|IAc(x)

≤ |Fn(x) − F (x)|, (7.1)

where the identity follows since H̄(−x) ≥ F̄ (−x) > 0 for x ≤ 0. It follows from

(7.1) that F̂n is closer to F than the empirical, for each x ≤ 0 and each n, and

therefore

sup
x≤0

|ên(F (x))| ≤ sup
x≤0

|en(F (x))|. (7.2)

Now suppose that x ≥ 0 and observe that under (1.1), F (y) ≥ H(y) for all y ≥ 0,

and hence F (x) ≥ sup0≤y≤x H(y) for all x ≥ 0. Therefore, the result follows as

a consequence of (7.2) and the following

|ên(F (x))| = |max(Fn(x), sup
0≤y≤x

Hn(y)) − max(F (x), sup
0≤y≤x

H(y))|

≤ max(|en(F (x))|, sup
0≤y≤x

|ên(F (−y)|)

≤ max(|en(F (x))|, sup
0≤y≤x

|en(F (−y))|).

Proof of Theorem 2.4. Suppose first that x≤0. Then ên(F (x))=min(en(F (x)),

H̄(−x)).

Since H̄(−x) ≥ F̄ (−x) > 0, ewp1, ên(F (x)) = en(F (x)). It follows that for

x ≤ 0,
√

nên(F (x))
D→ N(0, F (x)F̄ (x)).

If x > 0, and F (x) − sup0≤y≤x H(y) = a > 0, then

ên(F (x)) = max(en(F (x)), sup
0≤y≤x

(Hn(y) − F (x)))

= max(en(F (x)), sup
0≤y≤x

(H(y) + ên(F (−y)) − F (x)).

But, ewp1, sup0≤y≤x(H(y) + ên(F (−y)) − F (x) ≤ −a + sup0≤y≤x(en(F (−y)).

Therefore, ewp1,
√

n(ên(F (x)) =
√

n(en(F (x)), and hence
√

n(ên(F (x))
D→ N(0,

F (x)F̄ (x)). On the other hand, if x > 0 and F (x) = H(x), so that F (x) =

sup0≤y≤x H(y), then ên(F (x)) = max(en(F (x)), sup0≤y≤x(Hn(y)) − F (x)), and

sup
0≤y≤x

(Hn(y)) − F (x) = sup
0≤y≤x

{H(y) + min{en(F (−y)), H̄(y)}} − F (x). (7.3)

Since H̄(y)≥ F̄ (y)> 0, it follows that ewp1, min(en(F (−y)), H̄(y)) = en(F (−y)).

Therefore, the right side of (7.3) equals, ewp1, sup0≤y≤x(H(y)−F (x)+en(F (−y)).
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If in addition F is strictly increasing on (x − η, x) for some η > 0, then for

0 < δ < η,

sup
0≤y≤x

(H(y) − F (x) + en(F (−y)) = max{ sup
0≤y≤x−δ

(H(y) − F (x) + en(F (−y)),

sup
x−δ<y≤x

(H(y) − F (x) + en(F (−y))}.

Since F (x)>F (x−δ)≥sup0≤y≤x−δ H(y) for every δ<η, and since supy |en(F (y))|
→ 0 with probability one, it follows that letting δ ↓ 0, ewp1, sup0≤y≤x(H(y) −
F (x)+en(F (−y))=en(F (−x)). Therefore, for x > 0, with F (x)=sup0≤y≤x H(y),

ewp1,

√
n(ên(F (x)) = max(

√
n(en(F (x)),

√
n(en(F (−x)))

D→ max(X,Y ),

where (X,Y ) follows a mean zero bivariate normal distribution with Variance(X)

= F (x)F̄ (x), Variance(Y ) = F (−x)F̄ (−x), and Cov(X,Y ) = F (−x)F̄ (x).

Proof of Theorem 2.5. Using arguments similar to those used to prove (i)

in Theorem 2.4, it follows immediately that the finite-dimensional distributions

of the process {√n(ên(F (t)),−∞ < t < ∞} converge to the finite-dimensional

distributions of the process {B(t),−∞ < t < ∞}. To prove tightness, and

hence weak convergence of the process {√n(ên(F (x)),−∞ < x < ∞}, we fol-

low Billingsley (1999), Theorem 15.5. Define Zn(x) =
√

nên(F (x)). Note that

P (|Zn(0)| > a) = P (|nen(F (0))| >
√

na) ≤ V ar(nFn(0))/na2 = F (0)F̄ (0)/a2.

Therefore, for every positive η there exists a > 0 such that P (|Zn(0)| > a) ≤ η

for every n ≥ 1. It remains to show that, for every positive ε and η, there exists

δ, 0 < δ < 1, and an integer n0 such that for every t and all n ≥ n0,

P
(

sup
t≤s≤t+δ

|Zn(s) − Zn(t)| ≥ ε
)

≤ ηδ. (7.4)

For that purpose, suppose first that t < 0 and select δ small enough that t + δ <

0. Then supt≤s≤t+δ |Zn(s) − Zn(t)| = supt≤s≤t+δ

√
n|min(en(F (s)), H̄(−s)) −

min(en(F (t)), H̄(−t))|. Since H̄(−s) > F̄ (−s) ≥ F̄ (−t) > 0, and H̄(−t) >

F̄ (−t) > 0, then, ewp1, supt≤s≤t+δ |Zn(s) − Zn(t)| = supt≤s≤t+δ

√
n|en(F (s)) −

en(F (t))|. Since the process {√n(en(F (s)),−∞ < s < ∞} is tight, (7.4) is

satisfied for t < 0. That is, for every positive ε and η, there exits δ > 0 and an

integer n0 such that for t < 0, P (supt≤s≤t+δ |Zn(s) − Zn(t)| ≥ ε) ≤ ηδ. If t > 0,

then

sup
t≤s≤t+δ

|Zn(s) − Zn(t)| = sup
t≤s≤t+δ

√
n|max(en(F (s)), sup

0≤y≤s

(Hn(y)) − F (s))

−max(en(F (t)), sup
0≤y≤t

(Hn(y) − F (t))|. (7.5)
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Since sup0≤y≤s(Hn(y))−F (s) = sup0≤y≤s(H(y)−F (s)+min(en(F (−y)), H̄(y))),

and H̄(y) > F̄ (y) ≥ F̄ (s) > 0 for all y ≤ s, and since F (s) > sup0≤y≤s H(y),

it follows from the strong uniform convergence of Fn to F , that, ewp1, the first

max on the right side of (7.5) equals en(F (s)). Similar arguments yield the result

that, ewp1, max(en(F (t)), sup0≤y≤t(Hn(y) − F (t))) = en(F (t)). It follows that,

ewp1,

sup
t≤s≤t+δ

|Zn(s) − Zn(t)| = sup
t≤s≤t+δ

√
n|en(F (s)) − en(F (t))|. (7.6)

The tightness of the empirical process then implies (7.4) for t > 0. The case

t = 0 follows immediately from the argument used for the case t > 0, after

recalling that F̂n(0) = Fn(0). Hence {Zn(t),−∞ < t < ∞} is tight and therefore

converges weakly.

(ii) Without loss of generality suppose that x0 > 0 with ∆F (x0) = ∆G(x0).

Let 1 ≤ k ≤ n be such that X(k) ≤ x0 < X(k+1), where X(i) denotes the

ith order statistic and X(n+1) ≡ ∞. Without loss of generality, suppose that

there is γ > 0 such that ∆F (x) > ∆G(x) for every x ∈ (x0, x0 + γ). Note

that supx0≤s≤x0+δ |
√

nên(F (s))−√
nên(F (x0))| = supx0≤s≤x0+δ

√
n|(max(Fn(s),

sup0≤y≤s(Hn(y)))−F (s))−(max(Fn(x0), sup0≤y≤x0
(Hn(y))−F (x0)))|. For sn =

x0 + min(δ, γ,X(k+1) − x0)/2, ewp1, max(Fn(sn), sup0≤y≤sn

(Hn(y))) − F (sn) =

en(F (sn)). Also, ewp1, max(en(F (x0)), sup0≤y≤x0
(Hn(y) − F (x0))) = max(en

(F (x0)), en(F (−x0))). It follows that, ewp1,

sup
x0≤s≤x0+δ

|
√

nên(F (s)) −
√

nên(F (x0))|

≥
√

n|en(F (sn)) − max(en(F (x0)), en(F (−x0)))|
=

√
n|max(en(F (x0)) − en(F (sn)), en(F (−x0)) − en(F (sn)))|

=
√

n|max(F (sn) − F (x0), en(F (−x0)) − en(F (sn)))|
≥

√
n max(0, en(F (−x0)) − en(F (sn))).

Thus, P (supx0≤s≤x0+δ |
√

n(ên(F (s))−ên(F (x0))|≥ε)≥P (
√

n max(0, en(F (−x0))

−en(F (sn))) ≥ ε) → 1 − Φ(ε/σ), where σ2 denotes the limiting variance of√
n(en(F (−x0)) + en(F (sn))), which equals F (−x0)F̄ (−x0) + F (x0)F̄ (x0) +

2F (−x0)F̄ (x0). It follows that the process {Zn(t),−∞ < t < ∞} is not tight

and hence cannot converge weakly.

(iii) If ∆F (x) = ∆G(x) for all x ≥ 0, then F̂n and Zn become, respectively,

F̂n(x) =







min(Fn(x), 1 + ∆F (x)), x ≤ 0

max(Fn(x), sup
0≤y≤x

(∆F (y) + F̂n(−y))), x > 0, and
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Zn(x) =







√
n min(en(F (x)), F̄ (−x))), x ≤ 0

√
n max(en(F (x)), sup

0≤y≤x

(∆F (y) + F̂n(−y) − F (x))), x > 0.

Since F̄ (−x) > 0, ewp1, Zn(x) =
√

nen(F (x)) for all x ≤ 0. Also, for any δ > 0,

sup
0≤y≤x

(∆F (y) + F̂n(−y) − F (x)) = max
{

sup
0≤y≤x−δ

(∆F (y) + F̂n(−y) − F (x)),

sup
x−δ≤y≤x

(∆F (y) + F̂n(−y) − F (x))
}

.

Since Fn is strongly uniformly consistent and F is strictly increasing, argu-

ments similar to the one used to prove (ii) of Theorem 2.4 yield that, ewp1,

sup0≤y≤x(∆F (y) + F̂n(−y) − F (x)) = en(F (−x)). It follows that the finite-

dimensional distributions of {Zn(x),−∞ < x < ∞} converge to the finite-

dimensional distributions of the process {B(x)I{x<0}+max(B(x), B(−x))I{x≥0},

−∞ < x < ∞}. It remains to prove (7.4). For t < 0, we can proceed exactly as

indicated just after (7.4). For t ≥ 0, ewp1,

sup
t≤s≤t+δ

|Zn(s) − Zn(t)| = sup
t≤s≤t+δ

√
n

∣

∣

∣
max(en(F (s)), en(F (−s)))

−max(en(F (t)), en(F (−t)))
∣

∣

∣
.

Also, {√nen(F (x))I{x<0} +
√

nmax(en(F (x)), en(F (−x))I{x≥0})} converges

weakly by the Continuous Mapping Theorem. Thus, for ε > 0 and η > 0,

there exists δ > 0 and n0 such that

P{ sup
t≤s≤t+δ

√
n|max(en(F (s)), en(F (−s)))−max(en(F (t)), en(F (−t)))|≥ε}≤ηδ

for all n ≥ n0. Thus, the process {Zn(t),−∞ < t < ∞} is tight and hence

converges weakly to the process {B(x)I{x<0} + max(B(x), B(−x))I{x≥0},−∞ <

x < ∞}.
Proof of Theorem 3.1. Consider first the case x ≤ 0. Then |F̂n,m(x) −
F (x)| = |min(en(F (x)), F̄ (x) + ∆Gm(x))|. Now ∆Gm(x) + F̄ (x) = ∆Gm(x)) +

∆G(x) − ∆G(x) + F̄ (x). Since ∆G(x) + F̄ (x) ≥ F̄ (−x) > 0, and em(G(−x−))

and em(G(x)) go to zero with probability one, it follows that, as n,m → ∞,

ewp1,

|min(en(F (x)),∆Gm(x) + F̄ (x))|
= |en(F (x)|I{en(F (x))<0} + min(en(F (x)),∆Gm(x) + F̄ (x))I{en(F (x))≥0}

≤ |en(F (x))|.
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For x > 0, write |F̂n,m(x)− F (x)| = |max(en(F (x)), sup0≤y≤x(∆Gm(y) + F̂n,m

(−y−) −F (x)))|. When F (x) = sup0≤y≤x H(y), using Lemma 1 in Rojo (1998)
and a triangle inequality

|F̂n,m(x)−F (x)| ≤ max{|en(F (x))|, | sup
0≤y≤x

(∆Gm(y) + F̂n,m(−y−)) − F (x)|}

= max{|en(F (x))|, | sup
0≤y≤x

(∆Gm(y)+F̂n,m(−y−))− sup
0≤y≤x

H(y)|}

≤ max{|en(F (x))|, sup
0≤y≤x

|em(G(y))| + sup
0≤y≤x

|em(G(−y−)|

+ sup
0≤y≤x

|F̂n,m(−y−) − F (−y)|} and, (7.7)

sup
0≤y≤x

|F̂n,m(−y−) − F (−y)|

= sup
0≤y≤x

|min(Fn(−y−), F̄ (−y) − ∆Gm(y))|

= sup
0≤y≤x

|min{en(F (−y−)), H̄(y) − em(G(y)) + em(G(−y−))}|.

Since H̄(y) ≥ F̄ (y) ≥ F̄ (x) > 0, and using the strong uniform convergence of
Gm to G and of Fn to F , it then follows that, ewp1, as n,m → ∞,

min(en(F (−y−)), H̄(y) − em(G(y)) + em(G(−y−)) = en(F (−y−)).

Therefore, as n,m → ∞, ewp1, sup0≤y≤x |F̂n,m(−y−) − F (−y)| = sup0≤y≤x

|en(F (−y−)|. This, together with (7.7), imply that if x > 0 and F (x) =
sup0≤y≤x H(y), then F̂n,m(x) → F (x) as n,m → ∞. On the other hand, if x > 0

and F (x)>sup0≤y≤x H(y), consider |F̂n,m(x)−F (x)|= |max(en(F (x)), sup0≤y≤x

(∆Gm(y)+F̂n,m(−y−))−F (x))|. It can be seen as before that, ewp1, F̂n,m(−y−)−
F (−y) = en(F (−y−)) and hence, ewp1,

max(en(F (x)), sup
0≤y≤x

(em(G(−y−))+F̂n,m(−y)−F (x))) = en(F (x)). (7.8)

It follows that F̂n,m(x) converges to F (x) with probability one for every
x. Since F is continuous and F̂n,m(x) is right-continuous, the strong uniform
convergence then follows from a lemma in Chung (1974), page 133.

Proof of Theorem 3.3. (i) If x ≤ 0, then F̂n,m(x) − F (x) = min(en(F (x)),
F̄ (x) + ∆Gm(x)). Now, F̄ (x) + ∆Gm(x) = H̄(−x) + ∆Gm(x) − ∆G(x). Since
H̄(−x) ≥ F̄ (−x) > 0, and em(G(−x−) and em(G(x)) converge to zero with prob-
ability one, it follows that as n,m → ∞, ewp1, F̂n,m(x)−F (x) = en(F (x)). Sim-
ilarly, when x > 0 and F (x) > H(x) for every x, so that F (x) > sup0≤y≤x H(y),
then

F̂n,m(x) − F (x) = max(en(F (x)), sup
0≤y≤x

(∆Gm(y) + F̂n,m(−y−) − F (x))). (7.9)
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It follows from (7.8), that (7.9) equals en(F (x)) ewp1. These results immedi-

ately imply that under the assumption in (i), the finite-dimensional distributions

of {√n(F̂n,m(x)−F (x)),−∞ < x < ∞} converge to the finite-dimensional distri-

butions of {B(x),−∞ < x < ∞}. It remains to prove tightness of the sequence

{√n(F̂m,n(x) − F (x)),−∞ < x < ∞}. Define Zn,m(t) =
√

n(F̂n,m(t) − F (t)).

Suppose first that t < 0 and select δ > 0, small enough so that t + δ < 0. Then

sup
t≤s≤t+δ

|Zn,m(s) − Zn,m(t)|

= sup
t≤s≤t+δ

√
n
∣

∣

∣
min(en(F (s)), F̄ (s) − Gm(−s−) + Gm(s))

−min(en(F (t)), F̄ (t) − Gm(−t−) + Gm(t))|.

Since H̄(−s) > F̄ (−s) ≥ F̄ (−t) > 0 and H̄(−t) > F̄ (−t) > 0, by the strong

uniform convergence of Gm, it follows that, ewp1,

sup
t≤s≤t+δ

|Zn,m(s) − Zn,m(t)| = sup
t≤s≤t+δ

|
√

n(en(F (s)) −
√

n(en(F (t))|.

Since {√nen(F (t)),−∞ < t < ∞} is tight, it follows that, for every ε > 0,

η > 0, there is δ > 0 and an n0 such that, for t < 0 and n ≥ n0,

P ( sup
t≤s≤t+δ

|Zn,m(s) − Zm,n(t)| ≥ ε) ≤ ηδ. (7.10)

If t > 0, similar arguments show that supt≤s≤t+δ |Zn,m(s) − Zn,m(t)| =√
n supt≤s≤t+δ |en(F (s)) − en(F (t)|, ewp1. Thus, the weak convergence of {√n

(F̂n,m(t) − F (t)),−∞ < t < ∞} follows.

(ii) Without loss of generality suppose that x0 > 0 with ∆F (x0) = ∆G(x0).

Let 1 ≤ k ≤ n be such that X(k) ≤ x0 < X(k+1) where X(i) denotes the ith order

statistic. Without loss of generality, suppose there is γ > 0 such that ∆F (x) >

∆G(x) for every x ∈ (x0, x0 + γ). Define sn = x0 + min(δ, γ,X(k+1) − x0)/2.

Then

P ( sup
x0≤s≤x0+δ

|
√

n(F̂n,m(s) − F (s)) −
√

n(F̂n,m(x0) − F (x0))| ≥ ε)

≥ P (|
√

n(F̂n,m(sn) − F (sn)) −
√

n(F̂n,m(x0) − F (x0))| ≥ ε).

Since F̂n,m(x) → F̂n(x) as m → ∞, the result follows as in the proof of (ii) of

Theorem 2.5.

(iii) The proof is analogous to that of (iii) in Theorem 2.5 once m → ∞, since

then F̂n,m(x) → F̂n(t) uniformly with probability one, reducing the problem to

the one-sample case.
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Proof of Theorem 4.3. The proof of (i) was given before stating the theorem,

and (ii) and (iii) follow from arguments similar to those in proofs of (ii) and (iii)

of Theorem 2.5.
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E of Conacyt-México. This work was conceived while the first author visited the

Statistics Department at UC Berkeley, the Department of Preventive Medicine

at the Loyola Medical Center in Chicago, and held a visiting position in the

Statistics Department of SMU. Dr. Victor Pérez Abreu kindly facilitated the
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