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Abstract: The multi-chart consists of several CUSUM or EWMA charts with dif-

ferent reference values that are used simultaneously to detect anticipated process

changes. We not only prove that the chart can quickly achieve the asymptotic opti-

mal bound, but also give an integral equation to determine the reference values to

arrive at optimality. Simulation results are used to verify the theoretical optimal

properties and to show that the CUSUM multi-chart is superior on the whole to

single CUSUM, single EWMA, and EWMA multi-charts in terms of run length

and robustness, and can compete with GLR control charts in detecting a range

of various mean shifts. We investigate the design of both CUSUM and EWMA

multi-charts. Some practical guidelines are provided for determining multi-chart

parameters, such as the number of constituent charts and the allocation of their

reference values.
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1. Introduction

Statistical process control (SPC) techniques are widely used in monitoring

and controlling both manufacturing and service processes. Various SPC schemes

have been extensively studied in the literature, among then the cumulative sum

(CUSUM) and exponential weighted moving average (EWMA) schemes (see

Montgomery (1996), Lai (1995), and references therein). The performance of

these schemes, however, mostly depends on the pre-specified size of the shifts

in the variables that one wishes to detect. For example, it has been shown

by Moustakides (1986) and Ritov (1990) that the performance in detecting the

mean shift of the one-sided CUSUM control chart with the reference value δ

is optimal in terms of average run length (ARL) if the actual mean shift is δ.

Srivastava and Wu (1993, 1997) and Wu (1994) provided a design of the optimal

EWMA by choosing an optimal weighting parameter in an EWMA control chart

such that it can minimize the out of control ARL for a given reference value, and
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they illustrated that the optimal EWMA performs almost as well as the CUSUM

chart in terms of ARL. Lucas and Saccucci (1990) also provided the optimal de-

sign parameters of an EWMA chart that depends on a pre-specified size of mean

shift as well as a given in-control ARL.

Some schemes do not depend on a specific shift size δ, for example the GLR

chart of Siegmund and Venkatraman (1995). Their simulation results show that

the GLR chart is better than the CUSUM control chart in detecting a mean shift

that is larger or smaller than δ, and is only slightly inferior in detecting a mean

shift of size δ. Also, by taking the maximum weighting parameter in the EWMA

control chart, Han and Tsung (2004) proposed a generalized EWMA (GEWMA)

control chart that does not depend on the reference value, and proved that the

GEWMA control chart is better than the optimal EWMA in detecting a mean

shift of any size when the in-control ARL is large. However, these methods

usually require complex computing and have not been regularly applied to real

on-line problems.

Because we rarely know the exact shift value of a process before it is detected,

it may be more important to look at a range of known or unknown mean shifts.

Examples include a semiconductor wafer manufacturing process that needs to

monitor and detect a range of anticipated changes in the position and size of serial

markings, and a wire manufacturing process that requires continuous diameter

monitoring using laser micrometers for a wide range of unknown shifts.

To handle this problem, an alternative approach is to consider a multiple

model or a mixture of several control charts. In fact, Lorden (1971) has already

considered and studied such a model. Since then, Lorden and Eisenberger (1973),

Lucas (1982), Rowlands et al. (1982), Dragalin (1993, 1997) and Sparks (2000)

have further investigated and studied a combination of several CUSUM charts

and a combined Shewhart-CUSUM to detect mean shifts in a range. They have

shown the efficiency of the combined CUSUM and Shewhart-CUSUM charts, and

provided various designs for these procedures, based on numerical simulations.

The combination of several CUSUM charts mentioned above can be called

CUSUM multi-chart, to consist of multiple CUSUM charts with different refer-

ence values that are used simultaneously to detect the mean shift. For example,

let the anticipated interval of the mean shift, µ, be [a, b]. Then, we can create

a CUSUM multi-chart with a number of CUSUM charts, TC(δ1)), . . . , TC(δm)

(see (2.1) in Section 2 for the definition of Tc(δ1)), by choosing the parameter

values, δ1, . . . , δm, in the interval. If one of the CUSUM charts, TC(δk), triggers a

signal of having a mean shift, the multi-chart would send an out-of-control warn-

ing. The CUSUM multi-chart has its roots in conventional control charts and

has much reduced computational complexity compared with GLR and GEWMA.

Although the reference δ can be defined in a more general sense (e.g., a dynamic,
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non-constant mean change) in using the multi-chart, we focus on the cases with

constant mean shifts at first. Also, the constituent charts of the multi-chart have

great flexibility in taking various forms of charts, but in the paper we mainly

investigate the CUSUM and EWMA multi-chart.

Although the general theoretical results regarding asymptotic optimality

have been given by Lorden (1971), it is not clear whether the CUSUM multi-

chart has some special asymptotic optimal properties. Although Rowlands et al.

(1982) and Sparks (2000) have shown that two or three CUSUMs were sufficient

to almost achieve the optimal envelope, it is not clear whether there exits an

optimal design of the CUSUM multi-chart that can be carried out by theoretical

calculation and Monte Carlo simulation. The primary goal of this paper is to

deal with these two problems. It will be shown that the CUSUM multi-chart

cannot only quickly achieve the asymptotically optimal bound but also has bet-

ter performance (quicker and more robust) than that of a single CUSUM and

EWMA control charts in detecting a range of various mean shifts. An optimal

design of the CUSUM multi-chart is provided for determining the multi-chart

parameters, such as the number of constituent charts and the allocation of their

reference values.

The remainder of the paper is organized as follows. In the next section,

we discuss some properties related to the CUSUM multi-chart, EWMA multi-

chart and GLR chart. A novel charting performance index is proposed in Section

3 for the situation with a range of known or unknown shifts. Based on that,

the performances of the CUSUM multi-chart and the EWMA multi-chart are

compared with their constituent charts and the GLR chart in Section 4. Also

in that section, the fast asymptotic optimality of the CUSUM multi-chart and

the integral equation to determine the optimal choice of the reference values are

presented. Section 5 provides an optimal design of the CUSUM multi-chart and

some practical guidelines for both CUSUM multi-charts and EWMA multi-charts

to determine the number of constituent charts and allocation of their reference

values. Conclusions and problems for further study are discussed in Section 5,

with the proofs of three theorems given in the Appendix.

2. The CUSUM and EWMA Multi-Charts

Let Xi, i = 1, . . ., be N(µ0, σ). Suppose that at some time period τ , usually

called a change point, the probability distribution of Xi changes from N(µ0, σ)

to N(µ, σ). In other words, from time period τ onwards, Xi has the common

distribution N(µ, σ). Thus, the mean of Xi undergoes a persistent shift of size

µ−µ0, where µ0 and σ are known and, without loss of generality, assumed to be

µ0 = 0 and σ = 1.
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Let ∆m = {δk : 1 ≤ k ≤ m} and Rm = {rk : 1 ≤ k ≤ m} be two sets of

numbers, where δk > 0 and 0 < rk ≤ 1 are known reference values. Let ck > 0

and dk > 0 be two numbers that usually depend on δk and rk, respectively. Then

the one-sided CUSUM and EWMA multi-charts, T ∗
C(∆m, Cm) and T ∗

E(Rm,Dm),

are T ∗
C = minδi∈∆m

{TC(δi, ci)} and T ∗
E(Rm,Dm) = minri∈Rm{TE(ri, di)} where

TC(δi, ci) = min{n : max
1≤k≤n

δi[Xn + · · · + Xn−k+1 − δik/2] > ci}, (2.1)

TE(ri, di) = min{n :
n−1
∑

k=0

ri(1 − ri)
kXn−k > di}. (2.2)

Here, TC(δi, ci) and TE(ri, di) are, respectively the one-sided CUSUM and EWMA

charts. As can be seen, for the observations X1, . . . ,Xn, one requires mn cal-

culations for the CUSUM multi-chart to detect a mean shift. The GLR and

GEWMA charts (see Siegmund and Venkatraman (1995) and Han and Tsung

(2004)) are TGL(c) = min{n : max1≤k≤n |[Xn + · · · + Xn−k+1]/k
1/2| > c} and

TGE(c) = inf{n ≥ 1 : max1≤k≤n |W n ( 1
k )| ≥ c}, where

Wn (
1

k
) =

√

(2 − 1
k )

√

1
k [1 − (1 − 1

k )2n]

n−1
∑

i=0

1

k
(1 − 1

k
)iXn−i,

and require n(n+1)/2 calculation. In particular, when n is large, e.g., 1,000, the

computational burden for the GLR chart is very heavy. Thus, the multi-chart

has an advantage in reducing computational complexity compared with the GLR

and GEWMA charts.

In addition to its computational advantage, we will demonstrate its perfor-

mance in detecting a wide range of anticipated changes, and its flexibility in

design for various situations.

3. Charting Performance Index for a Range of Mean Shifts

The average run length (ARL) has been extensively used in evaluating dif-

ferent charting methods. For comparison, the in-control ARL (ARL0) of all

candidate charts are forced to be equal, and to correspond to the same level of

type I error. The chart that has the lowest out-of-control ARL at the desired

mean shift size presents the highest power to detect the pre-specified shift.

Although the ARL is a popular criterion, it has a deficiency in evaluating a

charting performance for a range of anticipated mean shifts. For example, Figure

1 shows the ARL curves of two CUSUM charts, one designed for detecting a mean

shift size of 0.1, the other of 2.0. The ARL curves intersect at a mean shift of

about 0.77. Thus, the chart designed for 0.1 outperforms the chart for 2.0 in
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the range of (0, 0.77), while the chart for 2.0 outperforms the chart for 0.1 in

the range of (0.77, 4.0]. It would be difficult to evaluate their performance if the

whole range of mean shifts is of interest.

Figure 1. ARL curves of two CUSUM charts designed for mean shifts of 0.1

and 2.0.

To handle such a situation, we propose an Overall Charting Performance

Index (OCPI) as follows.

OCPIuf

(
∫ b

a
w(µ)

ARL(µ) − ARLr(µ)

ARLr(µ)
dµ

)

, (3.1)

where µ ⊂ [a, b] is a shift size in the anticipated range within which the per-

formance is evaluated, ARL(µ) is the ARL of the chart to be evaluated, and

ARLr(µ) is a reference or baseline with the lowest ARL value at the shift size

µ. It is known that the CUSUM chart with the parameter δ achieves the lowest

ARL at the shift µ = δ among all CUSUM schemes, so that the ARL value at

each shift size µ within the range [a, b] will be used as a lower bound ARLr in our

later study. The reference curve that is a composite of a collection of the lowest

possible ARL at each shift size is denoted as an Optimal ARL Curve (OAC).

Note that w(µ) is a weighting function to emphasize various mean shifts

within a range based on prior knowledge and experience with the process, given

preferential consideration to certain mean shifts. For example, if the ”large” mean

shift (e.g., µ ≥ 2) is considered to be more important than the ”small” one (e.g.,

µ < 2), this can be acknowledged. Thus, we can compare the performance of

charts by the OCPI to know which is better in detecting ”large” mean shifts. If no
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prior information or preference is provided, we use w(µ) = (b − a)−1 throughout

the range.

As can be seen, the range of OCPI values is from 0 to +∞. If we choose

f(x) = e−x, the range of the OCPI is (0, 1]. In addition, the OCPI with

f(x) = e−x is more communicable and comparable by denoting ”0” as the worst

detection performance and ”1” as the best performance for a chart. Moreover,

the comparison results do not change as long as the selected functions are all

strictly monotonic decreasing (or increasing). Here we take f(x) = e−x.

If the specific sizes of the anticipated mean shifts within a range are known,

we modify the OCPI in (4.1) to the following form:

OCPIk = f
(

n
∑

i=1

wi
ARLi − ARLri

ARLri

)

, (3.2)

where i = 1 to n represents the n sizes of anticipated mean shifts, and wi = 1/n.

4. Asymptotic Analysis of the CUSUM Multi-Chart

The CUSUM chart is popular and has attractive theoretical properties in

that it is the optimal test for a known mean shift, but it does less well for a range

of shifts away from its designed shift (see Hawkins and Olwell (1998)). The GLR

chart, on the other hand, is good for unknown mean shifts. However, it is less

popular due to its excessive computational effort. In this section, we start with

the investigation of the CUSUM multi-chart by proving its asymptotic optimality

in detecting a range of known and unknown mean shifts, and then compare the

detection performance of the CUSUM multi-chart and the EWMA multi-chart

with their constituent CUSUM charts, EWMA charts, and GLR charts.

4.1. The anticipated mean shifts, µk, are known

Here, we suppose anticipated mean shift sizes, µk(1 ≤ k ≤ n), in a range are

known from prior knowledge and experience.

For a stopping time, T , as the alarm time in a detecting procedure, we have

the in-control ARL0(T ) = E0(T ), and the out-of-control ARLµ(T ) = Eµ(T ). Let

T (µk, ck) and T (µk, c
′
k) be two one-sided CUSUM charts with different control

limits ck and c′k. Denote T (µk, ck) and T (µk, c
′
k), respectively, as Tk and T ′

k.

Consider the CUSUM multi-chart T ∗
C = min1≤k≤n{(T ′

k)}. Take the control limits,

c′1, . . . , c
′
n, such that c′k > ck, 1 ≤ k ≤ n, and

E0(T
′
1) = · · · = E0(T

′
n) = L′

> E0(T1) = · · · = E0(Tn) = L = E0(T
∗
C). (4.1)
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This means that the CUSUM charts, T1, . . . , Tn and the CUSUM multi-chart,

T ∗
C , have a common ARL0, i.e., E0(.) = L. It has been shown by Lorden (1971),

Moustakides (1986), Srivastava and Wu (1997) and Wu (1994), that the CUSUM

chart, Tk, is optimal and the optimal lower boundary is 2 log L/µ2 + Constant.

That is, for an arbitrary control chart T subject to the constraint E0(T ) ≥ L,

Eµk
(T ) ≥ Eµk

(Tk) holds for 1 ≤ k ≤ n and

Eµk
(Tk) =

2 log L

µ2
k

+ M(µk) + o(1)

for 1 ≤ k ≤ n as L → ∞, where M(µk) = −2/µ2
k + 2µ−2

k ln(µ2
k/2) and o(1) =

O
(

L−1 ln(µ2L/2)
)

. Thus, the expectation of the optimal lower boundaries can

be written as

B(L) =
n

∑

k=1

P (Z = µk)
(2 log L

µ2
k

+ M(µk)
)

,

where P (Z = µk) denotes the probability that the mean shift size Z is µk and
∑n

k=1 P (Z = µk) = 1. Asymptotic optimality of the CUSUM multi-chart rescue

from the following theorem.

Theorem 1. Let P (Z = µk) = πk for 1 ≤ k ≤ n. As L → ∞, or min1≤i≤n{ci} →
∞, we have log L′ − log L → 0 and

∣

∣

∣

n
∑

k=1

πkEµk
(T ∗

C) − B(L)
∣

∣

∣
≤ O(

(ln L)3

L
) = O(c3

1e
−c1) → 0. (4.2)

Remark 1. Let L′ = nL, that is, each CUSUM chart T ′
k (1 ≤ k ≤ n) has the

same in-control ARL0 = nL for some large L. Note that T ∗
C ≤ T ′

k for 1 ≤ k ≤ n.

It follows from Theorem 1 of Lorden (1971), in conjunction with Lorden’s remark

following his Theorem 2, that the CUSUM multi-chart has in-control ARL0 ≥ L

and

2 log m + 2 log L

µ2
k

+ M(µk) + o(1) = Eµk
(T ′

k) ≥ Eµk
(T ∗

C) ≥ Eµk
(Tk)

=
2 log L

µ2
k

+ M(µk) + o(1)

for 1 ≤ k ≤ n as L → ∞. That is,

2 log m

n
∑

k=1

πk

µ2
k

+ o(1) ≥
n

∑

k=1

πkEµk
(T ∗

C) − B(L) ≥ o(1)
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as L → ∞, so (4.2) can not be deduced directly from Theorem 1 of Lorden

(1971).

The proof of Theorem 1 is given in the appendix.

Corollary 1. If a control chart, T , is subject to the constraint E0(T ) ≥ L and

Eµk
(T ) ≥ Eµk

(T ), 1 ≤ k ≤ n, then

n
∑

k=1

πkEµk
(T ) ≥

n
∑

k=1

πkEµk
(T ∗

C) (4.3)

as L → ∞, where Eµ(T ) = supτ≥1 ess supEµ[(T − τ + 1)+|X1, . . . ,Xτ−1], τ is

change time (see Lorden (1971)). Specifically, for each CUSUM chart Tj satisfy-

ing (4.1) (1 ≤ j ≤ n) and n > 1, we have, as L → ∞,

n
∑

k=1

πkEµk
(Tj) ≥

n
∑

k=1

πkEµk
(T ∗

C). (4.4)

It follows from (4.4) that the CUSUM multi-chart performs better than any

single CUSUM chart in detecting more than one anticipated mean shift when

L = ARR0 → ∞. This property will be seen later in Monte Carlo simulations.

4.2. The anticipated mean shift, µ, is unknown

Now we investigate the situation where we know the anticipated range to

monitor but the specific size of an anticipated mean shift is unknown.

Let a > 0. Here we choose the reference values δk in [a, b] such that a ≤ δk <

δk+1 ≤ b for 0 ≤ k ≤ m, where δ0 = 0 and δm+1 = b. Let Ik = {µ : (δk−1+δk)/2 <

µ ≤ (δk + δk+1)/2} for 1 ≤ k ≤ m. Denote by OCPIu(δ1, . . . , δm) the OCPI of

the CUSUM multi-chart, T ∗
C = min1≤k≤m{(T ′

k)}, where T ′
k = T (δk, c′k) is the

CUSUM chart with the reference value δk ( 1 ≤ k ≤ m) satisfying (4.1). Here

we take w(µ) = (b − a)−1 and f(x) = e−x in OCPIu.

Theorem 2. Let µ ∈ Ik, 1 ≤ k ≤ m. As L → ∞,

Eµ(T ∗
C) ∼ Eµ(T ′

k) ∼
c′k

δk(µ − δk

2 )
. (4.5)

Furthermore, as L → ∞, there exit the numbers, δ∗1 < δ∗2 < · · · < δ∗m, such that

OCPIu(δ∗1 , . . . , δ∗m) = max
{δk,1≤k≤m}

{CPIu(δ1, . . . , δm)}, (4.6)



CUSUM AND EWMA MULTI-CHARTS FOR DETECTING A RANGE OF MEAN SHIFTS 1147

and δ∗1 and δ∗k are, respectively, the unique solutions to

I1(x) =

∫

x+δ∗
2

2

a

(µ − x)µ2

x2(µ − x
2 )2

dµ = 0,

(4.7)

Ik(x) =

∫

x+δ∗
k+1

2

δ∗
k−1

+x

2

(µ − x)µ2

x2(µ − x
2 )2

dµ = 0

for 2 ≤ k ≤ m, where δ∗0 = 0, a < δ∗1 < 2a and δ∗m < δ∗m+1 = b.

Remark 2. It follows from Theorem 1 and Section 3 of Lorden (1971) that

OCPIu(δ1, . . . , δk) < OCPIu(δ1, . . . , δk+1) (4.8)

for k ≥ 1, and

lim
L→∞

lim
m→∞

OCPIu(δ1, . . . , δm) = 1 (4.9)

for δk = a + k(b − a)/(m + 1), 1 ≤ k ≤ m.

The proof of Theorem 2 is in the appendix. By using (4.6) and (4.7) we can

get an optimal design of the CUSUM multi-chart. The inequality (4.8) means

that the OCPIu will increase if one more reference value that is greater than the

existent reference values is added to T ∗
C . From (4.9) it follows that the ARL of

the CUSUM multi-chart, ARLµ(T ∗
C), can approximate the optimal ARL Curve,

ARLr(µ), if there are many reference values evenly distributed in the range [a, b].

Let Tk and TE denote, respectively, a one-sided CUSUM chart with the

reference value δk (1 ≤ k ≤ m) and a one-sided EWMA chart with the reference

value r (0 < r ≤ 1).

Theorem 3. Let the numbers pk satisfy pk > 0 and
∑m

k=1 pk = 1. If the CUSUM

multi-chart, CUSUM and EWMA have a common ARL0 = L, as L → ∞,

m
∑

k=1

pkEµ(Tk) > Eµ(T ∗
C), (4.10)

and

Eµ(TE) > Eµ(T ∗
C), (4.11)

for µ > δ1/2.

Remark 3. Let TGL be the one-sided GLR chart with ARL0 = L. It follows

from Section 3 of Lorden (1971), or Theorem 6 of Han and Tsung (2004), that

Eµ(TGL) ≤ Eµ(T ∗
C). as L → ∞.

The proof of Theorems 3 is in the appendix. From Theorem 3 we find

that the CUSUM multi-chart has better performance than any single constituent
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CUSUM chart in detecting an unknown mean shift. The CUSUM multi-chart is
also better than the EWMA except in detecting the mean shift of a size less than

δ1/2. Although the GLR is better than the CUSUM multi-chart, by Remark 3,
when the ARL0 goes to infinity, the simulation results given in Table 1 shows
that the CUSUM multi-chart actually outperforms GLR in detecting small mean
shifts when the ARL0 is not large. As simulation results show, the good property

of the multi-chart also holds when the ARL0 is set at some typical value (e.g.,
500) that is not large.

Table 1. ARLs and their standard errors (in parentheses) of the CUSUM
charts with ARL0 = 500.

SHIFTS δ1 = 0.1 δ2 = 0.5 δ3 = 1 δ4 = 1.5 δ5 = 2

(µ) c1 = 1.979 c2 = 4.29 c3 = 5.075 c4 = 5.337 c5 = 5.355

0 500(414) 500(491) 500(502) 500(490) 500(498)

0.1 239(169) 301(284) 369(366) 417(416) 439(433)

0.25 91.7(42.7) 94.2(77.2) 144(135) 202(198) 252(250)
0.5 44.2(14.3) 31.0(17.7) 38.9(31.8) 58.1(53.7) 81.9(78.8)

0.75 28.9(7.46) 17.5(7.55) 17.2(11.1) 22.0(17.9) 30.7(27.6)

1 21.5(4.74) 12.2(4.45) 10.5(5.56) 11.6(7.92) 14.6(11.9)

1.25 17.2(3.43) 9.34(2.96) 7.52(3.36) 7.53(4.37) 8.56(6.04)
1.5 14.3(2.59) 7.59(2.16) 5.83(2.29) 5.50(2.72) 5.80(3.59)

2 10.8(1.69) 5.55(1.32) 4.07(1.30) 3.56(1.41) 3.43(1.63)

3 7.27(0.93) 3.68(0.72) 2.60(0.66) 2.19(0.64) 1.95(0.71)

4 5.54(0.64) 2.84(0.51) 2.03(0.38) 1.64(0.51) 1.39(0.51)

OCPIk 0.352 0.753 0.811 0.703 0.557

OCPIu 0.245 0.651 0.743 0.662 0.538

4.3. Simulation results

Simulation results were based on a 10,000-repetition experiment. The com-
mon ARL0 was chosen to be 500. We compare the simulation results for the
ten mean shifts (µ1 = 0.1, µ2 = 0.25, . . ., µ10 = 4) listed in the first column of

the table with change point τ = 1. The following tables illustrate the numerical
results of ARLs of the two-sided CUSUM, EWMA, CUSUM multi-chart, EWMA
multi-chart, GLR and the optimal CUSUM multi-charts. In order to compare the
averages of ARLs of the CUSUM and EWMA charts with those of the CUSUM

and EWMA multi-charts, we at first list the simulation results of the CUSUM
charts with the parameters, {δ1 = 0.1, δ2 = 0.5, δ3 = 1, δ4 = 1.5, δ5 = 2} and
EWMA charts with {r1 = 0.1, r2 = 0.3, r3 = 0.5, r4 = 0.7, r5 = 0.9} in Tables 1

and 2. In the first two rows, c denotes various values of the width of the control
limits, and δ is the parameter of the CUSUM charts. The sizes of the mean shifts
(µ) are listed in the first column of the tables. The values in parentheses are the

standard deviations of the ARLs.
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Table 2. ARLs and their standard errors (in parentheses) of the EWMA

control chart with ARL0 = 500.

SHIFTS r1=0.1 r2=0.3 r3=0.5 r4=0.7 r5=0.9

(µ) c1 = 2.818 c2 = 3.026 c3 = 3.073 c4 = 3.085 c5 = 3.089

0 500(497) 500(495) 500(492) 500(504) 500(502)

0.1 320(316) 403(398) 438(431) 455(458) 470(473)

0.25 106(95.8) 187(181) 256(255) 308(311) 354(355)

0.5 31.2(22.2) 55.4(51.6) 88.7(87.4) 128(128) 176(178)
0.75 15.8(8.85) 22.5(18.9) 36.0(33.9) 55.5(54.6) 84.6(85.3)

1 10.3(4.78) 11.9(8.61) 17.4(15.3) 26.9(25.5) 42.7(42.1)

1.25 7.68(3.05) 7.65(4.73) 10.0(8.01) 14.7(13.4) 23.5(22.9)

1.5 6.10(2.15) 5.55(3.00) 6.53(4.64) 8.90(7.72) 13.7(13.1)

2 4.36(1.25) 3.55(1.48) 3.64(2.04) 4.30(3.12) 5.80(5.01)
3 2.87(0.67) 2.16(0.66) 1.92(0.78) 1.86(0.95) 1.98(1.28)

4 2.19(0.42) 1.61(0.52) 1.33(0.49) 1.23(0.45) 1.21(0.48)

OCPIk 0.868 0.719 0.487 0.274 0.113

OCPIu 0.787 0.682 0.478 0.285 0.128

Table 3. Comparison of the averages of ARLs of the CUSUM and EWMA

charts with the ARLs of the multi-chart and GLR control charts with ARL0 =

500 (with their standard errors shown in parentheses).

SHIFTS Ave.CUSUM CUSUM Opt.CUSUM Ave.EWMA EWMA GLR(TG)

(µ) Multi-chart Multi-chart Multi-chart c = 3.494

0 500(479) 500(460) 500(477) 500(498) 500(499) 500(492)

0.1 353(334) 262(201) 272(229) 417(415) 381(374) 324(288)

0.25 157(141) 97.0(60.5) 96.3(60.1) 242(240) 146(135) 114(83.1)

0.5 50.8(39.3) 35.2(20.9) 35.8(20.4) 95.8(93.5) 40.1(31.0) 37.4(23.8)
0.75 23.2(14.3) 18.2(9.73) 18.8(10.0) 42.9(40.3) 18.2(11.3) 18.6(10.8)

1 14.1(6.92) 11.6(5.98) 11.86(6.16) 21.8(19.2) 11.2(6.08) 11.4(6.24)

1.25 10.0(4.03) 8.08(3.98) 8.22(4.11) 12.7(10.4) 7.81(3.95) 7.83(4.11)

1.5 7.81(2.67) 6.03(2.82) 6.11(2.95) 8.15(6.13) 5.85(2.91) 5.77(2.92)

2 5.48(1.47) 3.83(1.61) 3.80(1.75) 4.33(2.58) 3.68(1.77) 3.58(1.66)
3 3.54(0.73) 2.20(0.73) 2.01(0.84) 2.16(0.87) 1.92(0.89) 1.94(0.81)

4 2.69(0.51) 1.58(0.53) 1.34(0.51) 1.52(0.47) 1.28(0.49) 1.31(0.49)

OCPIu 0.609 0.896 0.394 0.804 0.862

OCPIk 0.531 0.865 0.8797 0.393 0.808 0.864

In Table 3, we compare the simulation results of the ARLµs for the GLR,

CUSUM and EWMA multi-chart, and the averages of the ARLµs for five con-

stituent CUSUM charts corresponding to the cases {δ1 = 0.1, δ2 = 0.5, δ3 = 1,

δ4 = 1.5, δ5 = 2}. The Ave. CUSUM in the second column shows the average

of ARLs for the constituent CUSUM charts from Table 1. In the third column,
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to obtain the ARL0(T
∗
C) = 500 for the CUSUM multi-chart T ∗

C , we take the

control limits c′1 = 2.71, c′2 = 5.22, c′3 = 6.029, c′4 = 6.282 and c′5 = 6.301 such

that ARL0(T (δ1, c
′
1)) = 1, 297.4, ARL0(T (δ2, c

′
2)) = 1, 298.5, ARL0(T (δ3, c

′
3)) =

1, 298.6, ARL0(T (δ4, c
′
4)) = 1, 297.2 and ARL0(T (δ5, c

′
5)) = 1, 298.1.The simu-

lation results for the optimal CUSUM multi-chart are listed in the fourth col-

umn with the reference values δ∗k chosen according to (4.6) and (4.7), that is,

δ∗1 = 0.166, c′1 = 3.64; δ∗2 = 0.458, c′2 = 5.24; δ∗3 = 0.997, c′3 = 6.177; δ∗4 = 1.86,

c′4 = 6.458; δ∗5 = 3.126, c′5 = 6.202, where the control limits c′k are taken for

ARL0(T
∗
C) = 500. More discussion on the optimal CUSUM multi-chart is in

Section 5. Also, in the fifth and the sixth columns, we have Ave. EWMA, which

gives the average of ARLs for the constituent EWMA charts from Table 2, and

the EWMA multi-chart T ∗
E . Moreover, we list the simulation results of the GLR

(TGL) in the last column with the control limit c = 3.494, which leads to the

same ARL0 value.

The bottom two rows of each table list the OCPIk and OCPIu values for

different charts, where we take f(x) = e−x in the OCPI. These represent the

OCPI values under known and unknown shifts, respectively. OCPIk is calculated

based on the five anticipated shift sizes of 0.1, 0.5, 1, 1.5 and 2, assuming that

the actual mean shifts are consistent with the anticipated mean shifts. Here the

reference optimal ARL curve, ARLr(µ), is taken as the ARL′s of the CUSUM

chart, that is,

ARLr(0) = 500, ARLr(0.1) = 239, ARLr(0.25) = 82.95, ARLr(0.5) = 31.02,

ARLr(0.75) = 16.54, ARLr(1) = 10.53, ARLr(1.25) = 7.386, ARLr(1.5) = 5.496,

ARLr(2) = 3.432, ARLr(3) = 1.793, ARLr(4) = 1.204.

OCPIu should be calculated based on all possible mean shifts in a range. Here,

the simplified calculation is based on all the mean shifts listed in the first column

to represent the performance for a range of unknown mean shifts.

Our findings based on the comparison of the numerical results are summa-

rized as follows. The results in Table 1 show that each of the five constituent

CUSUM charts is good for its designed optimal shift as expected, while the

OCPIk and OCPIu values that represent the overall performance over a range

vary according to the designed parameters. In both the situations with known

and unknown mean shifts in an anticipated range, the optimal CUSUM multi-

chart is consistently better than any of the single constituent CUSUM charts in

terms of the OCPIk and OCPIu values, as shown in Table 3. Table 3 also in-

dicates that the performance of CUSUM multi-charts is consistently better than

the average performance of the constituent CUSUM charts in the sense that the

average ARLs of the constituent charts is always larger than the ARLs of the
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multi-charts. Compared with GLR charts, the CUSUM multi-chart has a higher

OCPI value when the mean shifts are known, and is only slightly better when the

shifts are unknown. Moreover, Tables 2 and 3 show that the EWMA multi-chart

is not as good as the CUSUM multi-chart and the GLR chart, and one EWMA

chart with r=0.1 seems to perform particularly well for a range of known shifts.

However, the performance of the EWMA multi-chart is consistently better than

the average performance of the constituent EWMA charts as the average ARLs of

the EWMA charts are always larger than the ARLs of the EWMA multi-charts.

Finally, an interesting result in Table 3 is that the standard deviations of the

ARLs for the CUSUM multi-chart are the smallest among the six charts, except

when detecting the mean shift µ = 4.

5. Design of a Multi-Chart

Although we have proved the optimal property of the CUSUM multi-chart,

the superior performance of the multi-chart still requires an effective design. For

the situation with known anticipated mean shifts, we can design the multi-chart

by combining those constituent charts specifically designed for each anticipated

mean shift size. With an unknown mean shift in a range, we can also determine

how many constituent charts to combine and where to locate them according to a

desirable OCPI. This section will examine this problem via theoretical calculation

and Monte Carlo simulation, and provide a general guideline for the design of a

CUSUM multi-chart and an EWMA multi-chart.

5.1. Design of a CUSUM Multi-Chart

We first focus on the design of the CUSUM multi-chart. Here, four design

schemes are proposed. Denote the anticipated range as [a,b], and suppose n

constituent CUSUM charts are to be used. Let pi be the proportion of the

position of each constituent chart within the range and δi be the placement

location. The design schemes are described as the following.

1. An optimal placement scheme. Let a = 0.1, b = 4. By using (4.7) we can

obtain the theoretical optimal reference values δ∗k for n = 2, 3, 4 and 5, such

that OCPIu attains its maximum value, OCPI∗u. Thus for

n=2, δ∗1 =0.1948, δ∗2 =1.6207, OCPI∗u =0.7152;

n=3, δ∗1 =0.184, δ∗2 =0.852, δ∗3 =2.474, OCPI∗u =0.8927;

n=4, δ∗1 =0.172, δ∗2 =0.585, δ∗3 =1.433, δ∗4 =2.886, OCPI∗u =0.9438;

n=5, δ∗1 =0.166, δ∗2 =0.458, δ∗3 =0.997, δ∗4 =1.86, δ∗5 =3.126,

OCPI∗u =0.96518.
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The theoretical value OCPI∗u = 0.96518 of the optimal CUSUM multi-chart
for n = 5 is high. The simulation result in Table 3 confirms that the optimal
CUSUM multi-chart with the five CUSUM charts has the best performance
among the six control charts in terms of OCPIk, even though the ARL0 is
not large.

2. Even placement scheme. Take

pi =
i

n + 1
, δi = a + (b − a) · pi. (5.1)

As shown in Figure 2 (a), the constituent charts are evenly distributed in the
anticipated range.

3. Side-concentrated placement scheme. Take

pi =
τ i − 1

τ (n+1) − 1
, δi = a + (b − a) · pi. (5.2)

As shown in Figure 2 (b) and (c), the emphasis of the multi-chart is on the
extremes. If τ > 1, the charts concentrate on the lower end, while if τ < 1,
the charts will concentrate on the higher end.

4. Center-concentrated placement scheme. Take

pi =































τ i−1

2[τ
n
2 −1]+τ

n
2 (τ−1)

if n is even and i ≤ n
2

τn−i+1−1

2[τ
n
2 −1]+τ

n
2 (τ−1)

if n is even and i > n
2

τ i−1

2[τ
n+1

2 −1]
if n is odd and i ≤ n

2

τn−i+1−1

2[τ
n+1

2 −1]
if n is odd and i > n

2

δi = a + (b − a) · pi.

(5.3)

Figure 2 (d) and (e) show a scheme that emphasizes the center or both ends. If
τ > 1, the charts will concentrate on the ends; if τ < 1, the charts concentrate
on the center of the anticipated range.

(O)

(s) (S)

(c) (C)

Figure 2. Placement of four CUSUM Charts. (O) Even placement. (s)
Side-concentrated, τ = 0.5. (S) Side-concentrated, τ = 2.0. (c) Center-
concentrated, τ = 0.5. (C) Center-concentrated, τ = 2.0.
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Here the simulation is conducted based on the three different design schemes.

The anticipated shift range is selected as (0,3), and the OCPI is used as a criterion

for performance evaluation. The results are shown in Figure 3.
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Figure 3. OCPI curve of multi-CUSUM. (s) Side-concentrated, τ = 0.5. (S)
Side-concentrated, τ = 2.0. (c) Center-concentrated, τ = 0.5. (C) Center-
concentrated, τ = 2.0. (O) Even placement. Note: An unfinished curve

exists because its placement is too close to zero.

One can see that when the number of constituent CUSUM charts is no more

than three, the center-concentrated scheme with τ = 2.0 gives the highest OCPI

value. When the number of charts is larger than three, the even placement

scheme shows the best performance.

Another notable phenomenon is that the OCPI does not always increase with

the number of charts. For C2.0 and S2.0 placement schemes, the OCPI actually

decreases when using more than four charts. For the even placement scheme, the

OCPI value is stabilized with minor fluctuation when more than five charts are

used. Also, the ARL curve of s0.5 is always far below the others, which turns

out to be the worst scheme.

Thus, for the situation with an anticipated shift range (0, 3), we conclude

that placing the constituent charts evenly along the anticipated range should

give a reasonably good result with more than three charts. If no more than three

constituent charts are used, putting some on the lower side and some on the

higher side should generate good performance. Also, the OCPI curve provides

an indication for the chart number determination. In this case, we suggest no

more than five constituent charts, as the OCPI curve becomes flat after that.

With different anticipated mean shift ranges, we conduct more extensive

simulations by choosing several usual anticipated mean shift ranges for the design,
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with the actual mean shifts either within or outside the design range, as in Figure

4. For example, if the design range is [0.2, 1] and expected shifts fall into the

same range, the even placement scheme with three CUSUM charts should be used

since it indicates the highest OCPI value and the curve goes flat or downwards

after that.
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Figure 4. Simulation results of multi-CUSUM. (a) Design: 0.2-1, Shift: 0.2-

1. (b) Design: 0.2-1, Shift: 0-3. (c) Design: 0.2-2, Shift: 0.2-2. (d) Design:

0.2-2, Shift: 0-3. (e) Design: 0.2-3, Shift: 0.2-3. (f) Design: 0.2-3, Shift:

0-3. (g) Design: 1-2, Shift: 1-2 (h) Design: 1-2, Shift: 1-3. (i) Design:

1-3, Shift: 1-3. (j) Design: 1-3, Shift: 1-3. Legend: (s) side-concentrated,

τ = 0.5; (S) side-concentrated, τ = 2.0; (c) center-concentrated, τ = 0.5;

(C) center-concentrated, τ = 2.0; (O) even placement.

5.2. Design of an EWMA Multi-Chart

Here, we investigate the design of EWMA multi-chart. To design an EWMA

multi-chart that combines several constituent EWMA charts, we need to look

into the smoothing coefficient of EWMA, r. We call the smoothing coefficient

the “location” of an EWMA chart. The same placement schemes can then be

applied as in the CUSUM multi-chart, except that now the range of placement

is (0,1) since r cannot exceed 1.

Figure 5 shows the OCPIs of different design schemes for EWMA multi-

charts. One can see that the S2.0 scheme shows the best ARL performance

when the number of charts is less than seven, the C2.0 scheme catches up when
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the number of charts is more than seven, while the s0.5 scheme gives the worst

performance.
0.
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Figure 5. OCPI curve of multi-EWMA. Legend: (s) side-concentrated, τ =
0.5; (S) side-concentrated, τ = 2.0; (c) center-concentrated, τ = 0.5; (C)
center-concentrated, τ = 2.0; (O) even placement. Note: An unfinished
curve exists because its placement is too close to zero.

We conclude that in this case we should choose the smoothing parameter r

close to 0 if fewer than seven charts are to be used. If more than seven charts are

used, some r’s should be close to 0, and some close to 1. The simulation results

also show that the OCPI curve flattens and goes downwards after three charts,

which indicates that no more than three charts is useful.

5.3. Discussion on Design Guidelines

From the results of Monte Carlo experiments for the CUSUM multi-charts

and the EWMA multi-charts, we can see that the performance does not always

increase by adding more charts if the reference values of the added CUSUM charts

are less than the existent reference values. We may recommend the number of

constituent charts by finding the initial flat or downward point on the OCPI

curve. The allocation of the constituent charts then follows the corresponding

placement scheme that generates the best OCPI value.

The ARL calculation of a multi-chart can also be done by numerical methods.

The single CUSUM ARL numerical method by Brook and Evans (1972) and

the single EWMA ARL numerical method by Lucas and Saccucci (1990) can be

easily extended to a multi-chart scenario. For each single chart, we discretize

the range between control limits. A Markov chain can be formed by taking the
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state as a multidimensional vector (E1, . . . , En)′, where Ei is the state of the ith

chart, n is the total number of charts in use. If each chart is discretized into t

intervals, the transition matrix of the Markov chain is a (t+1)n×(t+1)n matrix.

Brook and Evans (1972) recommenced t = 5 for a reasonably good result. For

a multi-chart, the dimension of this matrix grows exponentially. If n = 4 charts

with t = 5, the dimension of the transition matrix will be 1, 296 × 1, 296, which

will be very difficult to manipulate. Thus, in this paper, all results are obtained

by Monte Carlo experiments only.

6. Conclusion

We have mainly discussed the CUSUM and EWMA multi-chart schemes to

handle the situation with an anticipated range of known or unknown process

changes by combining the strengths of multiple charts. We show that the multi-

chart has the merits of quick detection of a range of mean shifts, easy and flexible

design for various situations, and great reduction in computational complexity.

In particular, we have proved the asymptotic optimality of the CUSUM multi-

chart in detecting more than one possible mean shift in a range. Also, the

numerical simulation results show that the CUSUM multi-chart is more efficient

and robust on the whole than the CUSUM, EWMA and EWMA multi-chart in

terms of OCPI, and can perform as well as the GLR chart in detecting various

mean shifts when the in-control ARL is not large.

The charting performance of a multi-chart depends on the design of the

multi-chart parameters including the number of constituent charts and the al-

location of their reference values. We have provided an optimal design of the

CUSUM multi-chart and some practical guideline for both CUSUM and EWMA

multi-charts based on the OCPI curve with different placement schemes. Note

that the multi-chart has great flexibility in taking various forms of its constituent

charts to further improve its performance. The design and analysis of the multi-

chart with mixed forms of charts warrant future research.

As can be seen that the results considered in the paper are from the initial

state, µ0 = 0. It would be interesting to investigate whether the results are similar

if the shifts are generated from a steady state, e.g., shifts are generated after the

CUSUM is allowed to run through several in-control values. The intuitive idea is

that the results should be similar if all the mean shifts µ and the reference values

δk are greater than µ0 = max{several in − control values} when the ARL0 is

large. However, it seems difficult to prove the intuitive idea since it is not easy

to choose a proper “ARL0” for the several in-control values. Similarly, it should

be anew considered whether the optimality properties of Moustakeides (1986)

in Lorden’s sense (1971) still holds when the CUSUM chart is allowed to run

through several in-control values.
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Moreover, in recent years, adaptive CUSUM (Sparks (2000)) and adaptive

EWMA (Capizzi and Masarotto (2003)) have been proposed in the literature to

achieve the same aim as in the paper. It is worthwhile to compare these charts

on which is more efficient in detecting a group of unknown mean shifts.
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Appendix

Proof of Theorem 1. Since T ∗
C ≤ T ′

i for all 1 ≤ i ≤ n, it follows that

2 log L′

µ2
i

+M(µi)+o(1) = Eµi
(T ′

i )≥Eµi
(T ∗

C)≥Eµi
(Ti)=

2 log L

µ2
i

+M(µi)+o(1)

for all 1 ≤ i ≤ n as L → ∞, where o(1) = O
(

L−1 ln(µ2L/2)
)

. Thus, Theo-

rem 1 is true if log L′ − log L ≤ O((ln L)3/L) = O(c3
1e

−c1) as L → ∞, or as

min1≤i≤n{ci} → +∞. It is known that (see Srivastava and Wu (1997))

L′ = E0(T
′
i ) =

e(c′i+2δiρ) − 1 − (c′i + 2δiρ)
δ2
i

2

+ O(δi) (A.1)

for large c′i, 1 ≤ i ≤ n, where ρ ≈ 0.583. Denote by ϕ and Φ the standard

normal density and distribution functions, respectively. Let Um(k) = [Xm +

· · · + Xm−k+1]/k
1/2, 1 ≤ k ≤ m. Then the stopping time T ′

i can be written

T ′
i = min

{

n : max
1≤k≤n

[

Un(k) >
c′i

δi

√
k

+
δi

2

√
k
]

}

. (A.2)

From (A.1) and (A.2), it follows that

c′1
δ1

>
c′2
δ2

> · · · >
c′m
δm

, (A.3)

c′i − c′j = (1 + o(1))(ci − cj) = (1 + o(1))
[

2 ln(
δi

δj
) + (δi − δj)ρ

]

, (A.4)

for large min1≤k≤n{ck}. We first show that

0 ≤ E0(T
′
1) − E0(T

∗
C) ≤ A(c′1)

3 + B (A.5)
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for large c′1, where A and B are two constants not depending on c′i, 1 ≤ i ≤ n.

The left inequality of (A.5) is obvious since T ∗
C ≤ T ′

1. Note that

E0(T
′
1) =

+∞
∑

n=1

P0(T
′
1 ≥ n)

=
+∞
∑

n=1

P0

(

Un(k) < c′1/(δ1

√
k) + (δ1/2)

√
k, 1 ≤ k ≤ l, 1 ≤ l ≤ n

)

,

E0(T
∗
C) =

+∞
∑

n=1

P0(T
∗
C ≥ n)

=

+∞
∑

n=1

P0

(

Un(k) < min
1≤i≤m

{c′i/(δi

√
k) + (δi/2)

√
k}, 1 ≤ k ≤ l, 1 ≤ l ≤ n

)

.

Since c′i/(δi

√
k) + (δi/2)

√
k attains its minimum value,

√

2c′i, at k = 2c′i/(δi)
2,

it follows from (A.3) that |P0(T
′
1 ≥ n) − P0(T

∗
C ≥ n)| ≤ n2[1 − Φ(

√

2c′1)] for

1 ≤ n ≤ 2c′1/(δ1)
2, and |P0(T

′
1 ≥ n) − P0(T

∗
C ≥ n)| ≤ (c′1)

2/(δ1)
4[1 − Φ(

√

2c′1)]
for 2c′1/(δ1)

2 < n ≤ n′, where n′ = c′1 exp{c′1}. Note that 1 − Φ(
√

2c′1) =

O((
√

2c′1 exp{c′1})−1) for large c′1. Thus,

n′

∑

n=1

∣

∣

∣
P0(T

′
1 ≥ n) − P0(T

∗
C ≥ n)

∣

∣

∣
≤ A(c′1)

3 (A.6)

for large c′1. On the other hand (see Siegmund (1985, p.25)), the stopping time

T ′
1 = N1+ · · ·+NK = K((

∑K
i=1 Ni)/K), where {Ni} is dependent and identically

distributed with mean E(N1) = b ≤ O(c′1) and K is geometrically distributed

with mean E(K) = O(b−1 exp{c′1}) for large c′1. Hence, we have

+∞
∑

n=n′+1

P0(T
′
1 ≥ n) ≤ O

(

+∞
∑

n=n′+1

P0(K ≥ n

c′1
)
)

= O
(

exp{c′1}(1 − bc′1
n′ )

n′

b

)

≤ B (A.7)

for large c′1. By using (A.6) and (A.7), we see that (A.5) holds. Since E0(T1) =

L = E0(T
∗
C), it follows from (A.5) that

∣

∣

∣

E0(T
′
1)) − E0(T

∗
C)

E0(T1)

∣

∣

∣
= |e(c′1−c1) − 1|

≤ (δ1)
2[A(c′1)

3 + B]e−(c1+2δ1ρ) → 0

as L → ∞, otherwise we have a contradicttion. This means that c′1 − c1 → 0

as L → +∞. Note that e(c′1−c1) − 1 = c′1 − c1 + o(c′1 − c1) and log L′ − log L =
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c′1 − c1 + O(c′1e
−c′

1) + O(c1e
−c1). Thus

log L′ − log L ≤ (δ1)
2[A(c′1 − c1 + c1)

3 + B]e−(c1+2δ1ρ)

= O(c3
1e

−c1) = O
((ln L)3

L

)

,

and this completes the proof.

Proof of Theorem 2. Let j 6= k and µ ∈ Ik. Note that µ > δk/2 since

δk−1 + δk)/2 < µ ≤ (δk + δk+1)/2 and δk−1 ≥ 0. Thus, the number µ must

satisfies one of the following: (i) δk/2 < µ ≤ δj/2; (ii) δk/2 < δj/2 < µ; (iii)

µ > δk/2 > δj/2. It follows from (4.1) and (A.1) that cj = ck + Cjk + o(1) for

large L, where Cjk = log[δ2
j /δ2

k]. By the Strong Law of Large Numbers we have

max
1≤i≤n

1

n

n
∑

l=n−i+1

δk[Xl(ω) − δk

2
] → max{0, δk(µ − δk

2
)}, a.s. − Pµ (A.8)

for 1 ≤ k ≤ m as n → ∞. Note that

T (δl) = T (δl, ω) → ∞ a.s. − Pµ (A.9)

for all 1 ≤ k ≤ m as L → ∞. Thus, without loss of generality, we assume that

(A.8) and (A.9) hold for all ω ∈ Ω, where Pµ(Ω) = 1. Assume that there is a

ω ∈ Ω such that Tk = T (δk, ω) ≥ Tj = T (δj , ω). This means that

max
1≤i≤Tj

1

Tj

Tj
∑

l=Tj−i+1

δj [Xl −
δj

2
] >

cj

Tj
=

ck + Cjk + o(1)

Tj

≥ Cjk + o(1)

Tj
+

Tk − 1

Tj
max

1≤i≤Tk−1

1

Tk − 1

Tk−1
∑

l=Tk−1−i+1

δk[Xl −
δk

2
], (A.10)

since max1≤i≤Tk−1
∑Tk−1

l=Tk−1−i+1 δk[Xl − δk/2] ≤ ck and max1≤i≤Tj

∑Tj

l=Tj−i+1 δj

[Xl − δj/2] > cj Thus, it follows from (A.8), (A.9) and (A.10) that

max{0, δj(µ − δj

2
)} ≥ max{0, δk(µ − δk

2
)} (A.11)

as L → ∞. This contradicts, δj/2 ≥ µ > δk/2, case (i). This means that the

assumption Tk = T (δk, ω) ≥ Tj = T (δj , ω) is not true. Similarly, for the cases

(ii) and (iii), it follows from (A.11) that δj(µ − δj/2) ≥ δk(µ − δk/2), that is,

µ ≥ (δj + δk)/2, case (ii), and µ ≤ (δj + δk)/2, case (iii). Note that µ ∈ Ik, It

follows that

µ >
δk + δk−1

2
=

δk + δj

2
+

δk−1 − δj

2
≥ δk + δj

2
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for case (iii), since δk−1 ≥ δj . This contradicts µ ≤ (δj + δk)/2. Similarly,
by µ ∈ Ik we have µ ≤ (δk + δj)/2 + (δk+1 − δj)/2 ≤ (δk + δj)/2 for case
(ii) since δk+1 ≤ δj . But µ ≥ (δk + δj)/2 for case (ii), so δk+1δj and µ =
(δk + δk+1)/2. In this case, δk+1(µ − δk+1/2) = δk(µ − δk/2). Thus, we have
Tk+1 ∼ ck+1/[δk+1(µ − δk+1/2)] and Tk ∼ ck/[δk(µ − δk/2)] as L → ∞. In fact,
max1≤l≤Tk

(Tk)
−1

∑Tk

i=Tk−l+1 δk[Xi − δk/2] > ck/Tk and max1≤l≤Tk−1(Tk − 1)−1

∑Tk−1
i=Tk−l δk[Xi − δk/2] ≤ ck/Tk. This implies that Tk ∼ ck/[δk(µ − δk/2)] for all

ω ∈ Ω as L → ∞. Similar result can be obtained for Tk+1. So Tj = Tk+1 > Tk

as L → ∞ since ck+1 > ck. This contradicts the assumption Tj = Tk+1 ≤ Tk as
L → ∞. Thus we have T (δj) > T (δk), a.s. Pµ, for j 6= k and µ ∈ Ik as L → ∞.
Similarly, T ′(δj) > T ′(δk), a.s. Pµ, for j 6= k and µ ∈ Ik as L → ∞. Hence
T ∗

C = T ′
k, a.s. Pµ, for µ ∈ Ik as L → ∞. Since the family {T ′

k/c′k, c
′
k > 0} is

uniformly integrable with respect to Pµ, so is {T ∗
C/c′k, c′k > 0}. Hence, as L → ∞,

Eµ(T ∗
C) ∼ Eµ(T ′

k) ∼ c′k/[δk(µ − δk/2)] for µ ∈ Ik. Thus, (4.5) of Theorem 2 is
established.

Since c′k−ck → 0, APLr(µ) ∼ 2ck/µ
2 and APLµ(T ∗

C) = Eµ(T ∗
C) ∼ Eµ(T ′

k) ∼
c′k/[δk(µ − δk/2)] as L → ∞ for µ ∈ Ik, 1 ≤ k ≤ m,

CPIu(δ1, . . . , δk) = exp
{ −1

b − a

∫ b

a

APLµ(T ∗
C) − ARLr(µ)

ARLr(µ)
dµ

}

= (1 + o(1)) exp
{ −1

b − a
F (δ1, . . . , δk) + 1

}

as L → ∞, where

F (δ1, . . . , δk) =
1

2

[
∫

δ1+δ2
2

a

µ2

δ1(µ − δ1
2 )

dµ +

k−1
∑

i=2

∫

δi+δi+1

2

δi−1+δi
2

µ2

δi(µ − δi

2 )
dµ

+

∫ b

δk−1+δk
2

µ2

δk(µ − δk

2 )
dµ

]

.

It follows that

∂CPIu(δ1, . . . , δk, . . . , δm)

∂δk
= − exp

{ −1

b − a
F + 1

}∂F (δ1, . . . , δk, . . . , δm)

∂δk

and

∂F

∂δ1
−

∫

δ1+δ2
2

a

(µ − δ1)µ
2

2δ2
1(µ − δ1

2 )2
dµ,

∂F

∂δk
−

∫

δk+δk+1

2

δk−1+δk
2

(µ − δk)µ
2

2δ2
k(µ − δk

2 )2
dµ.

for 2 ≤ k ≤ m. It can be checked that ∂F/∂δk < 0 as δk approximates δk−1 and
∂F/∂δk > 0 as δk approximate δk+1; similarly, it is true for ∂F/∂δ1, and

∂2F

∂2δk

(δk+1 − δk−1)[δ
3
k + δk−1δk+1(δk−1 + δk + δk+1)]

8δk−1δk+1δ
3
k

> 0
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for 2 ≤ k ≤ m. Hence, there exit a unique series of numbers, δ∗k, 1 ≤ k ≤ m, such

that a < δ∗1 < 2a, δ∗k < δ∗k+1 < b for 1 ≤ k ≤ m− 1, and F (δ1, . . . , δk, . . . , δm) at-

tains its minimum value at δ∗1 , . . . , δ
∗
k, . . . , δ

∗
m, that is, CPIu attains its maximum

value at δ∗1 , . . . , δ
∗
k, . . . , δ∗m. This completes the proof of Theorem 2.

Proof of Theorem 3. Let T (δ, c) denote the CUSUM chart with reference

value δ and control limit c. It is known that (see Srivastava and Wu (1997)), as

L → ∞,

Eµ(T (δ, c)) = (1 + o(1))
e(δ−2µ)(c+2δρ)δ−1 − 1 − (δ − 2µ)(c + 2δρ)δ−1)

2(µ − δ
2 )2

for δ > 2µ, Eµ(T (δ, c)) = (1 + o(1))(c2/δ2) as δ → 2µ, and Eµ(T (δ, c)) = (1 +

o(1))[2c/δ(2µ − δ)] for δ < 2µ. Hence, by log L′ − log L → 0, or c′ − c → 0 as

L → ∞, we have

Eµ(T ′
i )) = (1 + o(1))Eµ(Ti)) (A.12)

for 1 ≤ i ≤ m. (i). If δi > 2µ, 1 ≤ i ≤ m, then (δi − 2µ)/δi > (δj − 2µ)/δj for

i > j, and therefore, by (A.12),

Eµ(Ti)) = (1 + o(1))[
e(δi−2µ)(ci+2δiρ)/δi − 1 − (δi − 2µ)(ci + 2δiρ)/δ)

2(µ − δi

2 )2
]

> Eµ(T ′
1)) + o

( p1

1 − p1
Eµ(T1))

)

as L → ∞ for i ≥ 2. Hence,
∑m

k=1 pkEµ(Tk)) > Eµ(T ′
1)) ≥ Eµ(T ∗

C) as L → ∞
since (1 + o(1))Eµ(T1)) = Eµ(T ′

1). (ii). If δm > 2µ, δ1 ≤ 2µ or δm = 2µ, δ1 < 2µ,

then Eµ(Tm))/Eµ(T1)) → +∞ as L → +∞. (iii). If δm < 2µ, then

Eµ(Tk)) = (1 + o(1))
2ck

δk(2µ − δk)
> (1 + o(1))

2ci

δi(2µ − δi)
= Eµ(Ti))

for k 6= i, where the parameter δi satisfies δi(2µ − δi) = max1≤k≤m δk(2µ − δk).

Thus,
∑m

k=1 pkEµ(Tk)) > Eµ(T ′
i )) ≥ Eµ(T ∗

C) as L → ∞. By (i), (ii) and (iii),

(4.10) of Theorem 3 follows.

Let TOE denote the optimal EWMA chart with the reference value r∗ =

2a∗δ2
1/b

2 (0 < r∗ ≤ 1), where a∗ ≈ 0.5117, b > 0 is the control limit such that

E0(TOE) = L. It has been shown by Wu (1994) and Srivastava and Wu (1997)

that Eµ(TE) ≥ Eµ(TOE) as L → ∞, and

E0(TOE) ∼ e0.834δ1eb2/2

0.408δ2
1b

′
, (A.13)
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Eµ(TOE) =
1

δ2
1

[
− ln(1 −

√
a∗δ1
µ )

2a∗
(b − ε(b))2

− δ2
1

4µ2

(1 − (1 −
√

a∗δ1
µ )2)

(1 −
√

a∗δ1
µ )2

+ o(
1

(b − ε(b))2
)] (A.14)

for µ >
√

a∗δ1, where 0 < ε(b) < D/b and D is a constant. We can further show

that

Eµ(TOE) ≥
√

2πb(1 − µ√
a∗δ1

) exp{b2

2
(1 − µ√

a∗δ1

)2}

for µ <
√

a∗δ1 and Eµ(TOE) ≥ 2
√

2πb2
√

ln b for µ =
√

a∗δ1 as L → ∞. Thus,

to prove (4.11) of Theorem 3, we need only prove Eµ(TOE) > Eµ(T ∗
C). Since

E0(TOE) = L = E0(Tk), 1 ≤ k ≤ m, it follows from (4.5) and (4.13) that

b2 = 2c1 + o(1). By µ > δ1/2, we may assume µ ∈ Ik, where k ≥ 1. We have

proved in the proof of Theorem 2 that

Eµ(T ∗
C) ∼ Eµ(T ′

k) ∼ c′k
δk(µ − δk

2 )
(A.15)

as L → ∞. Note that δk(µ − δk/2) ≥ δj(µ − δj/2) for j 6= k, and ci/c
′
j → 1

as L → ∞ for all 1 ≤ i, j ≤ m. Thus we have Eµ(Tj) ≥ Eµ(T ′
k) for j 6= k and

Eµ(Tk) ∼ Eµ(T ′
k). On the other hand, we have Eµ(TOE) > Eµ(T1) for µ >

√
a∗δ1

since b2 = 2c1 + o(1) and (δ2
1)−1− ln(1 −

√
a∗δ1/µ)/2a∗ > (δ1(2µ − δ1))

−1 as

L → ∞. Thus, it follows from (A.14) and (A.15) that Eµ(TOE) > Eµ(T ∗
C) as

L → ∞, proving (4.11) of Theorem 3.
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