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Abstract: Assume that (Xj , Yj) are independent random vectors satisfying the non-

parametric regression models Yj = mj(Xj) + σj(Xj)εj , for j = 1, . . . , k, where

mj(Xj) = E(Yj |Xj) and σ2

j (Xj) = Var (Yj |Xj) are smooth but unknown regression

and variance functions respectively, and the error variable εj is independent of Xj .

In this article we introduce a procedure to test the hypothesis of equality of

the k regression functions. The test is based on the comparison of two estima-

tors of the distribution of the errors in each population. Kolmogorov-Smirnov and

Cramér-von Mises type statistics are considered, and their asymptotic distributions

are obtained. The proposed tests can detect local alternatives converging to the

null hypothesis at the rate n−1/2. We describe a bootstrap procedure that approx-

imates the critical values, and present the results of a simulation study in which

the behavior of the tests for small and moderate sample sizes is studied. Finally,

we include an application to a data set.

Key words and phrases: Bootstrap, Comparison of regression curves, Heteroscedas-

tic regression, nonparametric regression.

1. Introduction. Statistical model

The comparison of two or more groups is an important problem in statistical

inference. This comparison can be performed through the regression curves in a

non-parametric context. Let (Xj , Yj) be k independent random vectors, and

assume that they satisfy the following non-parametric regression models, for

j = 1, . . . , k,

Yj = mj(Xj) + σj(Xj)εj , (1)

where the error variable εj , with distribution Fεj , is independent ofXj , mj(Xj) =

E(Yj |Xj) is the unknown regression function and σ2
j (Xj) = Var (Yj |Xj) is the

conditional variance function. Suppose that the covariates Xj have common

supportRX . Let (Xij , Yij), i = 1, . . . , nj, be an i.i.d. sample from the distribution

of (Xj , Yj), for j = 1, . . . , k, and let n =
∑k

j=1 nj.
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We are interested in testing the null hypothesis of equality of the regression

functions

H0 : m1 = m2 = · · · = mk

versus the alternative

Ha : mi 6= mj for some i, j ∈ {1, 2, . . . , k}.

The idea of our testing procedure is to compare, in each population, the em-

pirical distribution functions of the residuals with the same distribution function

estimated under the null hypothesis. More precisely, fix one population, say j.

Let (Yij −m̂j(Xij))/σ̂j(Xij) estimate the error εij and let (Yij −m̂(Xij))/σ̂j(Xij)

estimate the same quantity assuming that the null hypothesis holds, where m̂j(·)

is an appropriate kernel estimator of the regression function mj(·), m̂(·) is an

estimator of the common regression function m(·) under H0, and σ̂j(·) is an

estimator of the variance function σj(·). The idea is to construct the empiri-

cal distribution functions of these estimated residuals and to compare them via

Kolmogorov-Smirnov and Cramér-von Mises type statistics. Under H0, both es-

timators approximate the corresponding error distribution Fεj . However, if the

null hypothesis is not true, they estimate different functions.

The problem of testing for the equality of nonparametric regression curves

has been widely treated in the literature. A good, recent review on this topic can

be found in Neumeyer and Dette (2003). The contributions of Delgado (1993),

Kulasekera (1995), Kulasekera and Wan (1997) and the aforementioned paper

by Neumeyer and Dette (2003) are related to the empirical process approach we

use here. These papers are mainly devoted to testing for the equality of two

regression curves. In practical situations the problem of testing for the equality

of more than two regression curves can arise very easily. The extension of the

methods for comparing two regression curves to the comparison of more than

two curves is not straightforward in many cases. If the comparison is performed

pairwise, a correction in the level of the tests must be done, and consequently the

power can be affected. This motivates the implementation of general procedures

for more than two curves.

We propose several test statistics and establish their asymptotic distribution

under H0 and under a local alternative hypothesis of the form mj(·) = m0(·) +

n−1/2rj(·). The rate n−1/2 at which alternatives are detected is also achieved

by the method of Neumeyer and Dette (2003), based on the comparison of two

marked empirical processes of the residuals. We therefore compare our method

with theirs in a simulation study.

The article is organized as follows. The testing procedure is described in

Section 2 and its main asymptotic results are stated in Section 3. In Section 4 a



TESTING FOR THE EQUALITY OF k REGRESSION CURVES 1117

bootstrap mechanism is introduced in order to approximate the distribution of

the test statistics. Sections 5 and 6 present some simulations and an application

to data. Finally, Section 7 contains the proofs.

2. Testing Procedure

Let, for j = 1, . . . , k,

m̂j(x) =

nj
∑

i=1

W
(j)
ij (x, hn)Yij ,

σ̂2
j (x) =

nj
∑

i=1

W
(j)
ij (x, hn)Y 2

ij − m̂2
j(x)

be the estimators of the regression curves and conditional variances in each pop-

ulation, where

W
(j)
ij (x, hn) =

K((x−Xij)h
−1
n )

∑nj

i′=1K((x−Xi′j)h
−1
n )

are Nadaraya-Watson type weights, K is a known kernel and hn is an appropriate

bandwidth sequence. Let

m̂(x) =
k
∑

j=1

nj
∑

i=1

Wij(x, hn)Yij

be an estimator of the common regression function m(x) = m1(x) = · · · = mk(x)

under the null hypothesis H0, where

Wij(x, hn) =
K((x−Xij)h

−1
n )

∑k
j′=1

∑nj′

i′=1K((x−Xi′j′)h
−1
n )

.

For simplicity we work with the same bandwidth hn to estimate m̂, m̂j and σ̂j.

See Section 5 for further discussion about the bandwidth choice. For j = 1, · · · , k,

consider the following estimators of the distributions of the errors

F̂εj(y) =
1

nj

nj
∑

i=1

I

(

Yij − m̂j(Xij)

σ̂j(Xij)
≤ y

)

, (2)

and the estimators of the distributions of the errors under the null hypothesis

F̂εj0(y) =
1

nj

nj
∑

i=1

I

(

Yij − m̂(Xij)

σ̂j(Xij)
≤ y

)

. (3)
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The asymptotic properties of these estimators in nonparametric regression models

have been studied in Akritas and Van Keilegom (2001). UnderH0, both F̂εj0 and

F̂εj are estimators of Fεj . However, under the alternative hypothesis, F̂εj0 and

F̂εj typically estimate different distributions because the residuals are calculated

with respect to different curves (the true regression curve in population j and

the common regression curve). If these two empirical distributions are different,

there is evidence for the inequality of the regression curves.

We perform the comparison between these two estimators of the distribu-

tion of the errors in each population using the k-dimensional process Ŵ(y) =

(Ŵ1(y), . . . , Ŵk(y))
t, −∞ < y <∞, where, for j = 1, . . . , k, Ŵj(y) = n

1/2
j (F̂εj0(y)

−F̂εj(y)). More precisely, we will use the Kolmogorov-Smirnov and Cramér-von

Mises type test statistics

T 1
KS =

k
∑

j=1

sup
y

|Ŵj(y)| and T 1
CM =

k
∑

j=1

∫

Ŵ 2
j (y)dF̂εj0(y).

We can also compare the average of the empirical distributions considered

in (3),

F̂ε0(y) =
1

n

k
∑

j=1

nj
∑

i=1

I
(Yij − m̂(Xij)

σ̂j(Xij)
≤ y
)

, (4)

with the average of the empirical distributions in (2),

F̂ε(y) =
1

n

k
∑

j=1

nj
∑

i=1

I
(Yij − m̂j(Xij)

σ̂j(Xij)
≤ y,

)

, (5)

and work with the joint process Ŵ (y) = n1/2(F̂ε0(y) − F̂ε(y)), a linear combina-

tion of the components of de multidimensional process Ŵ(y). We propose again

the Kolmogorov-Smirnov and Cramér-von Mises type test statistics

T 2
KS = sup

y
|Ŵ (y)| and T 2

CM =

∫

Ŵ 2(y)dF̂ε0(y).

The procedures to test for the equality of regression curves are consistent in

the sense that the equality of the regression curves is equivalent to the equality

of the distribution functions we are comparing. We state this in more detail

in the following theorem. Assume that nj/n → pj > 0. Note that m̂ consis-

tently estimates the function m(x) =
∑k

j=1 pj[(fj(x))/(fmix(x))]mj(x), where fj

is the density of Xj and fmix(x) =
∑k

j=1 pjfj(x) is the density of the mix-

ture of the covariates. Consider the theoretical versions (without estimated
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curves) of the empirical distributions we have defined in (3), (2), (4) and (5):

Fεj0(y) = P ((Yj−m(Xj))σ
−1
j (Xj) ≤ y), Fεj (y) = P ((Yj−mj(Xj))σ

−1
j (Xj) ≤ y),

Fε0(y) =
∑k

j=1 pjP ((Yj − m(Xj))σ
−1
j (Xj) ≤ y) and Fε(y) =

∑k
j=1 pjP ((Yj −

mj(Xj))σ
−1
j (Xj) ≤ y).

Theorem 1. Assume that mj is continuous, for j = 1, . . . , k.

1. Fεj0(y) = Fεj(y), −∞ < y < ∞, for all j = 1, . . . , k if and only if m1(x) =

m2(x) = · · · = mk(x), for all x ∈ RX .

2. Fε0(y) = Fε(y), −∞ < y <∞, if and only if m1(x) = m2(x) = · · · = mk(x),

for all x ∈ RX .

The equivalences given in Theorem 1 are just theoretical justifications for

the testing procedures we have proposed. This result involves unknown functions

that are estimated in the actual testing procedures.

3. Main results

Let Fj(y|x) = P (Yj ≤ y|Xj = x) and Fj(x) = P (Xj ≤ x), for j = 1, . . . , k.

We need the following regularity assumptions in order to prove our main results.

(A1) For j = 1, . . . , k,

(i) Xj is absolutely continuous with compact support RX and density fj;

(ii) fj, mj and σj are two times continuously differentiable;

(iii) infx∈RX
fj(x) > 0 and infx∈RX

σj(x) > 0.

(A2) For j = 1, . . . , k,

(i) nj/n→ pj > 0;

(ii) njh
4
n → 0 and njh

3+2δ
n (log h−1

n )−1 → ∞ for some δ > 0.

(A3) K is a symmetric density function with compact support and K is twice

continuously differentiable.

(A4) For j = 1, . . . , k, Fj(y|x) is continuous in (x, y) and differentiable with

respect to y, F ′

j(y|x) is continuous in (x, y) and supx,y |y
2F ′

j(y|x)| < ∞.

The same holds for all other partial derivatives of Fj(y|x) with respect to

x and y up to order two.

Finally, let fεj be the density corresponding to Fεj .

Theorem 2. Assume (A1)−(A4). Then, under the null hypothesis H0, for

j = 1, . . . , k

F̂εj0(y) − F̂εj (y)

= fεj(y)

k
∑

l=1

pl

{

1

nl

nl
∑

i=1

Yil −m(Xil)

σj(Xil)

( fj(Xil)

fmix(Xil)
−
I(l = j)

pj

)

}

+ oP (n−
1

2 ),
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uniformly in y.

Theorem 3. Assume (A1)−(A4). Then, under the null hypothesis H0, the k-
dimensional process Ŵ(y) = (Ŵ1(y), . . . , Ŵk(y))

t converges weakly to W(y) =
(fε1

(y)W1, . . . , fεk
(y)Wk)

t, where W1, . . . ,Wk are normal random variables with

mean zero and covariance structure

Cov (Wj ,Wj′)

= p
1

2

j p
1

2

j′

k
∑

l=1

plE

[

σ2
l (Xl)

σj(Xl)σj′(Xl)

( fj(Xl)

fmix(Xl)
−
I(l=j)

pj

)( fj′(Xl)

fmix(Xl)
−
I(l=j′)

pj′

)

]

.

Corollary 4. Assume (A1)−(A4). Then, under the null hypothesis H0,

T 1
KS

d
→

k
∑

j=1

|Wj | sup
y

|fεj(y)|, T 1
CM

d
→

k
∑

j=1

W 2
j

∫

f2
εj

(y)dFεj (y),

T 2
KS

d
→ sup

y
|W (y)|, T 2

CM
d
→

∫

W 2(y)dFε(y),

where W (y) =
∑k

j=1 p
1/2
j fεj(y)Wj and Fε(y) =

∑k
j=1 pjFεj (y).

Consider now the limiting behavior of the test statistics under the local
alternatives Hl.a. : mj = m0 + n−1/2rj, where the functions rj satisfy

(A5) (i) rj is two times continuously differentiable, for j = 1, . . . , k,
(ii) Var [rj(Xl)] <∞, for j = 1, . . . , k and l = 1, . . . , k.

Theorem 5. Assume (A1)−(A5). Then, under the alternative hypothesis Hl.a.,

the k-dimensional process Ŵ(y) = (Ŵ1(y), . . . , Ŵk(y))
t converges weakly to W(y)

+D(y), where W(y) is defined in Theorem 3 and D(y) = (p
1/2
1 fε1

(y)d1, . . . ,

p
1/2
k fεk

(y)dk)
t, with

dj = E
[R(Xj) − rj(Xj)

σj(Xj)

]

,

and R(u) =
∑k

j=1 pj[fj(u)/fmix(u)]rj(u).

Corollary 6. Assume (A1)−(A5). Then, under the alternative hypothesis Hl.a.,

T 1
KS

d
→

k
∑

j=1

|Wj + p
1

2

j dj| sup
y

|fεj(y)|, T 1
CM

d
→

k
∑

j=1

(Wj +p
1

2

j dj)
2

∫

f2
εj

(y)dFεj (y),

T 2
KS

d
→ sup

y
|W (y) + d(y)|, T 2

CM
d
→

∫

(W (y) + d(y))2dFε(y),

where d(y) =
∑k

j=1 pjfεj(y)dj , the random variables Wj are defined in the state-

ment of Theorem 3, and W (y) and Fε(y) are defined in the statement of Corol-

lary 4.
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We can analyze in more detail the effect of the local alternatives if we consider

the simpler situation of two regression curves where one of the curves is fixed and

the other one varies with n. The null hypothesis is H0 : m1 = m2 and the alterna-

tive Hl.a. : m2 = m1 + n−1/2r. In this situation d1 = p2 E [(f2(X1)r(X1)) /

(fmix(X1)σ1(X1))] and d2 = −p1 E[(f1(X2)r(X2)) /(fmix(X2)σ2(X2))], and

these values may be zero in some cases. Nevertheless, there are important situ-

ations with consistency against alternatives converging to the null hypothesis at

a rate n−1/2, such as the one-sided alternatives (when r is a positive function).

And, of course, the testing procedure is universally consistent in the sense of

Theorem 1.

4. Bootstrap approximation

To apply this testing procedure in practice the asymptotic distribution of

the test statistics can be used to obtain the critical values of the test. These

asymptotic distributions, given in Corollary 4, can be estimated by plugging

in estimators for pj,m, σj , Fεj , fεj , fj and fmix. Alternatively, one can use a

bootstrap procedure to approximate the distributions of the test statistics under

the null hypothesis. We now consider this second option in detail.

First, for j = 1, . . . , k and i = 1, . . . , nj, estimate the residuals in a non-

parametric way, using each sample separately, that is (Yij − m̂j(Xij))/σ̂j(Xij).

These residuals are then standardized to have mean zero and variance one. Let

F̃εj be the empirical distribution of the standardized residuals obtained from the

jth sample.

We propose a smooth bootstrap of the residuals. Note that the asymp-

totic representation given in Theorem 2 involves the density of the residuals fεj .

This suggests that a smoothed version of the bootstrap of the residuals must be

used. In the bootstrap of the residuals the samples are drawn from the empirical

distribution, while in the smooth bootstrap the resamples are drawn from an

estimate of the corresponding density. See Freedman (1981) for the bootstrap

of the residuals and, e.g., Davison and Hinkley (1997) or Silverman and Young

(1987) for the smoothing in the bootstrap.

The bootstrap procedure is described as follows. Let b index the bootstrap

run, b = 1, . . . , B.

1. For j = 1, . . . , k, let {ε∗ij,b, i = 1, . . . , nj} be an i.i.d. sample from the

distribution of (1 − a2
j)

1/2Vj + ajZ, where Vj has distribution F̃εj and Z is,

e.g., a standard normal random variable. The constants aj , which determine

the amount of smoothing in the bootstrap, are related to the sample size in

each sample.

2. For j = 1, . . . , k and i = 1, . . . , nj , define new responses under the null

hypothesis Y ∗

ij,b = m̂(Xij) + σ̂j(Xij)ε
∗

ij,b.
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3. Let T 1∗
KS,b, T

1∗
CM,b, T

2∗
KS,b and T 2∗

CM,b be the test statistics obtained from the

bootstrap samples {(Xij , Y
∗

ij,b), i = 1, . . . , nj}, j = 1, . . . , k.

Since in Step 2 the bootstrap resamples are constructed under the null hy-

pothesis of equal regression functions, we approximate the distribution of the test

statistics under the null hypothesis. If we let T 1∗
KS,(b) be the order statistics of the

values T 1∗
KS,1, . . . , T

1∗
KS,B obtained in Step 3, and analogously for T 1∗

CM,(b), T
2∗
KS,(b)

and T 2∗
CM,(b), then T 1∗

KS,([(1−α)B]), T
1∗
CM,([(1−α)B]), T

2∗
KS,([(1−α)B]) and T 2∗

CM,([(1−α)B])

approximate the (1−α)-quantiles of the distribution of T 1
KS, T 1

CM , T 2
KS and T 2

CM

under the null hypothesis, respectively.

5. Simulation study

Here we study the behavior of the bootstrap procedure by means of some

simulations. In order to be able to compare with other methods in the litera-

ture, in the first part we restrict our study to the comparison of two regression

curves. In particular, we compare our method with the procedure developed

by Neumeyer and Dette (2003) that is based on a marked empirical process ap-

proach. The comparison is carried out by selecting the following models, consid-

ered in the simulation section of the above mentioned paper (except for model

(ii), not considered there):

(i) m1(x) = m2(x) = 1; (v) m1(x) = 1, m2(x) = 1 + x;

(ii) m1(x) = m2(x) = x; (vi) m1(x) = exp(x), m2(x) = exp(x) + x;

(iii) m1(x) = m2(x) = sin(2πx); (vii) m1(x) = sin(2πx), m2(x)=sin(2πx) + x;

(iv) m1(x) = m2(x) = exp(x); (viii) m1(x) = 1, m2(x) = 1 + sin(2πx).

In each case, we consider a homoscedastic and a heteroscedastic situation. In the

homoscedastic case, the variance functions are

σ2
1(x) = 0.25 and σ2

2(x) = 0.50, (6)

and in the heteroscedastic case, the variance functions are

σ2
1(x) = σ2

2(x) =
ex

∫ 1
0 e

tdt
. (7)

The distribution of ε1 and ε2 is the standard normal distribution. Other simu-

lations have been carried out with other distributions for the errors, and similar

results were obtained. In all cases the covariates X1 and X2 are uniformly dis-

tributed on the interval [0, 1].

For the nonparametric estimation of the regression and variance curves we

use the kernel of Epanechnikov: K(u) = 0.75(1 − u2)I(|u| < 1). Concerning
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the amount of smoothing we apply in the bootstrap, we recommend different

constants aj depending on the sample sizes nj. We work in all cases with

aj = 2n
−3/10
j . Considered as a bandwidth, aj chosen in this way is a small

bandwidth to estimate the density of the errors (in our simulations, a standard

normal). Tables register the proportion of rejections in 1,000 trials for sample

sizes (n1, n2) = (50, 50), (100, 50) and (100, 100) based on B = 200 bootstrap

replications. The significance levels are α = 0.05 and α = 0.10.

In the theoretical results we work with only one bandwidth hn, and in simula-

tions we have found better approximation of the level when the same bandwidth

is used to estimate the common regression curve and the regression curves in

each population, especially for ‘oscillating’ functions, as in model (iii). This

can be explained as follows: when using different bandwidths the estimation

of the regression curve in one population can be oversmoothed with respect to

the estimation of the common regression function, and then the test can detect

differences when the curves are really the same.

From a theoretical point of view, the optimal bandwidth order, n−1/5, for

estimating regression functions is excluded by assumption (A2-ii). To obtain the

order of the optimal bandwidth, the second order terms of the representation

given in Theorem 2 are needed. This is however beyond the scope of this pa-

per. Some interesting comments about the choice of the smoothing parameter

in testing problems can be found in Zhang (2003). In practice, we recommend

performing the test for a reasonable range of bandwidths and studying the sig-

nificance trace (see Hart (1997, p.160)), as we do in Section 6.

We have also observed that the choice of the bandwidth does not represent

a big impact on the rejection probabilities. This is illustrated in Table 1, which

shows results under the null hypothesis -models (ii) and (iii)- and under the

alternative hypothesis -models (v) and (vii)- of the tests based on T 1
KS and T 1

CM

for bandwidths of the form h = Cn−3/10 and different values of the constant C.

Note that this bandwidth satisfies the regularity conditions given in Section 2.

Similar results were obtained for the other models, and for the tests based on

T 2
KS and T 2

CM . In the rest of the tables we only use C = 1. In other situations,

the value of C must be adapted to the support of the regressor variables.

Table 2 shows that the level is well-approximated in most cases. The ap-

proximation is better for the tests based on the statistics T 1
KS and T 1

CM . The

tests based on T 2
KS and T 2

CM seem to be somewhat conservative. The behav-

ior of the power (see Table 3) of the tests based on T 1
KS and T 1

CM is good for

models (v), (vi) and (vii). On the other hand, the tests based on T 2
KS and T 2

CM

give good power for model (viii). In both cases the power obtained is better

for larger sample sizes. The Cramér-von Mises test gives better power than the

Kolmogorov-Smirnov test in most situations.



1124 J. C. PARDO-FERNÁNDEZ, I. VAN KEILEGOM AND W. GONZÁLEZ-MANTEIGA

Table 1. Rejection probabilities under models (ii), (iii), (v) and (vii) of the

tests based on T 1
KS and T 1

CM . The models are homoscedastic, with variances

given in (6). The significance level is α = 0.05.

T 1

KS
T 1

CM

(n1, n2) C : 0.5 1 1.5 0.5 1 1.5

(50, 50) (ii) 0.053 0.051 0.056 0.053 0.054 0.054

(iii) 0.066 0.064 0.058 0.058 0.071 0.055

(v) 0.939 0.948 0.952 0.960 0.972 0.972

(vii) 0.950 0.945 0.898 0.966 0.963 0.943

(100, 50) (ii) 0.055 0.048 0.058 0.061 0.050 0.058

(iii) 0.060 0.067 0.060 0.065 0.076 0.071

(v) 0.983 0.983 0.982 0.992 0.992 0.992

(vii) 0.986 0.977 0.964 0.990 0.984 0.979

(100, 100) (ii) 0.056 0.054 0.058 0.051 0.053 0.056

(iii) 0.049 0.058 0.058 0.050 0.061 0.057

(v) 1.000 1.000 1.000 1.000 1.000 1.000

(vii) 1.000 0.999 0.999 1.000 1.000 0.999

Table 2. Rejection probabilities under the null hypothesis -models (i) to (iv)- of

the tests based on T 1
KS , T 1

CM , T 2
KS and T 2

CM . The models are homoscedastic,

with variances given in (6), and heteroscedastic, with variances given in (7).

T 1

KS
T 1

CM
T 2

KS
T 2

CM

(n1, n2) α : 0.050 0.100 0.050 0.100 0.050 0.100 0.050 0.100

Homoscedastic models

(50, 50) (i) 0.051 0.093 0.052 0.105 0.056 0.104 0.049 0.101

(ii) 0.051 0.101 0.054 0.102 0.049 0.095 0.055 0.100

(iii) 0.064 0.110 0.071 0.122 0.047 0.097 0.066 0.121

(iv) 0.057 0.102 0.055 0.108 0.048 0.092 0.055 0.096

(100, 50) (i) 0.055 0.099 0.055 0.107 0.048 0.088 0.050 0.105

(ii) 0.048 0.100 0.050 0.106 0.054 0.093 0.055 0.101

(iii) 0.067 0.117 0.076 0.127 0.067 0.130 0.073 0.130

(iv) 0.048 0.097 0.050 0.111 0.059 0.099 0.055 0.110

(100, 100) (i) 0.052 0.088 0.050 0.106 0.039 0.090 0.044 0.087

(ii) 0.054 0.088 0.053 0.107 0.044 0.077 0.044 0.092

(iii) 0.058 0.110 0.061 0.110 0.045 0.091 0.060 0.104

(iv) 0.052 0.095 0.059 0.104 0.044 0.086 0.049 0.095

Heteroscedastic models

(50, 50) (i) 0.052 0.097 0.050 0.095 0.044 0.095 0.057 0.094

(ii) 0.047 0.095 0.053 0.103 0.043 0.095 0.051 0.088

(iii) 0.049 0.096 0.052 0.103 0.044 0.088 0.047 0.087

(iv) 0.042 0.090 0.054 0.094 0.038 0.086 0.046 0.089

(100, 50) (i) 0.054 0.099 0.052 0.114 0.042 0.085 0.049 0.087

(ii) 0.048 0.096 0.053 0.102 0.032 0.083 0.038 0.085

(iii) 0.060 0.116 0.063 0.121 0.055 0.101 0.041 0.090

(iv) 0.050 0.099 0.053 0.102 0.039 0.079 0.046 0.082

(100, 100) (i) 0.050 0.096 0.056 0.099 0.039 0.067 0.043 0.076

(ii) 0.052 0.097 0.056 0.100 0.034 0.079 0.039 0.073

(iii) 0.054 0.098 0.056 0.107 0.038 0.093 0.051 0.101

(iv) 0.052 0.093 0.056 0.104 0.038 0.083 0.044 0.074
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Table 3. Rejection probabilities under the alternative hypothesis -models

(v) to (viii)- of the tests based on T 1
KS, T 1

CM , T 2
KS and T 2

CM . The models

are homoscedastic, with variances given in (6), and heteroscedastic, with

variances given in (7).

T 1

KS
T 1

CM
T 2

KS
T 2

CM

(n1, n2) α : 0.050 0.100 0.050 0.100 0.050 0.100 0.050 0.100

Homoscedastic models

(50, 50) (v) 0.948 0.978 0.972 0.986 0.698 0.816 0.902 0.951

(vi) 0.950 0.973 0.969 0.986 0.702 0.802 0.903 0.950

(vii) 0.945 0.972 0.963 0.977 0.639 0.779 0.874 0.941

(viii) 0.213 0.370 0.158 0.312 0.688 0.795 0.844 0.922

(100, 50) (v) 0.983 0.994 0.992 0.998 0.858 0.917 0.966 0.983

(vi) 0.983 0.990 0.991 0.995 0.839 0.901 0.968 0.985

(vii) 0.977 0.986 0.984 0.994 0.809 0.890 0.953 0.973

(viii) 0.286 0.436 0.180 0.342 0.777 0.869 0.901 0.960

(100, 100) (v) 1.000 1.000 1.000 1.000 0.969 0.989 0.997 0.999

(vi) 1.000 1.000 1.000 1.000 0.964 0.983 0.997 0.998

(vii) 0.999 1.000 1.000 1.000 0.952 0.980 0.993 0.998

(viii) 0.430 0.647 0.324 0.562 0.961 0.985 0.998 0.998

Heteroscedastic models

(50, 50) (v) 0.596 0.717 0.638 0.762 0.233 0.369 0.359 0.479

(vi) 0.583 0.712 0.643 0.753 0.233 0.359 0.363 0.489

(vii) 0.586 0.701 0.626 0.748 0.223 0.355 0.347 0.469

(viii) 0.122 0.199 0.086 0.167 0.376 0.535 0.562 0.692

(100, 50) (v) 0.760 0.854 0.816 0.886 0.341 0.486 0.492 0.639

(vi) 0.740 0.847 0.815 0.881 0.343 0.481 0.489 0.632

(vii) 0.749 0.844 0.810 0.870 0.321 0.463 0.465 0.598

(viii) 0.178 0.302 0.136 0.240 0.513 0.645 0.709 0.808

(100, 100) (v) 0.899 0.952 0.928 0.962 0.445 0.583 0.649 0.767

(vi) 0.912 0.953 0.929 0.962 0.440 0.578 0.645 0.763

(vii) 0.890 0.951 0.920 0.958 0.428 0.566 0.639 0.753

(viii) 0.213 0.341 0.136 0.261 0.673 0.782 0.882 0.932

The method proposed by Neumeyer and Dette (2003) is based on the marked

empirical processes (with l = 1, 2) R̂l(x) = n−1
∑n1

i=1 e
l
i1I(Xi1 ≤ x)−n−1

∑n2

i=1 e
l
i2

I(Xi2 ≤ x), where e1ij = (n3−j/n)(Yij − m̂(Xij))f̂mix(Xij)f̂3−j(Xij) and e2ij =

(n/nj)(Yij − m̂(Xij))f̂
−1
j (Xij), for j = 1, 2. The test statistics are K l = supx

|Rl(x)| (l = 1, 2) and their distributions are approximated by a wild bootstrap

procedure. For the sake of comparison we show, in Table 4, the results for the

tests based on K1 and K2 using the same samples as in the previous tables. Since

the level is well-approximated, we only show the results corresponding to the

power behavior. For the estimation of the needed functions, bandwidth selection,

and bootstrap, we have kept exactly the setting described in Neumeyer and Dette

(2003). We found that our procedure based on T 1
KS and T 1

CM yields better or

similar results for the power in most cases for models (v), (vi) and (vii), whereas

for model (viii) we obtained better results with the tests based on T 2
KS and T 2

CM .
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Table 4. Rejection probabilities under the alternative hypothesis -models (v)

to (viii)- of the tests based onK1 andK2 (Neumeyer and Dette (2003)). The

models are homoscedastic, with variances given in (6), and heteroscedastic,

with variances given in (7).

Homoscedastic models Heteroscedastic models

K1 K2 K1 K2

(n1, n2) α : 0.050 0.100 0.050 0.100 0.050 0.100 0.050 0.100

(50, 50) (v) 0.935 0.960 0.888 0.920 0.616 0.720 0.625 0.723

(vi) 0.933 0.961 0.823 0.871 0.616 0.721 0.593 0.682

(vii) 0.921 0.956 0.928 0.959 0.602 0.690 0.638 0.738

(viii) 0.697 0.819 0.479 0.635 0.335 0.494 0.206 0.347

(100, 50) (v) 0.971 0.983 0.943 0.963 0.753 0.823 0.745 0.826

(vi) 0.966 0.983 0.895 0.924 0.754 0.825 0.697 0.792

(vii) 0.966 0.980 0.973 0.984 0.732 0.814 0.781 0.850

(viii) 0.738 0.866 0.572 0.718 0.419 0.573 0.268 0.440

(100, 100) (v) 0.999 1.000 0.992 0.995 0.902 0.945 0.889 0.933

(vi) 0.998 1.000 0.961 0.970 0.903 0.944 0.863 0.910

(vii) 0.999 1.000 1.000 1.000 0.885 0.933 0.908 0.953

(viii) 0.967 0.996 0.873 0.937 0.657 0.800 0.480 0.648

Our method is valid for more than two curves. We explore now the behavior

of the testing procedure in a three regression curves setup. We consider the

models
(ix)m1(x) = m2(x) = m3(x) = x;

(x) m1(x) = x, m2(x) = x+ 0.25, m3(x) = x+ 0.5;

(xi)m1(x) = x, m2(x) = 0.5, m3(x) = 1 − x.

The variance functions are

σ2
1(x) = σ2

2(x) = σ2
3(x) = 0.5. (8)

As in the previous simulated models, the covariates are uniformly distributed in

[0, 1] and the errors are distributed as a standard normal. The choice of the

kernel, the bandwidth and the amount of smoothing in the bootstrap is the same

as in the previous simulations: K is the Epanechnikov kernel, h = n−3/10 and

aj = 2n
−3/10
j . The results obtained with samples sizes (50, 50, 50), (100, 50, 50),

(100, 100, 50) and (100, 100, 100) and significance levels α = 0.05 and α = 0.10 are

shown in Table 5. The tests based on T 1
KS and T 1

CM approximate the level well,

while the tests based on T 2
KS and T 2

CM seem a bit conservative, as happened in

the two-curve examples. In all cases the power increases with sample size. The

first version of the test statistics produces better power in model (x) and the

second version gives better power in model (xi), as happened with model (viii).

In these two models -(viii) and (xi)- all the distributions we are comparing have

expectation zero, and the differences appear in other features of the distributions.
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Table 5. Rejection probabilities under models (ix) to (xi) of the tests based

on T 1
KS, T 1

CM , T 2
KS and T 2

CM . The models are homoscedastic, with variances

given in (8).

T 1

KS T 1

CM T 2

KS T 2

CM

(n1, n2, n3) α : 0.050 0.100 0.050 0.100 0.050 0.100 0.050 0.100

(50, 50, 50) (ix) 0.049 0.088 0.051 0.096 0.041 0.068 0.036 0.072

(x) 0.818 0.886 0.890 0.929 0.274 0.391 0.430 0.555

(xi) 0.089 0.190 0.077 0.146 0.290 0.434 0.475 0.601

(100, 50, 50) (ix) 0.054 0.090 0.058 0.097 0.043 0.086 0.031 0.083

(x) 0.937 0.975 0.975 0.991 0.420 0.541 0.596 0.710

(xi) 0.140 0.232 0.106 0.193 0.462 0.596 0.662 0.763

(100, 100, 50) (ix) 0.050 0.098 0.057 0.107 0.039 0.073 0.047 0.094

(x) 0.929 0.958 0.940 0.962 0.365 0.516 0.841 0.912

(xi) 0.171 0.283 0.090 0.176 0.420 0.569 0.495 0.616

(100, 100, 100) (ix) 0.056 0.109 0.061 0.119 0.055 0.088 0.059 0.100

(x) 0.989 0.996 0.993 0.998 0.523 0.677 0.760 0.850

(xi) 0.201 0.311 0.133 0.236 0.576 0.708 0.835 0.907

Also note that all the simulation results are based on fixed alternatives.

When working with local alternatives converging to the null hypothesis at a rate

n−1/2, models (viii) and (xi) produce no power (see Theorem 5).

6. Application to data

We illustrate our testing procedure by means of data from the Data Archive

of the Journal of Applied Econometrics, consisting of monthly expenditures of

several Dutch households. The data are registered in Dutch guilders and corre-

spond to the period from October 1986 to September 1987. Einmahl and Van

Keilegom (2007) verified that model (1) holds when X=‘log of the total monthly

expenditure’ is considered as a covariate and Y=‘log of the expenditure on food’

is the response variable (even a homoscedastic model is verified).

We compare the regression curves for three groups of households: households

consisting of two members (159 in total), three members (45 in total) and four

members (73 in total). Figure 1 shows the scatter plots and estimated regres-

sion curves based on the cross-validation bandwidths. We have transformed the

support of the covariates to the interval [0, 1] and performed the test for a wide

range of bandwidths, going from 0.15 to 0.35. The p-values are based on 1,000

bootstrap replications. Since the results obtained with the test statistics T 1
KS

and T 1
CM are very similar to those obtained with T 2

KS and T 2
CM , we only discuss

the first ones.
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When testing for the equality of the three regression curves we obtained

p-values smaller than 0.003 for T 1
KS and smaller than 0.001 for T 1

CM for any

bandwidth considered in the range. There is a strong evidence for the inequality

of the three regression curves.
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Figure 1. Scatter plot of ‘log(food expenditure)’ versus ‘log(total expendi-

ture)’ and estimated regression curves of households consisting of two mem-

bers (circles and solid line), three members (crosses and dashed line) and

four members (squares and dashed dotted line).

It makes sense then to test for the equality of each set of two curves. When

we test for the equality of the regression curves corresponding to households

consisting of two and three members the p-values are smaller than 0.02 for T 1
KS,

and smaller than 0.002 for T 1
CM . More extreme p-values (all of them smaller

than 0.001) were observed when testing for households of two and four members.

However the p-values for households consisting of three and four members were

between 0.32 and 0.61 for T 1
KS, and between 0.53 and 0.68 for T 1

CM . It seems that

the regression curves are the same when households of three and four members are

considered (note that on the left side of Figure 1 the curves seem quite different,

but there are very few points in that area and they make a small contribution to

the test statistics). All the results are summarized in Figure 2.



TESTING FOR THE EQUALITY OF k REGRESSION CURVES 1129

2, 3 and 4 members 2 and 3 members

p
-v

a
lu

e

h

0
.
0

0
.
0
1
0
.
0
2
0
.
0
3
0
.
0
4
0
.
0
5
0
.
0
6

0.15 0.20 0.25 0.30 0.35

p
-v

a
lu

e
h

0
.
0

0
.
0
1
0
.
0
2
0
.
0
3
0
.
0
4
0
.
0
5
0
.
0
6

0.15 0.20 0.25 0.30 0.35

3 and 4 members 2 and 4 members

p
-v

a
lu

e

h

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

0.15 0.20 0.25 0.30 0.35

p
-v

a
lu

e

h

0
.
0

0
.
0
1
0
.
0
2
0
.
0
3
0
.
0
4
0
.
0
5
0
.
0
6

0.15 0.20 0.25 0.30 0.35

Figure 2. Graphics of the p-values as function of the bandwidth h obtained

from 1,000 bootstrap replications with the test statistics T 1
KS (line with

circles) and T 1
CM (line with crosses). The solid horizontal line corresponds

to a p-value of 0.05.

7. Proofs

Proof of Theorem 1. 1st part. Assume Fεj0(y) = Fεj(y). This implies that the

first and the second moment of these distributions are the same. From the first

moment we have that E[(Yj −m(Xj))/σj(Xj)] = E[(Yj −mj(Xj))/σj(Xj)] = 0.

The second moment of Fεj0(y) can be written as Var [(Yj −m(Xj))/σj(Xj)] =

Var [(Yj −mj(Xj))/σj(Xj)] + E[(mj(Xj) −m(Xj))
2/σ2

j (Xj)]. We are assuming

that Var [(Yj−m(Xj))σ
−1
j (Xj)] = Var [(Yj−mj(Xj))σ

−1
j (Xj)], hence E((mj(Xj)

−m(Xj))
2σ−2

j (Xj)) = 0, and this implies mj(x) = m(x), for all j = 1, . . . , k, and

for all x ∈ RX , except for a set of points of probability zero. The continuity of

mj allows one to extend the equality to all x ∈ RX .

2nd part. The result is obtained by equating the first and second moments

of Fε0(y) and Fε(y), as in the 1st part.

The converse implications are trivial.

Before proving the main results in Section 3, we state three lemmas.

Lemma 7. Assume (A1)−(A3). Then, under the null hypothesis H0, for any
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j ∈ {1, . . . , k},

∫

m̂(x) −m(x)

σj(x)
fj(x)dx =

1

n

k
∑

l=1

nl
∑

i=1

Yil −m(Xil)

σj(Xil)

fj(Xil)

fmix(Xil)
+ oP (n−

1

2 ).

Proof. Let f̂mix(x) = (nhn)−1
∑k

l=1

∑nl
i=1K((x−Xil)h

−1
n ) be the kernel estima-

tor of the density of the mixture fmix(x). By properties of the kernel estimator
(see for example Wand and Jones (1995)) and assumption (A2-ii), we have that
f̂mix(x) − fmix(x) = OP ((nhn)−1/2) and f̂mix(x)f−1

mix(x) − 1 = OP ((nhn)−1/2).
Similarly m̂(x) −m(x) = OP ((nhn)−1/2). Then we obtain

m̂(x) −m(x) =
1

nhnfmix(x)

k
∑

l=1

nl
∑

i=1

K
(x−Xil

hn

)

(Yil −m(x)) +OP ((nhn)−1)),

uniformly in x. Taking this into account with condition (A2-ii), the integral
becomes
∫

m̂(x) −m(x)

σj(x)
fj(x)dx

=
1

nhn

k
∑

l=1

nl
∑

i=1

∫

K((x−Xil)h
−1
n )(Yil −m(x))

σj(x)

fj(x)

fmix(x)
dx+ oP (n−

1

2 ).

Let L(x) = (Yil − m(x))fj(x)(fmix(x)σj(x))
−1. Using the change of variable

u = (x − Xil)h
−1
n , a Taylor expansion of second order of L around Xil, and

assumption (A3), we immediately obtain the result.

Lemma 8. Assume (A1)−(A3). Then, for any j ∈ {1, . . . , k},

∫

m̂j(x) −mj(x)

σj(x)
fj(x)dx =

1

nj

nj
∑

i=1

Yij −mj(Xij)

σj(Xij)
+ oP (n

−
1

2

j ).

Proof. The proof is similar to that of the previous lemma.

Lemma 9. Assume (A1)−(A3). Then, for any j ∈ {1, . . . , k}

∫

σ̂j(x) − σj(x)

σj(x)
fj(x)dx =

1

nj

nj
∑

i=1

(Yij −mj(Xij))
2 − σ2

j (Xij)

2σ2
j (Xij)

+ oP (n
−

1

2

j ).

Proof. Write

σ̂j(x) − σj(x) =
σ̂2

j (x) − σ2
j (x)

2σj(x)
−

(σ̂j(x) − σj(x))
2

2σj(x)
.
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From Proposition 3 in Akritas and Van Keilegom (2001), the second term is
OP ((njhn)−1), and hence we can write σ̂j(x)−σj(x) = (σ̂2

j (x)−σ
2
j (x))/(2σj(x))+

OP ((njhn)−1), uniformly in x. Since m̂j(x)−mj(x) = OP ((njhn)−1/2), it is easy

to see that σ̂2
j (x) = σ̃2

j (x)+OP ((njhn)−1), where σ̃2
j (x) =

∑nj

i=1W
(j)
ij (x, hn)(Yij−

mj(x))
2. If we consider σ2

j (x) as the regression function of the variable (Yij −

mj(x))
2, we have that σ̃2

j (x) − σ2
j (x) = OP ((njhn)−1/2) and

σ̃2
j (x) − σ2

j (x)

=
1

njhnfj(x)

nj
∑

i=1

K
(x−Xij

hn

)

[(Yij −mj(x))
2 − σ2

j (x)] +OP ((njhn)−1).

Using the previous expression and (A2-ii), we obtain
∫

σ̂j(x) − σj(x)

σj(x)
fj(x)dx

=
1

njhn

nj
∑

i=1

∫

K((x−Xij)h
−1
n )((Yij −mj(x))

2 − σ2
j (x))

2σ2
j (x)

dx+ oP (n
−

1

2

j ).

Using a Taylor expansion of second order, we obtain the representation given in
the statement of the lemma.

Proof of Theorem 2. Write

F̂εj0(y) − F̂εj(y) = (F̂εj0(y) − Fεj (y)) − (F̂εj (y) − Fεj(y)). (9)

First we study the asymptotic behavior of F̂εj0(y) − Fεj(y). We use some re-
sults and proofs from Akritas and Van Keilegom (2001). These authors assume
that the functions m, mj , and σj are L-functionals depending on a certain score
function J . In our case the functionals are the conditional mean and variance
that correspond to J ≡ 1. This choice of J is not covered by the results in
Akritas and Van Keilegom (2001). However, it is easy to check that the re-
sults in that paper can be suitably extended. From the proof of Theorem 1 in
Akritas and Van Keilegom (2001), we have that

F̂εj0(y) − Fεj(y)

=
1

nj

nj
∑

i=1

I
(Yij −m(Xij)

σj(Xij)
≤ y
)

− Fεj (y)

+fεj(y)

∫

y(σ̂j(x) − σj(x)) + m̂(x) −m(x)

σj(x)
fj(x)dx+Rnj (y), (10)

where supy |Rnj (y)| = oP (n
−1/2
j ). Note that in Akritas and Van Keilegom (2001)

the estimation of the distribution of the residuals is considered from one sam-
ple. This means that, with our notation, the error εij is estimated by (Yij −
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m̂j(Xij))/σ̂j(Xij). However, the decomposition given in (10) remains valid when
the errors are estimated with m̂, because their Lemma 1 holds in that case.

Using Lemma 7, Lemma 9, and the fact that under the null hypothesis
m = m1 = · · · = mk,

F̂εj0(y) − Fεj(y) =
1

nj

nj
∑

i=1

I
(Yij −m(Xij)

σj(Xij)
≤ y
)

− Fεj (y)

+yfεj(y)
1

nj

nj
∑

i=1

(Yij −m(Xij))
2 − σ2

j (Xij)

2σ2
j (Xij)

+fεj(y)
1

n

k
∑

l=1

nl
∑

i=1

Yil −m(Xil)

σj(Xil)

fj(Xil)

fmix(Xil)
+ oP (n−

1

2 ) (11)

uniformly in y. Analogously, from the proof of Theorem 1 in Akritas and Van
Keilegom (2001) and Lemmas 8 and 9,

F̂εj (y) − Fεj(y) =
1

nj

nj
∑

i=1

I
(Yij −m(Xij)

σj(Xij)
≤ y
)

− Fεj (y)

+yfεj(y)
1

nj

nj
∑

i=1

(Yij −m(Xij))
2 − σ2

j (Xij)

2σ2
j (Xij)

+fεj(y)
1

nj

nj
∑

i=1

Yij −m(Xij)

σj(Xij)
+ oP (n

−
1

2

j ) (12)

uniformly in y. The representation given in the statement of the theorem follows
from (9), (11) and (12).

Proof of Theorem 3. The Cramér-Wold device (see e.g., Serfling (1980))
ensures that the weak convergence of a multidimensional process is equivalent
to the weak convergence of any linear combination of its components. Consider
then a linear combination of the components of the process Ŵ(y), say V̂ (y) =
∑k

j=1 ajn
1/2
j (F̂εj0(y) − F̂εj (y)). Using the representation given in Theorem 2 it

is not difficult to obtain that

k
∑

j=1

ajn
1

2

j (F̂εj0(y) − F̂εj(y)) =
k
∑

l=1

1

n
1

2

l

nl
∑

i=1

ψl(Xil, Yil, y) + oP (1),

where

ψl(u, v, y) =
v −m(u)

σl(u)

(

k
∑

j=1

ajp
1

2

l p
1

2

j fεj(y)
σl(u)

σj(u)

fj(u)

fmix(u)
− alfεl

(y)
)

.
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Write V̂l(y) = n
−1/2
l

∑nl
i=1 ψl(Xil, Yil, y), for l = 1, . . . , k. Consider the class of

functions Fl = {(u, v) −→ ψl(u, v, y),−∞ < y <∞}. The process V̂l(y) is the Fl-
indexed process (see page 80 in van der Vaart and Wellner (1996)). In general,
for any classes of functions G1 and G2, define G1+G2 = {g1 +g2; g1 ∈ G1, g2 ∈ G2}.
With this notation the class Fl can be written as F1 =

∑k+1
j=1 Flj, where, for

j = 1, . . . , k,

Flj =
{

(u, v) −→ ajp
1

2

l p
1

2

j fεj(y)
σl(u)

σj(u)

fj(u)

fmix(u)

v −m(u)

σl(u)
,−∞ < y <∞

}

,

Fl,k+1 =
{

(u, v) −→ −alfεl
(y)

v −m(u)

σl(u)
,−∞ < y <∞

}

.

All these classes follow the same pattern, they factorize in a part not depending
on y and a bounded function of y. Let M be such that supy,j=1,...,k |fεj(y)| <
M . Then N[ ](δ,Flj , L2(P )) ≤ 2Mδ−1 if δ < 2M and N[ ](δ,Flj , L2(P )) = 1
if δ > 2M , where N[ ] is the bracketing number, P is the probability measure
corresponding to the joint distribution of (Xl, Yl) and L2(P ) is the L2-norm.

Theorem 2.10.6 in van der Vaart and Wellner (1996) ensures that
logN[ ](δ,Fl, L2(P )) ≤

∑k+1
j=1 logN[ ](δ,Flj , L2(P )), and consequently the integral

∫

∞

0

√

logN[ ](δ,Fl, L2(P ))dδ is finite. Then, by Theorem 2.5.6. in van der Vaart

and Wellner (1996), the class of functions Fl is Donsker. The weak convergence
of the process V̂l(y) now follows from pages 81 and 82 of the aforementioned
book. The limit process, Vl(y), is a zero-mean Gaussian process with covariance
function Cov (Vl(y), Vl(y

′)) = E[ψl(Xl, Yl, y)ψl(Xl, Yl, y
′)].

Our process of interest can be written as V̂ (y) =
∑k

l=1 V̂l(y), and the pro-

cesses V̂l(y) are independent. So, using the first part of this proof, we can con-
clude that V̂ (y) converges weakly to a zero-mean Gaussian process V (y) with
covariance function Cov (V (y), V (y′)) =

∑k
l=1E[ψl(Xl, Yl, y)ψl(Xl, Yl, y

′)].
Applying the Cramér-Wold device, we obtain the weak convergence of the

k-dimensional process Ŵ(y). Note as well that the representation given in The-
orem 2 for Ŵj(y) factorizes in a deterministic component fεj(y) and a sum of
independent random variables with mean zero not depending on y. Therefore
Ŵ(y) converges to (fε1

(y)W1, . . . , fεk
(y)Wk)

t, where W1, . . . ,Wk are normal ran-
dom variables with mean zero and covariance structure given in the statement
of the theorem.

Proof of Corollary 4. The weak convergence of Ŵ(y) given in Theorem 3
ensures the weak convergence of each of its components to fεj(y)Wj . The con-
vergence of T 1

KS follows directly from the Continuous Mapping Theorem. For
T 1

CM we write
∫

fεj(y)
2dF̂εj0(y) =

∫

fεj(y)
2dFεj0(y) +

∫

fεj(y)
2d(F̂εj0(y) − Fεj0(y)).
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Using integration by parts we obtain

∣

∣

∣

∣

∫

fεj(y)
2d(F̂εj0(y) − Fεj0(y))

∣

∣

∣

∣

≤ sup
y

|F̂εj0(y) − Fεj(y)| sup
y

|f ′εj
(y)| = oP (1),

since supy |F̂εj0(y)−Fεj (y)| = oP (1) due to Theorem 2 in Akritas and Van Keile-

gom (2001), and supy |f
′

εj
(y)|<∞ due to assumption (A4). Hence

∫

f2
εj

(y)dF̂εj0(y)

=
∫

f2
εj

(y)dFεj (y) + oP (1). This concludes the proof of the convergence of T 1
CM .

The process Ŵ (y) can be expressed as Ŵ (y) = V̂ (y) + oP (1), where V̂ (y)

is a particular linear combination of the components of Ŵ(y) as considered at

the start of the proof of Theorem 3, putting aj = p
1/2
j . The corresponding limit

process is the mean-zero Gaussian process W (y) defined in the statement of the

corollary. As in the first part of this proof, the Continuous Mapping Theorem

ensures the convergence of T 2
KS.

For T 2
CM , it suffices to show that dF̂ε(y) can be replaced by dFε(y). Using

the weak convergence of the processes Ŵ (y) and n1/2(F̂ε0(y) − Fε(y)), and the

Skorohod construction (see Serfling (1980)) we can write

sup
y

|Ŵ (y) −W (y)| →a.s. 0 and sup
y

|F̂ε0(y) − Fε0(y)| →a.s. 0 (13)

(we use for simplicity the same notation as for the original processes). Now

∣

∣

∣

∫

Ŵ 2(y)dF̂ε0(y) −

∫

W 2
0 (y)dFε0(y)

∣

∣

∣

≤
∣

∣

∣

∫

(Ŵ 2(y) −W 2(y))dF̂ε0(y)
∣

∣

∣
+
∣

∣

∣

∫

W 2(y)d(F̂ε0(y) − Fε0(y))
∣

∣

∣
.

The first term of the right hand side of the above inequality is o(1) a.s. due

to the first expression in (13). For the second term, taking into account the

second expression in (13), and since the trajectories of the limit process W0(y)

are bounded and continuous almost surely, we can apply the Helly-Bray Theo-

rem (see e.g., Rao (1965, p.97)), to each of these trajectories and conclude that

|
∫

W 2(y)d(F̂ε0(y) − Fε0(y))| →a.s. 0. This concludes the proof of Corollary 4.

Proof of Theorem 5. UnderHl.a., m̂(x) estimates mn(x) = m0(x)+n
−1/2R(x),

where R(x) =
∑k

j=1 pj[fj(x)/fmix(x)]rj(x), m̂j estimates mjn(x) = m0(x) +

n−1/2rj(x) and F̂εj0(y) estimates Fεj0(y) = P ((Yj − mn(Xj))σ
−1
j (Xj) ≤ y).

Considering the following probability as a function of y, and applying a Tay-

lor expansion, we obtain

Fεj0(y) = P
(Yj −mjn(Xj)

σj(Xj)
− n−

1

2

R(Xj) − rj(Xj)

σj(Xj)
≤ y
)
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=

∫

P
(Yj −mjn(Xj)

σj(Xj)
− n−

1

2

R(Xj) − rj(Xj)

σj(Xj)
≤ y
∣

∣

∣
Xj = x

)

fj(x)dx

= Fεj(y) + n−
1

2 fεj(y)E
[R(Xj) − rj(Xj)

σj(Xj)

]

+ o(n−
1

2 ). (14)

Following the same steps as in the proof of Theorem 2,

F̂εj0(y) − Fεj0(y)

=
1

nj

nj
∑

i=1

I
(Yij −mn(Xij)

σj(Xij)
≤ y
)

− Fεj0(y)

+fεj(y)

∫

y(σ̂j(x) − σj(x))

σj(x)
fj(x)dx

+fεj(y)

∫

m̂(x) −mn(x)

σj(x)
fj(x)dx+ oP (n−

1

2 ). (15)

An application of the proof of Lemma 1 of Akritas and Van Keilegom (2001)
shows that

sup
y

∣

∣

∣

∣

∣

1

nj

nj
∑

i=1

{

I
(Yij −mjn(Xij)

σj(Xij)
− n−

1

2

R(Xij) − rj(Xij)

σj(Xij)
≤ y
)

−I
(Yij −mjn(Xij)

σj(Xij)
≤ y
)

−P
(Yj −mjn(Xj)

σj(Xj)
− n−

1

2

R(Xj) − rj(Xj)

σj(Xj)
≤ y
)

+P
(Yj −mjn(Xj)

σj(Xj)
≤ y
)}

∣

∣

∣

∣

∣

= oP (n−
1

2 ).

Taking (14) into account, we can write

1

nj

nj
∑

i=1

I
(Yij −mn(Xij)

σj(Xij)
≤ y
)

=
1

nj

nj
∑

i=1

I
(Yij −mjn(Xij)

σj(Xij)
≤ y
)

+n−
1

2 fεj(y)E
[R(Xj) − rj(Xj)

σj(Xj)

]

+ oP (n−
1

2 ). (16)
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As in the proof of Theorem 3 we have

F̂εj (y) − Fεj(y)

=
1

nj

nj
∑

i=1

I
(Yij −mjn(Xij)

σj(Xij)
≤ y
)

− Fεj (y)

+fεj(y)

∫

y(σ̂j(x) − σj(x))

σj(x)
fj(x)dx

+fεj(y)

∫

m̂j(x) −mjn(x)

σj(x)
fj(x)dx+ oP (n−

1

2 ). (17)

By combining (15), (16) and (17) we obtain

F̂εj0(y) − F̂εj (y)

= fεj(y)

∫

m̂(x) −mn(x)

σj(x)
fj(x)dx

−fεj(y)

∫

m̂j(x) −mjn(x)

σj(x)
fj(x)dx

+n−
1

2 fεj(y)E
[R(Xj) − rj(Xj)

σj(Xj)

]

+ oP (n−
1

2 ),

and following a similar development as in Lemmas 8 and 9, we can write

F̂εj0(y) − F̂εj (y) = fεj(y)
k
∑

l=1

pl

{

1

nl

nl
∑

i=1

Yil −mln(Xil)

σj(Xil)

( fj(Xil)

fmix(Xil)
−
I(l = j)

pj

)

}

+n−
1

2 fεj(y)E
[R(Xj) − rj(Xj)

σj(Xj)

]

+ oP (n−
1

2 ). (18)

Note that (Yl −mln(Xl))/σj(Xil) = εl, which does not depend on n. The leading
term of the representation given in (18) underHl.a. is the same as the leading term
of the representation given in Theorem 3 under the null hypothesis. Therefore
their limit distributions are the same. This concludes the proof.

Proof of Corollary 6. The proof is similar to that of Corollary 4, taking into
account the weak convergence of Ŵ(y) under Hl.a. given in Theorem 5.
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