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Abstract: Let X1, . . . , Xn be i.i.d. with common hazard function, a step function

with exactly one jump. The location of the jump is the parameter of interest and

is to be estimated based on our sample. We prove consistency and convergence in

law of our estimators with rate n and non-normal limit distribution. There is also

Lp -convergence with exact rate n−1. This statistical experiment is non-regular

in the sense of Ibragimov and Has’minskii (1981). Our approach is extended to

general hazard functions with one jump-point. The basic idea can also be used in

a complete nonparametric framework.
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1. Introduction

In clinical studies one often is interested in the time to a relapse of a certain
serious disease. For patients with, e.g., leukemia, there are good reasons to
assume that the relapse rate changes abruptly (from a high constant level to a
lower one) after an unknown period of length τ . Matthews and Farewell (1982)
describe the time span as a random variable X with a piece-wise constant hazard
rate function

h(t) =

{

α, 0 ≤ t ≤ τ
β, t > τ

(1.1)

with positive parameters α 6= β and τ . Once the physician knows the value of τ
he or she is able to decide whether a patient still belongs to a high-risk group or
not. In another example, one observes that a technical component operates with
a constant failure rate until it suffers from a shock. After this the component
continues to function but with another constant failure rate. Again we can model
the life time of the component by a random variable with the failure rate function
h given in (1.1). Similarly in case of censored data, Wu, Zhao and Wu (2003)
state that the model plays an important role in medical follow-up studies after an
operation, e.g., bone marrow transplantation. Likewise it is used in industrial life
testing experiments with changing conditions, e.g., temperature increases. Due to
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its relevance in the applied sciences there are many contributions to the subject,
confer, e.g., Anderson and Senthilselvan (1982), Basu, Ghosh and Joshi (1988),
Ghosh and Joshi (1992), Matthews and Farewell (1982), Matthews, Farewell and
Pyke (1985), Nguyen, Rogers and Walker (1984), Pham and Nguyen (1990, 1993)
and Yao (1986, 1987). The model and some variants thereof are also very popular
in human life sciences and demography. Finkelstein (2003) states that popula-
tions can experience change points due to positive or negative “enviromental”
influences. For example, the implementation of better healthcare in the former
East Germany after the reunification can be considered as an example of such a
positive influence, see Scholz and Maier (2003). Similarly the demographic sit-
uation during the transitional period in Russia after the collapse of the former
USSR shows a negative impact on mortality rates.

If τ is known, (1.1) is known as “step-stress-model” in the literature. For
instance Balakrishnan, Kundu, Ng and Kannan (2007) determine the exact dis-
tribution of the maximum likelihood estimator of (α, β) if the observations are
type-II censored.

One easily checks that h uniquely determines a distribution with density

f(x|τ, α, β) =

{

αe−αx, 0 ≤ x ≤ τ

βe(β−α)τ−βx, x > τ
(1.2)

and distribution function

F (x|τ, α, β) =

{

1 − e−αx, 0 ≤ x ≤ τ

1 − e(β−α)τ−βx, x > τ
. (1.3)

Let X1, . . . ,Xn be independent and identically distributed random variables with
common density f(·|τ, α, β). Then the log-likelihood function is given by

ln(τ, α, β) =

n
∑

i=1

1{τ<Xi}

[

log
β

α
+ (β − α)(τ − Xi)

]

+

n
∑

i=1

[log α − αXi] (1.4)

for every (τ, α, β) ∈ (0,∞)3 with α 6= β. Nguyen, Rogers and Walker (1984)
observe that ln(τ, α, 1/(Xn:n − τ)) −→ ∞ for every fixed α as τ ↑ Xn:n, where
Xn:n denotes the largest observation. Thus the maximum-likelihood estimator
(mle) of the three-dimensional parameter (τ, α, β) does not exist. As a way out,
Yao (1986) and Pham and Nguyen (1990) restrict the domain of ln to regions of
the type

{(τ, α, β) ∈ (0,∞)3 : T ′
n ≤ τ ≤ T ′′

n , α 6= β},

where the bounds 0 ≤ T ′
n < T ′′

n < Xn:n for τ may be random. For T ′
n =

0 and T ′′
n equal to the second largest observation Xn−1:n, one obtains Yao’s

(1986) estimator. More generally Pham and Nguyen (1990) only require that
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with probability one the compact interval [T ′
n, T ′′

n ] contains the true value of τ
for eventually all n ∈ N. They prove strong consistency of the constrained mle

(τ̃nα̃n, β̃n) := argmax{ln(τ, α, β) : T ′
n ≤ τ ≤ T ′′

n , α 6= β}. (1.5)

In addition they show that n(τ̃n − τ) converges to a non-normal limit T which
can be expressed in terms of a certain random walk on the integers. Yao (1986)
actually proves that the random vector (n(τ̃n−τ), n1/2(α̃n−α), n1/2(β̃n−β)) has
a distributional limit (T,A,B), where T,A and B are independent and (A,B)
is bivariate normally distributed. Finally, Pham and Nguyen (1993) show that
a parametric bootstrap works, meaning that the bootstrap version n(τ̃∗

n − τ̃n) of
n(τ̃n − τ) converge to the same limit T as do the originals.

In reality, quite often the data are not completely observable due to censor-
ing. In this situation, Chang, Chen and Hsiung (1994) suggest the argmax of an
Aalen-Nelson type process as estimate for τ . They prove weak consistency and
convergence in distribution to the argmax of a Poisson process with linear drift.
For a review of the literature we recommend Müller and Wang (1994), who also
include a nonparametric extension of (1.1). A discussion about the impact of
censoring is given in Loader (1991). For two recent contributions we refer to
Antoniadis, Gijbels and Macgibbon (2000) and Wu, Zhao and Wu (2003).

In this article we focus on the parametric model (1.1), but our approach is
such that it can be generalized to a hazard function which has a jump at a point
τ but is otherwise smooth. (We discuss this generalization at the end.) The idea
is to assume – for a moment – that α and β are known. Then the mle of τ is
well-defined. Since the second summand in (1.4) does not depend on τ , the mle
is given by

τn(α, β) = argmax Sn(t|α, β), (1.6)

where

Sn(t|α, β) =
1

n

n
∑

i=1

1{t<Xi}

[

log
β

α
+ (β − α)(t − Xi)

]

, t ≥ 0.

Here we use the common convention

argmax f(t) := min
{

t ≥ 0 : max(f(t), f(t−)) = sup
s≥0

f(s)
}

(1.7)

for all bounded functions f : [0,∞) → R right-continuous with left hand limits
(rcll). In Abdel-Aty and Ferger (2003) we derive an explicit representation for
the mle in terms of the order statistics pertaining to the sample X1, . . . ,Xn. It
allows a very easy computation of the mle. Moreover we prove strong consistency:

τn(α, β) −→ τ a.s. as n → ∞ ∀ τ > 0, ∀ α 6= β. (1.8)
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Next we drop the assumption that α and β need to be known. For that puropse

consider any pair (αn, βn) of estimators for the unknown parameter vector (α, β).

Assume that it is weakly consistent, i.e.,

(αn, βn)
P−→ (α, β), as n → ∞ ∀ τ > 0, ∀ α 6= β. (1.9)

Then it is reasonable to replace the unknown (α, β) in the definition of the mle

τn(α, β) by (αn, βn). This leads to τn := τn(αn, βn) = argmax Sn(t|αn, βn). The

aim of this paper is to derive asymptotic properties of our estimator τn. The only

requirement we make use of is (1.9). In Section 2 we prove consistency of τn.

Section 3 deals with distributional and Lp-convergence of n(τn−τ). Here we also

present finite sample estimators for the bias and for the variance. Recall that

we need a consistent estimator (αn, βn) for (α, β). One could use, e.g., (α̃n, β̃n)

of the constrained mle (1.5). Alternative estimators for (α, β) are presented in

Section 4. We prove strong consistency and also asymptotic normality. Section

5 contains a simulation study of the performance of τn = τn(αn, βn) for several

estimators (αn, βn) of the parameter (α, β). It enables a comparison with Yao’s

(1986) estimator. Moreover we investigate the robustness of τn under certain

deviations from model (1.1). We consider hazard functions h with a single jump

at a point τ and which are continuous elsewhere in Section 6. Furthermore, in

Section 7 we give an outlook on the nonparametric case in which the shape of h

is completely unknown. Finally, Section 8 contains several proofs.

2. Weak and strong consistency

In this section we see that the consistency (1.8) of the mle τn(α, β) carries

over to the mle τn(αn, βn) with estimated parameters, provided the estimators

(αn, βn) are consistent.

Proposition 2.1. Let (αn, βn) ⊆ R
2
+ be any sequence such that (1.9) holds.

Then

τn(αn, βn)
P−→ τ as n → ∞ ∀ τ > 0 ∀ α 6= β, (2.1)

and if (1.9) and

(αn, βn) → (α, β) a.s. as n → ∞ ∀ τ > 0 ∀ α 6= β, (2.2)

τn(αn, βn) → τ a.s. as n → ∞ ∀ τ > 0 ∀ α 6= β. (2.3)

The proof of the proposition basically makes use of the following two lemmas

due to Abdel-Aty and Ferger (2003) and Ferger (2005a). We restate them for the

sake of convenience.



THE MAXIMUM LIKELIHOOD METHOD WITH ESTIMATED NUISANCE PARAMETERS 1095

Lemma 2.2. For every positive τ and α 6= β it follows that

sup
t≥0

|Sn(t|α, β)− S(t)| → 0 a.s. as n → ∞. (2.4)

Here the limit function S is given by

S(t) =

{

C1e
−αt + D, 0 ≤ t ≤ τ,

C2e
−βt, τ < t,

with constants C1 = log(β/α)+1−β/α < 0, C2 = (log(β/α)−1+α/β)e(β−α)τ >
0, and D = (α/β + β/α − 2)e−ατ . Moreover, for every ε > 0,

S(τ)−S(t) ≥ L(ε)|τ−t| ∀ t ∈ [τ−ε, τ+ε]∩R+ (2.5)

with positive constant L(ε) = min{−αC1e
−ατ , βC2e

−β(τ+ε)} > 0. Thus S is

continuous with unique maximum at point τ , where the graph of S has a peak.

In the next lemma D[0,∞) denotes the set of all functions f : [0;∞) −→ R

which are right-continuous with left-hand limits (rcll).

Lemma 2.3. Let f ∈ D[0,∞) have a unique real maximizer τ , i.e. f(τ) =
maxt≥0 f(t). If for r > 0 the maximum a(r) := max{f(t) : |t − τ | ≥ r} exists,

then

(1) b(r) := 1
3(f(τ) − a(r)) > 0, and

(2) if g ∈ D[0,∞) is such that the argmax of g is well-defined in the sense of

(1.7), then

sup
t≥0

|f(t)−g(t)| ≤ b(r) ⇒
∣

∣

∣
argmax f(t)−argmax g(t)

∣

∣

∣
≤ r.

Proof of Proposition 2.1. Put c := log(β/α), d := β − α, cn := log(βn/αn),
dn := βn − αn and let Fn denote the empirical distribution function pertaining
to X1, . . . ,Xn. Then for every t ≥ 0,

Sn(t|αn, βn)− Sn(t|α, β) = (cn − c)(1 − Fn(t)) + (dn − d)n−1
n

∑

i=1

(t − Xi)1{Xi>t}.

Since for all t ≥ 0, |t − Xi|1{Xi>t} = (Xi − t)1{Xi>t} ≤ Xi ∀ 1 ≤ i ≤ n, we
can infer that

sup
t≥0

∣

∣

∣
Sn(t|αn, βn) − Sn(t|α, β)

∣

∣

∣
≤ |cn − c| + |dn − d|n−1

n
∑

i=1

Xi.

The upper bound converges to zero P-stochastically or a.s. according as (1.9)
or (2.2) holds. Conclude from (2.4) and the triangle-inequality that

sup
t≥0

∣

∣

∣
Sn(t|αn, βn) − S(t)

∣

∣

∣
→ 0 as n → ∞ (2.6)
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P -stochastically or a.s. according as (1.9) or (2.2) holds. Now (2.1) and (2.3)

follow from (2.6) and Lemma 2.3, upon noticing that b(ǫ) → 0 as ǫ → 0.

Of course Proposition 2.1 gives a desirable property of our estimator. But in

addition it also serves as a technical tool in the next section about distributional

convergence.

3. Distributional convergence

The aim of this section is to derive convergence in distribution of n(τn −
τ) where we again write τn := τn(αn, βn) for short. Analogously we use the

abbreviation Sn(t) := Sn(t|αn, βn). Our starting point is a representation of

n(τn − τ) in terms of the localized process

Zn(t) := n
{

Sn

(

τ +
t

n

)

− Sn(τ)
}

, t ∈ R,

which yields

n(τn − τ) = arg max
t∈R

Zn(t). (3.1)

The trajectories of Zn are rcll and the argmax-functional in (3.1) is defined by

analogy with the definition (1.7). We want to apply the Argmax-CMT of Ferger

(2004). In short it states that convergence in distribution of Zn in a functional

sense to some limit process Z entails that of argmax of Zn to the argmax of Z.

More precisely we have to show

n(τn − τ) = OP (1), n → ∞, (3.2)

Zn
L−→ Z in D[−a, a] as n → ∞ for all a > 0, (3.3)

arg max
t∈R

Z(t) is a.s. unique. (3.4)

Here D[−a, a] denotes the Skorokhod-space of all rcll functions on [−a, a], confer

Billingsley (1968), Chapter 3. Once we have shown (3.2)−(3.4) we may apply

the Argmax-CMT of Ferger (2004). Together with (3.1) it then follows

n(τn − τ)
L−→ arg max

t∈R

Z(t), n → ∞. (3.5)

Below we state (3.2)−(3.4) precisely in Propositions 3.1−3.3. The proofs are

deferred to the appendix.

Proposition 3.1. Let (αn, βn) ⊆ R
2
+ be an arbitrary sequence satisfying (1.9).

Then n(τn(αn, βn) − τ) = OP (1) as n → ∞.
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The exact formulation of (3.3) including the identification of the limit process
Z is given in

Proposition 3.2. If (1.9) holds then Zn
L−→ Z in D[−a, a] as n → ∞ for every

a > 0, where

Z(t) = N(t) + ∆(t) (3.6)

with

N(t) =

{

− log(β
α )N1(t), t ≥ 0

log(β
α)N2(−t), t < 0

and ∆(t) = (β − α)e−ατ t. Here N1 and N2 are independent Poisson processes

with parameters λ1 = βe−ατ and λ2 = αe−ατ , respectively. Moreover the second

process N2 is chosen such that its trajectories are left-continuous with right-hand

limits. Thus N and Z are rcll.

It remains to check the last condition (3.4) of our program for the proof of
the distributional convergence (3.5).

Proposition 3.3. The process Z has almost surely a unique maximizing point

T = arg max
t∈R

Z(t).

Proposition 3.1−3.3 allow us to apply the Argmax-CMT of Ferger (2004),
confer Theorem 3 there, and notice the adjacent Remark 1(2).

Theorem 3.4. Let (αn, βn) ⊆ R
2
+ be an arbitrary random sequence satisfying

(1.9). Then

n(τn(αn, βn) − τ)
L−→ T = arg max

t∈R

Z(t), (3.7)

where Z is the two-sided Poisson process with linear drift given in (3.6).

The random variable T admits a representation in terms of the arrival times
(ξi)i≥1 and (ρi)i≥1 of the Poisson processes N1 and N2, respectively. Recall
that c = log(β/α) and put m = (β − α)e−ατ . Using the arguments of Section
4 of Ferger (2005a), it can be shown that γ := arg max

i≥1
{mξi − ci} and σ :=

arg max
i≥1

{c(i − 1) − mρi} are a.s. finite. Moreover

T =

{

ξγ , if mξγ − cγ > c(σ − 1) − mρσ

−ρσ, otherwise.
(3.8)

Therefore T is a continuous random variable and, by Lemma 2.11 in Van der
Vaart (1998), the distributional convergence (3.7) implies uniform convergence,
i.e.,

sup
x∈R

‖P (n(τn − τ) ≤ x) − P (T ≤ x)| −→ 0 as n → ∞.
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Remark 3.5. (1) Theorem 3.4 includes the mle τn(α, β), because (αn, βn) = (α, β)
obviously fulfills (1.9). If α and β are known, the density f(x|τ, α, β) depends
on the one-dimensional parameter τ ∈ (0,∞). Such parametrized densities with
jumps (singularities) are studied in Chapter V of Ibragimov and Has’minskii
(1981). A formal application of their Theorem 4.6 yields the same limit for
n(τn(α, β)−τ) as our Theorem 3.4 in this special situation. (2) The limit variable
T also coincides with that of Pham and Nguyen (1990). (Notice that there is a
misprint concerning the reziprocals of the intensities λ1 and λ2.)

We end our main section with an application of Theorem 3.4 to bias and

variance estimation. Here the following sharpening of Proposition 3.1 plays a
key role. For the proof see Ferger (2005b).

Proposition 3.6. For every even m ∈ N there exists a constant C = C(m) such

that for all a ≥ 1, lim supn→∞ P (n|τn − τ | > a) ≤ Ca−m/2.

Corollary 3.7. For every real number p ≥ 1 the sequence {(n(τn − τ))p : n ∈ N}
is uniformly integrable.

Proof. Put νn := n(τn − τ). Then for every ǫ > 0,

lim sup
n→∞

E(1{|νn|p≥a}|νn|p) ≤ a−ǫ lim sup
n→∞

E(|νn|p(1+ǫ))

= a−ǫ lim sup
n→∞

∫ ∞

0
P (|νn|p(1+ǫ) > x)dx

≤ a−ǫ lim sup
n→∞

{

1 +

∫ ∞

1
P

(

|νn| > x
1

p(1+ǫ)

)

dx
}

≤ a−ǫ
{

1 +

∫ ∞

1
lim sup

n→∞
P

(

|νn| > x
1

p(1+ǫ)

)

dx
}

,

where the last inequality holds by Fatou’s Lemma. Now Proposition 3.6 with
m > 2p(1 + ǫ) shows that the integral is bounded by a constant, whence the
assertion follows.

Since T is a continuous random variable, Theorems 3.4 and 3.6 yield the
following tailbound for T : P (|T | > a) ≤ Ca−m/2 for all a ≥ 1 and for all even in-
tegers m. Consequently all moments of T exist and are finite. Moreover, another
application of Theorem 3.4, and Corollary 3.7 in combination with Theorem 5.4
in Billingsley (1968), gives

Corollary 3.8. For p ≥ 1, let ‖ · ‖p denote the Lp -norm on our underlying

probability space (Ω,A, P ). Then ‖τn − τ‖p ∼ n−1‖T‖p.

For the same reason we also have E((n(τn − τ))p) −→ E(T p) as n → ∞ for
every p ≥ 1. Especially it follows for the bias that

E(τn) − τ ∼ n−1E(T ) (3.9)
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and for the variance that

Var (τn) ∼ n−2Var (T ). (3.10)

So once we have estimators for E(T ) and Var(T ), the asymptotic expansions
(3.9) and (3.10) yield finite sample estimators for the bias and for the variance of
our estimator τn. Estimation of E(T ) and Var (T ) can be done with the Monte-
Carlo method using (3.8). Here the unknown quantities τ , α and β occurring in
(3.8) have to be replaced by estimators τn, αn and βn, see the next section.

4. Estimation of the parameters α and β

Our estimator τn(αn, βn) requires a weakly consistent sequence (αn, βn) for
(α, β). One possibility is to use Yao’ (1986) estimator (α̃n, β̃n) given in (1.5). In
this section we present two alternative methods. For the first method we assume
that there is a known interval [λ, ρ] containing τ . The second method gets along
without that assumption. Define for any fixed t > 0,

αn(t) :=
Fn(t)

Dn(t) + t(1 − Fn(t))
,

and for 0 < t < Xn:n,

βn(t) :=
1 − Fn(t)

En(t) − t(1 − Fn(t))
,

where Dn(t) := 1/n
∑n

i=1 Xi1{Xi≤t} and En(t) := 1/n
∑n

i=1 Xi1{Xi>t}. Since
Xn:n → ∞ a.s. as n → ∞, the second estimator βn(t) is well-defined for eventu-
ally all n ∈ N. Notice that for fixed τ > 0 the pair (αn(τ), βn(τ)) coincides with
the mle for (α, β).

The next result ensures that (αn(λ), βn(ρ)) is strongly consistent for (α, β)
whenever τ ∈ [λ, ρ]. It is a simple consequence of the Strong Law of Large
Numbers.

Proposition 4.1.

(αn(λ), βn(ρ)) −→ (α, β) a.s. as n → ∞ ∀ α 6= β ∀ τ ∈ [λ, ρ]. (4.1)

Besides strong consistency the estimator (αn(λ), βn(ρ)) is asymptotically
normal.

Proposition 4.2. If 0 < λ ≤ τ ≤ ρ, then

n
1
2

{

(

αn(λ)

βn(ρ)

)

−
(

α

β

)

}

L−→
(

U

V

)

as n → ∞,
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where U ∼ N(0, σ2) and V ∼ N(0, s2) are independent normal variables. Fur-

thermore σ2 = σ2(λ) = α2{1 − e−αλ}−1 and s2 = s2(ρ) = β2eαρ.

Proof. Put

Zn :=
1

n

n
∑

i=1

(1{Xi≤λ},Xi1{Xi≤λ}, 1{Xi>ρ},Xi1{Xi>ρ}). (4.2)

By the Central Limit Theorem,

n
1
2{Zn − E(Z1)} L−→ N4(0,Γ) as n → ∞, (4.3)

where the covariance matrix Γ is block-diagonal. Now a laborious but straight-
forward application of the Delta-method gives the result.

Remark 4.3. In the special case λ = τ = ρ, we obtain Yao’s (1986) asymptotic
normality of the mle for (α, β) when τ is fixed (and known).

Remark 4.4. If τ ∈ [λ, ρ] it is reasonable to restrict the maximization of
Sn(t|αn, βn) to the region [λ, ρ], which leads to the modified estimator

τn(αn, βn, λ, ρ) := arg max
t∈[λ,ρ]

Sn(t|αn, βn).

Our results about consistency and distributional convergence in Sections 2 and
3 carry over to τn(αn, βn, λ, ρ) without any problems.

Remark 4.5. In the situation of Remark 4.4, we do not know the true value
of τ but a region [λ, ρ] where in it lies. It is expected that the more we can
narrow down this region the better the estimator should be concerning its vari-
ance. Indeed this phenomenon is reflected in Proposition 4.2. Namely the limit
variances σ2(λ) and s2(ρ) are decreasing as λ ↑ τ and ρ ↓ τ , respectively. On
the other side these variances may be unacceptably large if the region [λ, ρ] is
too big, because σ2(λ) → ∞ and s2(ρ) → ∞ exponentially fast as λ → 0 and
ρ → ∞, respectively. In this situation we recommend our second method, which
also works in the general case where τ ∈ (0,∞) is completely unknown and no
specifying region [λ, ρ] containing τ is available. Here we use a pilot-estimator,
say τ∗

n, for τ , for instance τ∗
n = τ̃n as given in (1.5). Consider the corresponding

plug-in-estimator α∗
n := αn(τ∗

n) and β∗
n := βn(τ∗

n). Recall that Yao (1986) shows
distributional convergence of n(τ̃n − τ), which entails that τ̃n − τ = OP (n−1). It
turns out that this property is neccessary for proving asymptotic normality of
(α∗

n, β∗
n), which exhibits the same minimal variances σ2(τ) and s2(τ) as the mle

(αn(τ), βn(τ)). Once more notice that this mle requires the true value of τ which
we do not know.

Proposition 4.6. (1) If τ∗
n is weakly consistent, then (α∗

n, β∗
n)

P−→ (α, β) as n →
∞ ∀ α 6= β ∀ τ > 0. (2) If τ∗

n actually is strongly consistent, then (α∗
n, β∗

n) −→
(α, β) a.s. as n → ∞ ∀ α 6= β ∀ τ > 0.
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Proof. Observe that |Fn(τ∗
n)−F (τ)| ≤ |F (τ∗

n)−F (τ)|+supx∈R |Fn(x)−F (x)| and
|Dn(τ∗

n)−D(τ)| ≤ |D(τ∗
n)−D(τ)|+supx∈R |Dn(x)−D(x)|. In the proof of Lemma

3.3 in Abdel-Aty and Ferger (2003) we show that supx∈R |Dn(x) − D(x)| −→ 0
a.s. as n → ∞, which immediately yields the a.s. uniform convergence of En.
Together with the Glivenko-Cantelli Theorem, we arrive at (1) and (2) upon
noticing that F and D are continuous.

Proposition 4.7. If

τ∗
n − τ = OP (n−1), (4.4)

then

n
1
2

{

(

αn(τ∗
n)

βn(τ∗
n)

)

−
(

α

β

)

}

L−→
(

U

V

)

,

where U ∼ N(0, σ2(τ)) and V ∼ N(0, s2(τ)) are independent.

Proof. Let Zn and Z∗
n be the random vector in (4.2) with λ := τ =: ρ and

λ := τ∗
n =: ρ, respectively. Then once we have shown that n1/2{Z∗

n−Zn} P−→ 0 as
n → ∞, the result follows from (4.3), Slutsky’s Theorem and the Delta-Method.
For that purpose note that

Z∗
n − Zn = (Fn(τ∗

n) − Fn(τ),Dn(τ∗
n) − Dn(τ), Fn(τ) − Fn(τ∗

n),Dn(τ) − Dn(τ∗
n)).

Thus it suffices to prove

n
1
2

{

Fn(τ∗
n) − Fn(τ)

}

P−→ 0, n → ∞, (4.5)

n
1
2

{

Dn(τ∗
n) − Dn(τ)

}

P−→ 0, n → ∞. (4.6)

For the proof of (4.5), let ε > 0 be an arbitrary positive real number. Then for
every M > 0,

P
(

n
1
2 |Fn(τ∗

n) − Fn(τ)| > ε
)

≤ P
(

n
1
2 |Fn(τ∗

n) − Fn(τ)| > ε, |τ∗
n − τ | ≤ Mn−1

)

+ P (|τ∗
n − τ | > Mn−1)

=: An(ε,M) + Bn(M).

Since An(ε,M) ≤ P (Sn > n1/2ε), where by the Poisson Limit Theorem has

Sn :=

n
∑

i=1

1{τ−Mn−1<Xi≤τ+Mn−1}
L−→ Poisson(λ), n → ∞,

with λ = (f ′(τ+) + f ′(τ−))M . It follows that limn→∞ An(ε,M) = 0 ∀ M > 0
∀ ε > 0. By Assumption (4.4) we have that

lim
M→∞

lim sup
n→∞

Bn(M) = 0, (4.7)
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which shows (4.5). The derivation of (4.6) is similar. Namely,

P
(

n
1
2 |Dn(τ∗

n) − Dn(τ)| > ε
)

≤ P
(

n
1
2 |Dn(τ∗

n) − Dn(τ)| > ε, |τ∗
n − τ | ≤ Mn−1,Xn:n ≤ n

1
3

)

+P
(

|τ∗
n − τ | > Mn−1

)

+ P
(

Xn:n > n
1
3

)

=: an(ε,M) + Bn(M) + Cn.

Since an(ε,M) ≤ P (Sn > εn1/6), we may conclude that

lim
n→∞

an(ε,M) = 0 ∀ M > 0 ∀ ε > 0. (4.8)

A routine application of the First Borel-Cantelli Lemma yields that limn→∞ Cn =

0, so that (4.6) follows in view of (4.7) and (4.8).

Our theoretical results lead us to the following recommendations for the

applications. If it is sure that τ lies in an interval [λ, ρ], then clearly one should

use τn(αn(λ), βn(ρ), λ, ρ). In view of Remark 4.5 one must be cautious if λ is close

to zero or ρ is large. As a way out, replace these estimators by αn(τ̃n) and βn(τ̃n),

where τ̃n denotes Yao’s (1986) estimator. This results in τn(αn(τ̃n), βn(τ̃n), λ, ρ).

Finally, if no prior information about the location of τ is available then use the

estimator τn(αn(τ̃n), βn(τ̃n)). The performance of these estimators in comparison

to Yao’s (1986) estimator is investigated in a simulation study presented in the

next section.

5. Simulation and robustness

In this section we present some results of a small simulation study. It

yields the performance of the following five estimators: τ
(1)
n := τn(α, β), τ

(2)
n :=

τn(αn(λ), βn(ρ), λ, ρ), τ
(3)
n := Yao’s estimator, τ

(4)
n := τn(αn(τ

(3)
n ), βn(τ

(3)
n )) and

τ
(5)
n := τn(αn(τ

(3)
n ), βn(τ

(3)
n ), λ, ρ). The last estimator τ

(5)
n uses the obvious mod-

ification of Yao’s estimator, where the maximization is restricted to the region

[λ, ρ].

From distribution theory established in Section 3, the five estimators do

not differ asymptotically in the sense that n(τ
(i)
n − τ) −→ T in law and in Lp,

1 ≤ i ≤ 5. But in finite sample situations it may happen that there are significant

differences as our simulations results below demonstrate.

We simulated n independent random variables stemming from a hazard func-

tion (1.1) with α = 1.8, β = 0.9 and τ = 1, and computed the pertaining

estimators τ
(i)
n , 1 ≤ i ≤ 5, based on that sample. This procedure was repeated

105-times. The following tables contain the mean and the square root of the mean
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squared error MSE of the five estimators. For the sake of brevity we display only

a few tables, but our conclusions are based on much more.

Table 1. n = 25, λ = 0.3, ρ = 2.4. Table 2. n = 500, λ = 0.3, ρ = 2.4.

mean
√

MSE

τ
(1)
n 0.8156 0.4037

τ
(2)
n 0.9363 0.5646

τ
(3)
n 0.7560 0.8394

τ
(4)
n 0.7614 0.8319

τ
(5)
n 0.9291 0.4995

mean
√

MSE

τ
(1)
n 0.9994 0.1059

τ
(2)
n 1.0011 0.1769

τ
(3)
n 0.9966 0.1513

τ
(4)
n 0.9966 0.1513

τ
(5)
n 0.9941 0.1119

Simulations show that, already for smaller sample sizes starting with n ≥ 50,

all estimators produce good results. The estimators τ
(2)
n and τ

(5)
n do this even for

n = 25. This can be explained by the difference between α and β. If α and β are

closer then one needs larger sample sizes. Note that τ
(1)
n requires the true values

of α and β, which in our paper are assumed to be unknown. This means that we

must consider this estimator as a non-official competitor. Among the remaining

ones τ
(5)
n is superior in view of its MSE. The estimators τ

(3)
n and τ

(4)
n have similar

performance. In contrast with τ
(2)
n and τ

(5)
n , they get along without knowledge

about the lower and upper bound λ and ρ. Nevertheless, as Table 2 shows, they

are better than τ
(2)
n for larger sample sizes. The reason for this might lie in that

the estimators αn(λ) and βn(ρ) give poor approximations of the true parameters

α and β if λ is close to zero and ρ is large. Indeed recall, e.g., the definition of

αn(λ). It involves only observation which lie to the left of λ, and there are only

a few of those if the sample size is not large enough. The same is true for βn(ρ).

Another theoretical explanation of this phenomenon has already been given in

Remark 4.5 above. Tables 3-8 show the impact of λ and ρ. We let the length

of the τ -covering interval [λ, ρ] change from small to large. Of course for small

intervals we obtain very nice results for all sample sizes and for both estimators,

as was to be expected. However, for n = 500 we observe that the performance of

the estimator τ
(2)
n becomes poorer the longer the intervals. This is reflected by

the increasing MSE, whereas the MSE of τ
(5)
n remains rather stable. In Table 8

the difference of τ
(2)
n and τ

(5)
n is obvious.

Table 3. n = 100, λ = 0.9, ρ = 1.1. Table 4. n = 100, λ = 0.1, ρ = 1.9.

mean
√

MSE

τ
(2)
n 0.9732 0.0509

τ
(5)
n 0.9733 0.0507

mean
√

MSE

τ
(2)
n 0.9005 0.4474

τ
(5)
n 0.8893 0.3664
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Table 5. n = 100, λ = 0.01, ρ = 19. Table 6. n = 500, λ = 0.9, ρ = 1.1.

mean
√

MSE

τ
(2)
n 1.0722 2.0051

τ
(5)
n 1.0567 0.7902

mean
√

MSE

τ
(2)
n 0.9910 0.0422

τ
(5)
n 0.9913 0.0420

Table 7. n = 500, λ = 0.1, ρ = 1.9. Table 8. n = 500, λ = 0.01, ρ = 19.

mean
√

MSE

τ
(2)
n 0.9960 0.1446

τ
(5)
n 0.9930 0.1081

mean
√

MSE

τ
(2)
n 1.2324 2.4798

τ
(5)
n 0.9966 0.1448

The next tables show the performance of τ
(2)
n , τ

(3)
n and τ

(5)
n in case the data

stem from the hazard function

h(t) =

{

α + A sin(kt), 0 ≤ t ≤ τ

β + B sin(kt), t > τ.
(5.1)

Here the hazard function of (1.1) is superimposed with a sinusoidal oscilla-

tion. Note that small values of A and B correspond to a small deviation. In our

simulations we fixed α = 1.8, β = 0.9, τ = 1, λ = 0.3 and ρ = 2.4. Again each

value of our tables below are based on 105 Monte-Carlo replicates.

Table 9. n=50, A=B=0.1, k=5. Table 10. n=50, A=B=0.5, k=5.

mean
√

MSE

τ
(2)
n 1.0755 0.5955

τ
(3)
n 0.8968 0.8455

τ
(5)
n 0.9534 0.4647

mean
√

MSE

τ
(2)
n 0.9876 0.5765

τ
(3)
n 0.8065 0.7575

τ
(5)
n 0.8111 0.4381

Table 11. n=500, A=B=0.1, k=5. Table 12. n=500, A=B=0.5, k=5.

mean
√

MSE

τ
(2)
n 0.9634 0.1878

τ
(3)
n 0.9611 0.1565

τ
(5)
n 0.9590 0.1291

mean
√

MSE

τ
(2)
n 0.7773 0.2874

τ
(3)
n 0.7755 0.2662

τ
(5)
n 0.7752 0.2650

For small deviations from (1.1) all estimators are robust, and τ
(5)
n again

exhibits the smallest MSE. If the deviation increases, then even for large sample

size the bias is rather poor.
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We draw the following conclusions. If no information about the position of

τ is available we recommend τ
(4)
n , which shows almost the same performance as

Yao’s (1986) estimator τ
(3)
n . Otherwise one should use τ

(5)
n , which is better than

τ
(2)
n .

6. A generalized model

In reality h at (1.1) is an approximation of the true

h(t) =

{

h1(t), 0 ≤ t ≤ τ

h2(t), τ < t < ∞,
(6.1)

with h1, h2 ∈ C([0,∞)) both positive and h1(τ) 6= h2(τ).

For example Mair, Goymer, Pletcher and Partridge (2003) observe lifetimes

of flies (drosophila). In their experiment the flies were fully fed with yeast and

sugar until a (known) time point τ . After this the amount of food was abruptly

and drastically reduced (dietatry restriction). The food medium after time τ

contained roughly 35% less yeast and sugar. The estimated mortality rate in-

dicates strongly that the true underlying mortality rate is hi(t) = exp{ai + bt},
i = 1, 2, with a1 6= a2 and b > 0.

The hazard function h uniquely determines a distribution function F with

corresponding density

f(x) =

{

h1(x) exp{−H1(x)}, 0 ≤ t ≤ τ

h2(x) exp{H2(τ) − H1(τ) − H2(x)}, τ < x < ∞,
(6.2)

where

Hi(x) :=

∫ x

0
hi(t)dt, x ≥ 0, i = 1, 2,

denotes the cumulative hazard functions. Let X1, . . . ,Xn be i.i.d. with density

f . To begin with, assume that h1 and h2 are known. Then the mle of τ is

τn = argmax t≥0 Sn(t), where Sn(t) = n−1
∑n

i=1 1{Xi>t}[log h2/h1(Xi) + (H2 −
H1)(t) − (H2 − H1)(Xi)]. If

E
∣

∣

∣
log

h1

h2
(X1)

∣

∣

∣
< ∞ and E|(H2 − H1)(X1)| < ∞, (6.3)

then by the Strong Law of Large Numbers, Sn(t) −→ S(t) a.s. as n → ∞ for all

t ≥ 0, where

S(t) =

∫ ∞

t

[

log
h1

h2
(x) − (H2 − H1)(x)

]

f(x)dx + (H2 − H1)(t)(1 − F (t)).
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Check that for all t ≥ 0, S′(t) = −f(t) log h2/h1(t) + (h2(t) − h1(t))(1 − F (t)).

Since by definition h(t) = f(t)/(1 − F (t)), division by 1 − F (t) shows that the

derivative S′(t) is non-negative or non-positive according as

−h(t) log
h2

h1
(t) + (h2(t) − h1(t))

is non-negative or non-positive. Use the well-known inequalitites 1 − 1/x <

log x < x − 1 for every positive x 6= 1 (with equality if and only if x = 1) to see

that S is monotone increasing on [0, τ ] and monotone decreasing on [τ,∞). By

continuity of h1 and h2, and since h1(τ) 6= h2(τ) by assumption, the monotonicity

is strict in a neighborhood of τ . Thus S has a unique maximum at point τ . This

allows us to prove strong consistency of τn essentially in the same way as in

Abdel-Aty and Ferger (2003). Here, however, some technical refinements in the

arguments are necessary.

Theorem 6.1. Suppose (6.3) holds. Moreover assume that there exists a positive

sequence (dn) with dn −→ ∞ such that

∑

n≥1

n exp{−H2(dn)} < ∞, (6.4)

Hi(dn)n− 1
2

√

log log n −→ 0, i = 1, 2, (6.5)

|H1(t) − H2(t)| exp{−H2(t)} −→ 0 as t −→ ∞. (6.6)

Then τ̂n → τ a.s. as n → ∞ for every τ > 0.

The assumptions (6.4)−(6.6) concern the tail-behavior of the underlying dis-

tribution function F . They are easy to verify in the following two examples.

Example 6.2. (Generalized Exponential Distribution). Let hi(t) = αi + λit,

i = 1, 2, with αi, λi ≥ 0, i = 1, 2 and α1+λ1τ 6= α2+λ2τ . Finkelstein (2003) uses

this model in life time data analysis for describing a change in the environment.

He does not allow for a jump at point τ , but only a change in the slopes of the

two linear function. Clearly λ1 = λ2 = 0 yields our model (1.1).

Example 6.3. (Gompertz Distribution). Recall the example with the fly

drosophila. In general we have to do with hi(t) = exp{ai + bit}, i = 1, 2, with

a1, a2 ∈ R, b1, b2 > 0 and a1 + b1τ 6= a2 + b2τ .

Note that the density f in (6.2) has a jump at point τ > 0 (and also at

point zero). If we ignore – as in Remark 3.5 – that condition (II) on p.242

in Ibragimov and Has’minskii (1981) is violated, a formal application of their
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Theorem 4.6 yields convergence in distribution of n(τ̂n − τ) with a similar limit

as in (3.7).

7. An outlook

Clearly the requirement that h1 and h2 need to be known is very restrictive

and in reality will rarely be fulfilled. So we close this paper with a discussion of

the scenario in which h1 and h2 are both unknown. What we have in mind here

is a general hazard function h as in (6.1), which however is not too far away from

the simple h in (1.1). Figure 1 is an illustration.

Figure 1. True hazard function (solid) and simple hazard function (dashed).

If we assume h1 and h2 are k-times continuously differentiable, then Taylor’s

Theorem brings us to parametrize h1 and h2 in the following way:

h1(t) =

k
∑

l=0

αl(t − τ)l, t ≥ 0, (7.1)

h2(t) =
k

∑

l=0

βl(t − τ)l, t ≥ 0, (7.2)

with parameter vectors α = (α0, . . . , αk) and β = (β0, . . . , βk) in R
k+1. Let

ln(τ, α, β) =

n
∑

i=1

1{Xi≤τ}[log h1(Xi) − H1(Xi)]

+1{Xi>τ}[log h2(Xi) − H2(Xi) + (H2 − H1)(τ)]

denote the log-likelihood function. For fixed τ the mle

(α̂n, β̂
n
) := argmax {ln(τ, α, β) : α, β ∈ R

k+1}

is well-defined. It is a solution of the pertinent system of normal equations. Now

we recommend the following 3-step procedure.
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Step 1. Start with τ
(0)
n := τn(αn, βn) as a pilot-estimator. (In a situation as

depicted in Figure 1, we expect a good first shot due to robustness as

was shown in Section 5.)

Step 2. Compute the mle (α̂n, β̂
n
) pertaining to τ

(0)
n .

Step 3. Compute τ̂n pertaining to ĥ1(t) =
∑k

l=0 α̂ln(t − τ
(0)
n )l and ĥ2(t) =

∑k
l=0 β̂ln(t−τ

(0)
n )l, where α̂ln and β̂ln denotes the l-th component of α̂n

and β̂
n
, respectively.

Notice that in view of Theorem 3.4 the estimator τ
(0)
n should converge at rate

n to τ , whereas the mle (α̂n, β̂
n
) should converge at rate

√
n to (α, β). Therefore

we suppose that the mle in Step 2 produces a good estimate for (α, β) and, in

turn, τ̂n in Step 3 a good estimate for τ .

Of course, there are other parametrizations of h1 and h2 than those in (7.1)

and (7.2). These may come from technical, non-mathematical considerations.

However, in each case, the approach in principle remains the same.

A. Appendix

Proof of Proposition 3.1. Fix a > 0 and put x := xn := an−1. Then for every

r ∈ (0, τ) and for eventually all n ∈ N such that xn < r, we have that

P (n|τn − τ | > a) ≤ P (x < |τn − τ | ≤ r) + P (|τn − τ | > r)

=: Pn(a, r) + Qn(r). (A.1)

By Proposition 2.1

Qn(r) → 0 as n → ∞ ∀ r > 0. (A.2)

For the treatment of Pn(a, r) we set S̄n(t) := Sn(t|α, β), t ∈ R. Observe that

Pn(a, r) ≤ P
(

sup
x<|t−τ |≤r

Sn(t) ≥ Sn(τ)
)

≤ P
(

sup
x<t≤r

{Sn(τ + t) − Sn(τ)} ≥ 0
)

+ P
(

sup
x<t≤r

{Sn(τ − t) − Sn(τ)} ≥ 0
)

:= Pn,1(a, r) + Pn,2(a, r). (A.3)

Next notice that for all t ∈ (x, r]

Sn(τ + t) − Sn(τ) = Sn(τ + t) − S(τ + t) − [Sn(τ) − S(τ)] − [S(τ) − S(τ + t)]

≤ Sn(τ + t) − S(τ + t) − [Sn(τ) − S(τ)] − L(r)t,
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where the last equality follows from (2.5). Recall that the constant L(r) is

positive. Consequently

Pn,1(a, r) ≤ P
(

sup
x<t≤r

Sn(τ + t) − S(τ + t) − [Sn(τ) − S(τ)]

t
≥ L(r)

)

≤ P
(

sup
x<t≤r

S̄n(τ + t) − S(τ + t) − [S̄n(τ) − S(τ)]

t
≥ L(r)

2

)

+P
(

sup
x<t≤r

Sn(τ + t) − S̄(τ + t) − [Sn(τ) − S̄(τ)]

t
≥ L(r)

2

)

=: pn(a, r) + qn(a, r). (A.4)

Let us begin with with pn(a, r). Recall that by definition

S̄n(t) = c(1 − Fn(t)) + dn−1
n

∑

i=1

(t − Xi)1{Xi>t}, t ∈ R,

with c = log(β/x) and d = β − α, whence

S̄n(τ + t) − S̄n(τ) = −c{Fn(τ + t) − Fn(τ)} + dt{1 − Fn(τ + t)}

+dn−1
n

∑

i=1

(Xi − τ)1{τ<Xi≤τ+t}.

Since S(t) = ES̄n(t), and taking expectation is linear, one has

S̄n(τ + t) − S(τ + t) − [S̄n(τ) − S(τ)]

= −c{Fn(τ + t) − F (τ + t) − [Fn(τ) − F (τ)]} − dt{Fn(τ + t) − F (τ + t)}

+dn−1
n

∑

i=1

(Xi − τ)1{τ<Xi≤τ+t} − d

∫ τ+t

τ
(x − τ)F (dx) ∀ t ≥ 0.

Check the simple inequalities

0 ≤ (Xi − τ)1{τ<Xi≤τ+t} ≤ t1{τ<Xi≤τ+t} ≤ t1{τ<Xi≤τ+r}, (A.5)

and 0 ≤
∫ τ+t
τ (x − τ)F (dx) ≤ t{F (τ + t) − F (τ)} ≤ t{F (τ + r) − F (τ)} for all

0 < t ≤ r. Moreover let αn(t) := n1/2{Fn(t)−F (t)}, t ∈ R, denote the empirical

process pertaining to X1, . . . ,Xn. Then we obtain

sup
x<t≤r

S̄n(τ + t) − S(τ + t) − [S̄n(τ) − S(τ)]

t

≤ |c|n− 1
2 sup

x<t≤r

|αn(τ + t) − αn(τ)|
t

+ |d| sup
s∈R

|Fn(s) − F (s)|
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+|d|{Fn(τ + r) − Fn(τ)} + |d|{F (τ + r) − F (τ)}.

Thus we can conclude

pn(a, r) ≤ P
(

sup
x<t≤r

|αn(τ + t) − αn(τ)|
t

>
1

6
|c|−1L(r)n

1
2

)

+P
(

sup
s∈R

|Fn(s) − F (s)| >
1

6
|d|−1L(r)

)

+P
(

sup
s∈R

|Fn(s) − F (s)| + 2{F (τ + r) − F (τ)} >
1

6
|d|−1L(r)

)

=: An(a, r) + Bn(r) + Cn(r). (A.6)

For the investigation of An(a, r), it is convenient to put y := 1/6|c|−1L(r)n1/2

and to introduce the uniform empirical process

ᾱn(u) := n− 1
2

n
∑

i=1

[1{Ui≤u} − u], 0 ≤ u ≤ 1,

where U1, . . . , Un are i.i.d. with uniform distribution on [0, 1]. Then by the

quantile-transformation αn
L
= ᾱn ◦ F . Moreover it is easy to verify that

D(r)|t| ≤ |F (τ + t) − F (τ)| ≤ D|t| ∀ t ∈ [−r, r] (A.7)

with positive constants D(r)=min{f(τ−), f(τ +r)} and D=max{f(τ+), f(0−)}.
Herewith we can infer that

An(a, r) = P
(

sup
x<t≤r

|ᾱn(F (τ + t)) − ᾱn(F (τ))|
t

> y
)

≤ P
(

sup
x<t≤r

|ᾱn(F (τ) + F (τ + t)) − ᾱn(F (τ))|
F (τ + t) − F (τ)

>
y

D

)

by (A.7)

= P
(

sup
α<s≤β

|ᾱn(F (τ) + s) − ᾱn(F (τ))|
s

>
y

D

)

, (A.8)

where α = F (τ + x) − F (τ) and β = F (τ + r) − F (τ). Note the differential

property of the uniform empirical process, i.e.,

{ᾱn(v + s) − ᾱn(v) : 0 ≤ s ≤ 1 − v} L
= {ᾱn(s) : 0 ≤ s ≤ 1 − v}

for every fixed v ∈ [0, 1]. This follows from stationariy of the increments of ᾱn

(confer, e.g., Dudley (1999), Lemma 1.14) and from Theorem14.5 in Billingsley

(1968). Therefore the last probability in (A.8) is less than or equal to

P
(

sup
α≤s≤β

|ᾱn(s)|
s

>
y

D

)

≤ (α−1 − β−1)D2y−2,
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where the inequality is ensured by Lemma A.3 of Ferger (2005a). Since α ≥
D(r)x by (A.7), β > 0 and x = a/n by definition, we obtain from (A.8) that

An(a, r) ≤ 36c2L(r)2D(r)−1a−1 ∀ n ∈ N ∀ a > 0 ∀ r ∈ (0, τ),

whence

lim
a→0

lim sup
n→∞

An(a, r) = 0 ∀ 0 < r < τ. (A.9)

An application of the Dvoretzky-Kiefer-Wolfowitz inequality yields

lim
n→∞

Bn(r) = 0 ∀ 0 < r < τ. (A.10)

Check that L(r) → L0 = min{−αC1e
−ατ , βC2e

−βτ} as r → 0. Since C1 <

0 < C2, the limit L0 is positive. Hence there exists 0 < r0 < τ such that

2{F (τ + r) − F (τ)} < 1/6|d|−1L(r) ∀ 0 < r < r0. Thus another application of

the Dvoretzky-Kiefer-Wolfowitz inequality yields

lim
n→∞

Cn(r) = 0 ∀ 0 < r < r0. (A.11)

Combine (A.6) and (A.9) − (A.11) to see that

lim
a→∞

lim sup
n→∞

pn(a, r) = 0 ∀ 0 < r < r0. (A.12)

As to the investigation of qn(a, r), first note that

Sn(τ + t) − S̄n(τ + t) − [Sn(τ) − S̄n(τ)]

= (c − cn){Fn(τ + t) − Fn(τ)} + (dn − d)t{1 − Fn(τ + t)}

+(dn − d)n−1
n

∑

i=1

(Xi − τ)1{τ<Xi≤τ+t}.

Using (A.5) and (A.7) gives

sup
x<t≤r

Sn(τ + t) − S̄n(τ + t) − [Sn(τ) − S̄n(τ)]

t

≤ |cn − c|n− 1
2 sup

x<t≤r

|αn(τ + t) − αn(τ)|
t

+ D|cn − c|

+|dn − d| + |dn − d|{Fn(τ + r) − Fn(τ)}.

Treating the sup-term in the first summand in the same way as in (A.8) the

above inequality together with (1.9) yields lima→0 lim supn→∞ qn(a, r) = 0. Thus

by (A.12) we arrive at

lim
a→0

lim sup
n→∞

Pn,1(a, r) = 0 ∀ 0 < r < r0. (A.13)
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A corresponding statement holds for Pn,2(a, r). This can be shown with the same

arguments as for (A.13) upon noticing that

{ᾱn(v − s) − αn(v) : 0 ≤ s ≤ v} L
= {ᾱn(s) : 0 ≤ s ≤ v}

for every fixed v ∈ [0, 1]. In view of (A.2) and (A.3), this finishes the proof.

Proof of Proposition 3.2. Fix a > 0. Check that

Zn(t) = −cnNn(t) + ∆n(t) + Rn(t), (A.14)

where

Nn(t) =















n
∑

i=1
1{τ<Xi≤τ+ t

n
}, t ≥ 0

−
n
∑

i=1
1{τ+ t

n
<Xi≤τ}, t < 0

,

∆n(t) = dnt
(

1 − Fn(τ +
t

n
)
)

,

Rn(t) = dn















n
∑

i=1
1{τ<Xi≤τ+ t

n
}(Xi − τ), t ≥ 0

n
∑

i=1
1{τ+ t

n
<Xi≤τ}(τ − Xi), t < 0

.

In Section 3 of Ferger (2005a), we prove that

Nn
L−→ N∗ in D[−a, a] as n → ∞ ∀ a > 0, (A.15)

where N∗(t) = 1{t≥0}N1(t) + 1{t<0}N2(t).

From (1.9) and the Glivenko-Cantelli Theorem one can easily deduce that

sup
−a≤t≤a

|∆n(t) − ∆(t)| P−→ 0 as n → ∞. (A.16)

Using (A.5) we find that

sup
−a≤t≤a

|Rn(t)| ≤ dnan−1 max{Nn(a), Nn(−a)}.

Thus by (1.9), (A.15) and Slutsky’s theorem, we obtain

sup
−a≤t≤a

|Rn(t)| P−→ 0 as n → ∞. (A.17)

Thus (A.15) − (A.17), and another application of Slutsky’s theorem, yield the
desired result.

Proof of Proposition 3.3. Use the same arguments as in the derivation of

Lemma 4.2 of Ferger (2005a).
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