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Abstract: We consider a regression model with errors-in-variables. Let (Yi, Zi),

i = 1, . . . , n be n i.i.d. copies of (Y, Z) satisfying Y = f(X) + ξ, Z = X + σε,

involving independent and unobserved random variables X, ξ, ε. The density of

ε and the constant noise level σ are known while the densities of X and ξ are

unknown. Using the observations (Yi, Zi), i = 1, · · · , n, we propose an estimator f̃

of the regression function f which is defined as the ratio of two adaptive estimators

− an estimator of ℓ = fg divided by an estimator of g, the density of X. Both

estimators are obtained by minimization of penalized contrast functions. We prove

that the MISE of f̃ on a compact set is bounded by the sum of the two MISEs

of the estimators of ℓ and g. Rates of convergence are given when ℓ and g belong

to various smoothness classes and when the error ε is either ordinary smooth or

super smooth. The rate of f̃ is optimal in a minimax sense in all cases where lower

bounds are available.

Key words and phrases: Adaptive estimation, density deconvolution, errors-in-

variables, minimax estimation, nonparametric regression, projection estimators.

1. Introduction

Nonparametric estimation in a regression model when variables are observed

with measurement errors has been the subject of several recent contributions.

The model is the following. Let (Yi, Zi)1≤i≤n be a n-sample of independent and

identically distributed (i.i.d.) two-dimensional random variables such that

Yi = f(Xi) + ξi, E(ξi) = 0, (1.1)

Zi =Xi + σεi, (1.2)

where Xi, ξi, εi are independent. The problem is to estimate the unknown re-

gression function f from the observations (Yi, Zi)i=1,··· ,n. The random variables

(Xi)i=1,··· ,n are unobserved and have common unknown density g. In (1.1), the

ξi’s are supposed to be centered with unknown density. In (1.2), the measure-

ment errors (σεi)i=1,··· ,n are decomposed into random variables (εi)i=1,··· ,n with

known density fε, multiplied by a noise level σ which is also known.
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When estimating f in this framework, nonparametric rates of convergence

depend not only on the smoothness of f and g, but also on the smoothness of the

error density fε. As in deconvolution problems, the worst rates correspond to

the smoothest error densities. It is classical to distinguish between two kinds of

smoothness. A density is called ordinary smooth if its Fourier Transform has a

polynomial decay; it is super smooth if its Fourier Transform has an exponential

decay.

Nonparametric estimation in Model (1.1)−(1.2) has been initiated by Fan,

Truong and Wang (1991) and Fan and Truong (1993), who propose a Nadaraya-

Watson type estimator obtained as the ratio of two deconvolution kernel estima-

tors. This problem has been further studied by Fan and Masry (1992), Masry

(1993), Truong (1991), and Ioannides and Alevizos (1997), among others. These

authors investigate different approaches (Lp-risks, asymptotic normality, . . .) un-

der various assumptions on the model (e.g., mixing assumptions) or on the reg-

ularity of functions. In particular, when both the regression function f and the

density g admit kth-order derivatives, Fan and Truong (1993) study the mini-

max risk. When ε is either ordinary or super smooth, they give upper and lower

bounds for the pointwise quadratic risk and for the Lp-risk restricted to compact

sets.

Using a different approach, Koo and Lee (1998) propose an estimation method

based on B-splines. Their results are only valid for ordinary smooth errors.

In all the papers quoted above, the regression function f and the density g

belong to the same known smoothness class, which is clearly unrealistic.

In this paper, we propose an estimation procedure for f that does not require

any prior knowledge on the smoothness of f and g. Our estimation procedure

is based on the classical idea that the regression function f at point x can be

written as the ratio

f(x) = E(Y |X = x) =

∫

yfX,Y (x, y)dy

g(x)
=

(fg)(x)

g(x)
,

with fX,Y the joint density of (X,Y ). Hence f is estimated by the ratio f̃ = ℓ̃/g̃,

where ℓ̃ is an adaptive estimator of ℓ = fg and g̃ an adaptive estimator of g.

Both estimators are obtained by minimization of penalized contrast functions.

The contrasts are determined by projection methods and the penalizations give

an automatic choice of the relevant projection spaces.

We give upper bounds for the Mean Integrated Squared Error (MISE) of

ℓ̃ and g̃ when errors are either ordinary or super smooth. We show that the

MISE of f̃ on a compact set A is bounded by the sum of the MISEs of ℓ̃ and

g̃. Consequently, the rate of f̃ is given by the slowest rate of the two adaptive

estimators ℓ̃ and g̃. The estimator f̃ automatically reaches the minimax rate in
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all standard cases where lower bounds are available. Other cases are discussed

in detail.

Estimators are described in Section 2. In Section 3, we give the upper bounds

for MISEs and discuss the minimax properties of estimators. Proofs and technical

lemmas are to be found in Section 4.

2. Description of the estimators

For complex-valued functions u and v in L2(R) ∩ L1(R), u∗ denotes the

Fourier transform of u with u∗(x) =
∫

eitxu(t)dt, u ∗ v the convolution product,

with u∗v(x) =
∫

u(y)v(x−y)dy and< u, v >=
∫

u(x)v(x)dx with z the conjugate

of a complex number z.

We set ‖u‖1 =
∫

|u(x)|dx, ‖u‖2
2 =

∫

|u(x)|2dx, ‖u‖∞ = supx∈R |u(x)|, and

‖u‖∞,K = supx∈K |u(x)|.
We assume that fε and f∗ε belong to L2(R), that f∗ε (x) 6= 0 for all x ∈ R,

and assume that all random variables have a second order moment.

2.1. Projection spaces

Let ϕ(x) = sin(πx)/(πx). Form ∈ N and j ∈ Z, set ϕm,j(x) =
√
mϕ(mx−j).

The functions {ϕm,j}j∈Z constitute an orthonormal system in L
2(R) (see e.g.

Meyer (1990), p.22). For m = 2k, it is known as the Shannon basis. Though we

choose integer values for m here, a thinner grid would also be possible. Define

Sm = span{ϕm,j , j ∈ Z}, m ∈ N. The space Sm is exactly the subspace of

L2(R) of functions having a Fourier transform with compact support contained

in [−πm, πm].

The orthogonal projections of g and ℓ on Sm are given, respectively, by

gm =
∑

j∈Z
am,j(g)ϕm,j and ℓm =

∑

j∈Z
am,j(ℓ)ϕm,j , where am,j(g) =< ϕm,j , g >

and am,j(ℓ) =< ϕm,j , ℓ >. To obtain representations having a finite number

of “coordinates”, take S
(n)
m = span{ϕm,j , |j| ≤ kn}, with integers kn to be

specified later. The family {ϕm,j}|j|≤kn
is an orthonormal basis of S

(n)
m and the

orthogonal projections of g and ℓ on S
(n)
m are given by g

(n)
m =

∑

|j|≤kn
am,j(g)ϕm,j

and ℓ
(n)
m =

∑

|j|≤kn
am,j(ℓ)ϕm,j , respectively.

2.2. Constructing minimum contrast estimators for ℓ and g

For an arbitrary fixed integer m, an estimator of ℓ belonging to S
(n)
m is defined

by

ℓ̂m = arg min
t∈S(n)

m

γn,ℓ(t), (2.1)
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where, for t ∈ S
(n)
m ,

γn,ℓ(t) = ‖t‖2 − 2n−1
n
∑

i=1

(Yiu
∗
t (Zi)) with ut(x) = (2π)−1 t

∗(−x)
f∗ε (−x)

. (2.2)

It is easy to see that ℓ̂m=
∑

|j|≤kn
âm,j(ℓ)ϕm,j with âm,j(ℓ)=n

−1
∑n

i=1 Yiu
∗
ϕm,j

(Zi).

By using the Parseval and inverse Fourier formulae, we get that

E(Y1u
∗
t (Z1)) = E(f(X1)u

∗
t (Z1)) = 〈u∗t ∗ fε, fg〉

=
1

2π

〈f∗ε t
∗

f∗ε
, (fg)∗

〉

=
1

2π
〈t∗, (fg)∗〉 = 〈t, ℓ〉.

Since E(γn,ℓ(t)) = ‖t‖2
2 − 2〈ℓ, t〉 = ‖t − ℓ‖2

2 − ‖ℓ‖2
2 is minimal when t = ℓ, we

conclude that γn,ℓ(t) suits well for the estimation of ℓ = fg.

As in Comte, Rozenholc and Taupin (2006), the estimator of g in S
(n)
m is

defined by

ĝm =
∑

|j|≤kn

âm,j(g)ϕm,j with âm,j(g) = n−1
n
∑

i=1

u∗ϕm,j
(Zi).

In other words,

ĝm = arg min
t∈S(n)

m

γn,g(t) (2.3)

where, for t ∈ S
(n)
m , γn,g(t) = ‖t‖2

2 − 2n−1
∑n

i=1 u
∗
t (Zi) and ut is defined in (2.2).

2.3. Minimum penalized contrast estimators for ℓ and g

In order to construct the minimum penalized contrast estimators, we must

define the penalty functions. They are related to the behavior of f∗ε . We assume

that, for all x in R,

κ0(x
2 + 1)−

α
2 exp{−β|x|ρ} ≤ |f∗ε (x)| ≤ κ′0(x

2 + 1)−
α
2 exp{−β|x|ρ}. (A1)

We only need the left-hand side of (A1) to define penalties and obtain the upper

bounds. The right-hand side of (A1) is needed when we consider lower bounds

and minimax properties. Since f∗ε must belong to L2(R), we require that α > 1/2

if ρ = 0. The errors are usually called “ordinary smooth” when ρ = 0, and “super

smooth” when ρ > 0. Standard examples are the following: Gaussian or Cauchy

distributions are super smooth of order (α = 0, ρ = 2) and (α = 0, ρ = 1)

respectively. The double exponential distribution is ordinary smooth (ρ = 0) of

order α = 2.
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By convention, we set β = 0 when ρ = 0 and assume that β > 0 when ρ > 0.

If σ = 0, i.e. the Xi’s are observed without noise, we set β = α = ρ = 0.

The minimum penalized estimator of ℓ and g are defined as ℓ̃ = ℓ̂m̂ℓ
and

g̃ = ĝm̂g where m̂ℓ and m̂g are chosen in a purely data-driven way. The main

point of the estimation procedure lies in the choice of m = m̂h for the estimators

ĥm from Section 2.2 in order to mimic the oracle parameter

m̆h = arg min
m

E ‖ ĥm − h ‖2
2, (2.4)

where h stands for ℓ or g.

More precisely, ℓ̃ is defined by

ℓ̃ = ℓ̂m̂ℓ
with m̂ℓ = arg min

m∈Mn,ℓ

[γn,ℓ(ℓ̂m) + penℓ(m)], (2.5)

and g̃ is defined, as in Comte et al. (2006), by

g̃ = ĝm̂g with m̂g = arg min
m∈Mn,g

[γn,g(ĝm) + peng(m)], (2.6)

with Mn,ℓ = {1, · · · ,mn,ℓ} and Mn,g = {1, · · · ,mn,g}, mn,ℓ and mn,g being

specified later. The penalties are data driven and given by

penℓ(m)=
κ′(λ1+µ2)[1+m̂2(Y )]Γ̃(m)

n
, peng(m)=

κ(λ1+µ1)Γ̃(m)

n
, with (2.7)

m̂2(Y )=
1

n

n
∑

i=1

Y 2
i and Γ̃(m)=(πm)2α+max(1−ρ,min( (1+ρ)

2
,1)) exp{2βσρ(πm)ρ}. (2.8)

The constants λ1, µ1 and µ2 only depend on fε and σ, which are known. They

are defined below (see (3.5), (3.13) and (3.14)).

The quantities κ and κ′ are universal constants. In practice, they are cali-

brated by intensive simulation studies. We refer to Comte et al. (2006, 2005b)

for further details on penalty calibration and implementation of analogous esti-

mators in density deconvolution.

Remark 2.1. The penalty functions defined by (2.7) and (2.8) have the same

order. More precisely, both penalties are of order m2α+1−ρ exp(2βσρ(πm)ρ)/n if

0 ≤ ρ ≤ 1/3, of order m2α+(1+ρ)/2 exp(2βσρ(πm)ρ)/n if 1/3 ≤ ρ ≤ 1 and of order

m2α+1 exp(2βσρ(πm)ρ)/n if ρ ≥ 1.

2.4. Estimation of f itself

For r ∈ R and d > 0, we write r(d) = sign(r)min(|r|, d). The estimator f̃ of

f is defined as

f̃ =
( ℓ̃

g̃

)(an)
, (2.9)
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with an suitably chosen. We have to use trimming to avoid problems due to

small values of g̃.

3. Rates of convergence and adaptivity

3.1. Assumptions

We consider Model (1.1) under (A1) and the following additional assump-

tions.

ℓ ∈ L2(R) and ℓ ∈ L =
{

φ such that

∫

x2φ2(x)dx ≤ κL <∞
}

, (A2)

f ∈FG={φ such that sup
x∈G

|φ(x)|≤κ∞,G<∞},

where G is the support of g. (A3)

g ∈ L2(R) and g ∈ G = {φ, density such that

∫

x2φ2(x)dx < κG <∞}. (A4)

There exist positive constants g0, g1 such that for all x∈A,
g0≤g(x)≤g1. (A5)

Assumption (A3) states that f is bounded on the support of g. If g is

compactly supported, f has to be bounded on a compact set. Otherwise f has

to be bounded on R. We estimate f only on a compact set denoted by A.

Hence, Assumption (A5) implies that A ⊂ G. Therefore, under (A3) and (A5),

f is bounded on A. Assumptions (A3) and (A4) imply that (A2) holds with

κL = κ2
∞,GκG .

Classically, the slowest rates of convergence for estimating f and g are ob-

tained for super smooth error densities. In particular, when fε is Gaussian and

f and g have the same Hölderian type regularity, the minimax rates of conver-

gence are negative powers of ln(n) (see Fan (1991) and Fan and Truong (1993)).

Nevertheless, we prove below that rates are improved if ℓ and g have stronger

smoothness properties, described by the smoothness classes

Sa,r,B(C1)=
{

ψ∈L2(R) : such that

∫ +∞

−∞
|ψ∗(x)|2(x2+1)a exp{2B|x|r}dx≤C1

}

,

(3.1)

for a, r, B, C1 nonnegative real numbers. Such smoothness classes have already

been considered in density deconvolution (see Pensky and Vidakovic (1999) and

Comte et al. (2006)). To our knowledge, it is the first time they have been con-

sidered in regression with errors-in-variables. When r = 0, (3.1) corresponds to

a Sobolev ball. With r > 0, B > 0, functions in (3.1) are infinitely differentiable,



ADAPTIVE ESTIMATION IN A NONPARAMETRIC ERRORS-IN-VARIABLES MODEL 1071

they admit analytic continuation on a finite width strip when r = 1 and on the

whole complex plane if r = 2.

3.2. Risk bounds for the minimum contrast estimators

We start by presenting general bound for the risks.

Proposition 3.1. Consider the estimators ℓ̂m and ĝm of ℓ and g defined by (2.1)

and (2.3). Let ∆(m) = π−1
∫ πm
0 |f∗ε (xσ)|−2dx. Then, under (A2) and (A4),

E(‖ℓ̂m − ℓ‖2
2) ≤ ‖ℓ− ℓm‖2

2 +
2E(Y 2

1 )∆(m)

n
+

(κL+ ‖ ℓ ‖2
1)(πm)2

kn
, (3.2)

E(‖ĝm−g‖2
2) ≤ ‖g−gm‖2

2+
2∆(m)

n
+

(κG + 1)(πm)2

kn
. (3.3)

The variance term ∆(m)/n depends on the rate of decay of the Fourier

transform f∗ε . Under (A1), it is bounded as follows

∆(m) ≤ λ1Γ(m) with Γ(m) = (πm)2α+1−ρ exp(2βσρ(πm)ρ), (3.4)

λ1(α, κ0, β, σ, ρ) = λ1 =
(σ2 + 1)α

(πρκ2
0R(β, σ, ρ))

(3.5)

and R(β, σ, ρ) = 1Iρ=0 + 2βρσρ1I0<ρ≤1 + 2βσρ1Iρ>1.

To ensure that Γ(m)/n is bounded, we only consider models such that m ≤ mn,

with

πmn ≤







n
1

(2α+1) if ρ = 0
[ ln(n)

2βσρ
+

2α+ 1 − ρ

2ρβσρ
ln
( ln(n)

2βσρ

)]
1
ρ

if ρ > 0.
(3.6)

Let us come to the bias terms which depend, as usual, on the smoothness proper-

ties of ℓ and g. Since ℓm is the orthogonal projection of ℓ on Sm, when ℓ belongs

to Saℓ,rℓ,Bℓ
(κaℓ

) (see (3.1)),

‖ℓ− ℓm‖2
2 = (2π)−1

∫

|x|≥πm
|ℓ∗|2(x)dx ≤ [

κaℓ

(2π)
](m2π2 + 1)−aℓ exp{−2Bℓπ

rℓmrℓ}.

(3.7)

The same holds for ‖ g− gm ‖2
2 when g belongs to Sag ,rg,Bg (κag ) with (aℓ, Bℓ, rℓ)

replaced by (ag, Bg, rg).
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Corollary 3.1. Assume (A1), (A2) and (A4), and let Γ(m) and λ1 be defined

by (3.4) and (3.5). Assume that ℓ belongs to Saℓ,rℓ,Bℓ
(κaℓ

) and that g belongs to

Sag,rg,Bg(κag ) (see (3.1)). Then for kn ≥ n,

E(‖ℓ− ℓ̂m‖2
2) ≤ κaℓ

(2π)−1(m2π2 + 1)−aℓe−2Bℓπ
rℓmrℓ +

2λ1E(Y 2
1 )Γ(m)

n

+
(κL+ ‖ ℓ ‖2

1)(πm)2

n
,

E(‖g − ĝm‖2
2)≤κag (2π)−1(m2π2+1)−age−2Bgπ

rgmrg
+

2λ1Γ(m)

n
+

(κG+1)(πm)2

n
.

Remark 3.1. We point out that the {ϕm,j} are R-supported (and not compactly
supported). Hence, we obtain estimations of ℓ and g on the whole line and not
only on a compact set as is the case for the usual projection estimators. This is
the advantage of the basis. A drawback is that we have to choose kn, but is not
difficult. Under (A2) and (A4), the choice kn ≥ n ensures that terms involving
kn are negligible with respect to the variance terms. The choice of a large kn will
not change the accuracy of our estimator. From a practical point of view, it will
reduce the speed of the algorithm.

Table 1 gives the rates for ℓ̂m̆ℓ
. The results are also valid for ĝm̆g . The latter

estimator has the minimax rate of convergence in all cases where lower bounds
are known. See Fan (1991) for rg = 0, Butucea (2004) for rg > 0, ρ = 0, and
Butucea and Tsybakov (2005) for 0 < rg < ρ, ag = 0. We refer to Comte et al.
(2006) for further details concerning density deconvolution.

Table 1. Best choices of m̆ℓ minimizing E(‖ℓ− ℓ̂m‖2
2) and resulting rates

for ℓ̂m̆ℓ
.

fε

ρ = 0 ρ > 0

ordinary smooth super smooth

ℓ
rℓ = 0

Sobolev(aℓ)

m̆ℓ = O(n1/(2α+2aℓ+1))

rate = O(n−2aℓ/(2α+2aℓ+1))

πm̆ℓ = [ln(n)/(2βσρ + 1)]1/ρ

rate = O((ln(n))−2aℓ/ρ)

rℓ > 0

C
∞

πm̆ℓ = [ln(n)/2Bℓ]
1/rℓ

rate = O
“ ln(n)(2α+1)/rℓ

n

”

πm̆ℓ implicit solution of

(πm̆ℓ)
2α+2aℓ+1−rℓe2βσρ(πm̆ℓ)

ρ+2B(πm̆ℓ)rℓ

= O(n)

rate : see comments below

When rℓ > 0, ρ > 0, the optimal parameter m̆ℓ is not explicitly given. It is
obtained as the solution of

(πm̆ℓ)
2α+2aℓ+1−rℓ exp{2βσρ(πm̆ℓ)

ρ+2Bℓ(πm̆ℓ)
rℓ} = O(n). (3.8)



ADAPTIVE ESTIMATION IN A NONPARAMETRIC ERRORS-IN-VARIABLES MODEL 1073

Consequently, the rate of ℓ̂m̆ℓ
is not explicit and depends on the ratio rℓ/ρ. If

rℓ/ρ or ρ/rℓ belongs to ]k/(k+ 1); (k+ 1)/(k+ 2)] with k an integer, the rate of

convergence can be expressed as a function of k. For instance, if rℓ = ρ, the rate is

of order [ln(n)]bn−Bℓ/(Bℓ+βσ
ρ) with b = [−2aℓβσ

ρ+(2α−rℓ+1)Bℓ]/[rℓ(βσ
ρ+Bℓ)].

It is of order ln(n)−2aℓ/ρ exp[−2Bℓ(ln(n)/(2βσρ))rℓ/ρ] for 0 < rℓ/ρ ≤ 1/2, and of

order ln(n)(2α+1−ρ)/rℓ exp[2βσρ(ln(n)/(2Bℓ))
ρ/rℓ ]/n for 0 < ρ/rℓ ≤ 1/2.

The case ρ > 0 is important since it contains Gaussian densities. When

ρ > 0, rℓ = 0 (Sobolev balls), rates are logarithmic. Now, as can be seen from

the discussion above, faster rates can be obtained with ρ and rℓ are positive.

Proposition 3.2. Assume (A1)−(A5) and that g belongs to a space Sag ,rg,Bg

(κag ) with ag > 1/2 if rg = 0 (see (3.1)). Let f̂m̆ℓ,m̆g = ℓ̂m̆ℓ
/ĝm̆g , with m̆ℓ and

m̆g that realize the best trade-off in Corollary 3.1. If an = nk with k > 0 and

kn ≥ n3/2, then for n large enough,

E‖(f̂m̆ℓ,m̆g − f)1IA‖2
2 ≤ C0[E(‖ℓ− ℓ̂m̆ℓ

‖2
2) + E(‖g − ĝm̆g‖2

2)] + o(n−1), (3.9)

where C0 = Kg−2
0 (1 + g1g

−2
0 κ∞,G),

Let us make some comments. If ag ≤ 1/2, we only have ‖(f− f̂m̆ℓ,m̆g)1IA‖2
2 =

Op(‖ℓ − ℓ̂m̆ℓ
‖2
2 + ‖g − ĝm̆g‖2

2). If f is bounded on A, Proposition 3.2 still holds

with κ∞,G replaced by ‖ f ‖∞,A.

The rate of f̂m̆ℓ,m̆g is given by the slowest term on the right-hand side of

(3.9). Let us illustrate this result through examples.

• Suppose that the εi’s are ordinary smooth.

If rℓ = rg = 0, then m̆ℓ = O(n1/(2aℓ+2α+1)), m̆g = O(n1/(2ag+2α+1)), and

E(‖(f − f̂m̆ℓ,m̆g)1IA‖2
2) ≤ O(n

− 2a∗
(2a∗+2α+1) ) with a∗ = inf(aℓ, ag).

If rℓ > 0, rg > 0, then πm̆ℓ = (ln(n)/2B)1/rℓ , πm̆g = (ln(n)/2B)1/rg , and

E(‖(f − f̂m̆ℓ,m̆g)1IA‖2
2) ≤ O

( ln(n)
(2α+1)

r∗

n

)

with r∗ = inf(rℓ, rg).

• Suppose that the εi’s are super smooth.

If rℓ = rg = 0, then πm̆ℓ = πm̆g = [ln(n)/(2βσρ + 1)]1/ρ, and

E(‖(f − f̂m̆ℓ,m̆g )1IA‖2
2) ≤ O([ln(n)]−

2a∗
ρ ) with a∗ = inf(aℓ, ag).

Since ℓ = fg, the smoothness properties of ℓ are related to those of f and g.

When ℓ belongs to Saℓ,0,Bℓ
(κaℓ

) and g belongs to Sag ,0,Bg(κag ) with aℓ = ag, the

resulting rate is the minimax rate given in Fan and Truong (1993) when both f
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and g are Hölder of the same order. In that case, f̂m̆ℓ,m̆g is optimal in a minimax

sense. When g is smoother than f , it is reasonable to believe that f̂m̆ℓ,m̆g is

minimax. The case f smoother than g seems different. The optimality of f̂m̆ℓ,m̆g

is not clear. In regression models without errors, when the Xi’s are observed,

there are estimation procedures that do not require any comparison of smoothness

parameters of f and g (e.g., procedures based on local polynomial estimators).

However, these methods do not seem to work on models with errors-in-variables.

The choices of m̆ℓ and m̆g are optimal when they realize the best trade-

off between the squared bias and the variance terms (see Corollary 3.1). These

optimal values depend on the unknown smoothness parameters of ℓ and g. In

the next section, we study penalized estimators which are constructed without

smoothness knowledge. We provide upper bounds for their risks.

3.3. Risk bounds of the minimum penalized contrast estimators

In adaptive estimation of ℓ and g, one would expect to obtain bounds such

as

E‖ ℓ̃−ℓ ‖2≤ inf
m∈Mn,ℓ

[

‖ ℓ−ℓm ‖2 +
2λ1E(Y 2

1 )Γ(m)

n
+

(πm)2(ML+‖ ℓ ‖2
1)

n

]

, (3.10)

E ‖ g̃ − g ‖2≤ inf
m∈Mn,g

[

‖ g − gm ‖2 +
2λ1Γ(m)

n
+

(πm)2(MG + 1)

n

]

. (3.11)

The following theorem describes the cases where the oracle inequalities (3.10)

and (3.11) are reached.

Theorem 3.1. Assume (A1), (A2) and (A4). Consider the collection of estima-

tors ℓ̂m and ĝm defined by (2.1) and (2.3) with kn > n, mn,ℓ ≤ mn, mn,g ≤ mn,

and mn satisfying

πmn ≤
[ ln(n)

2βσρ
+

2α+ min[(1
2 + ρ

2 ), 1]

2ρβσρ
ln
( ln(n)

2βσρ

)]
1
ρ
, (3.12)

if ρ > 1/3, and (3.6) if ρ ≤ 1/3. Let

µ1 =











0 if ρ < 1
3 ,

β(σπ)ρλ
1
2
1 (α, κ0, β, σ, ρ)(1 + σ2)

α
2 κ−1

0 (2π)−
1
2 if 1

3 ≤ ρ ≤ 1,

β(σπ)ρλ1(α, κ0, β, σ, ρ) if ρ > 1,

(3.13)

µ2 = µ11I{0≤ρ< 1
3
}∪{ρ>1} + µ1‖fε‖21I{ 1

3
≤ρ≤1},

(3.14)
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and let penℓ and peng be given by (2.7)−(2.8) with µ1 and µ2 defined in (3.13)−
(3.14).

(1) Adaptive estimation of g. (Comte et al. (2006)).

For g̃ = ĝm̂g defined in (2.6),

E(‖g − g̃‖2
2) ≤ K inf

m∈Mn,g

[

‖g − gm‖2
2 +

(πm)2(κG + 1)

n
+ peng(m)

]

+
c

n
,

where K is a constant and c another constant depending on fε and Ag.

(2) Adaptive estimation of ℓ. Under Assumption (A3), if E|ξ1|8 < ∞,

ℓ̃ = ℓ̂m̂ℓ
defined in (2.5) satisfies

E(‖ℓ− ℓ̃‖2
2) ≤ K ′ inf

m∈Mn,ℓ

[

‖ℓ−ℓm‖2
2+

(πm)2(κL+‖ ℓ ‖2
1)

n
+E(penℓ(m))

]

+
c′

n
,

where K ′ is a constant and c′ another constant depending on fε, κL, and ‖ℓ‖1.

Remarks. (1) According to Remark 2.1, the penalty functions peng(m) and

penℓ(m) are of order Γ(m)/n if 0≤ρ≤1/3, and of order mmin[(3ρ/2−1/2),ρ]Γ(m)/n,

if ρ > 1/3. Hence, a loss of order mmin[(3ρ/2−1/2),ρ] may occur if ρ > 1/3.

(2) When 0 ≤ ρ ≤ 1/3 or (ρ > 1/3, rg = 0) or (ρ > 1/3, rg < ρ), the rate

of convergence of g̃ is that of ĝm̆g . It is minimax in all cases where lower bounds

are known. When rg ≥ ρ > 1/3, there is a logarithmic loss due to adaptation

(see Comte et al. (2006)).

(3) The rates of ℓ̃ are easily deduced from Theorem 3.1. If penℓ(m) has the

variance order Γ(m)/n, Theorem 3.1 guarantees an automatic trade-off between

‖ℓ− ℓm‖2
2 and the variance term up to some multiplicative constant.

In particular when 0 ≤ ρ ≤ 1/3, the εi’s are ordinary or super smooth.

Whenever ℓ belongs to Saℓ,rℓ,Bℓ
(κaℓ

) defined by (3.1), if we combine (3.7) and

the order penℓ(m) = O(Γ(m)/n) (see (3.4)) we get that m̂ℓ mimics m̆ℓ (in (2.4)).

The estimator ℓ̃ automatically reaches the rate of ℓ̂m̆ℓ
given in Table 1.

If ρ > 1/3, penℓ(m) is slightly bigger than Γ(m)/n. If the bias ‖ℓ− ℓm‖2
2 is

the main term, the rate of ℓ̃ is still that of ℓ̂m̆ℓ
. This holds in particular when

(rℓ = 0, ρ > 0) or 0 < rℓ < ρ.

In the case where penℓ(m) dominates ‖ℓ− ℓm‖2
2, i.e. rℓ ≥ ρ > 1/3, there is a

loss of order at most lnn: the rate of f̃ is equal to that of f̂m̆ℓ
multiplied by lnn.

This has little importance since the main order term is faster than logarithmic

(see comments on Table 1.).

Theorem 3.2. Adaptive estimation of f . Under (A1)−(A5), assume that

g belongs to Sag ,rg,Bg (κag ) defined in (3.1), with ag > 1/2 if rg = 0. Assume

moreover that E|ξ1|8 < ∞. Let f̃ be defined by (2.9), where ℓ̃ and g̃ are as in

Theorem 3.1 and, in addition, mn,g ≤ (n/ ln(n))1/(2α+2) if ρ = 0.



1076 F. COMTE AND M.-L. TAUPIN

If kn ≥ n3/2, an = nk with k > 0, then for n large enough,

E(‖(f − f̃)1IA‖2
2) ≤ C0 inf

m∈Mn,ℓ

[

‖ℓ− ℓm‖2
2 +

(πm)2(κL+ ‖ ℓ ‖2
1)

n
+ E(penℓ(m))

]

+C1 inf
m∈Mn,g

[

‖g−gm‖2
2+

(πm)2(κG + 1)

n
+peng(m)

]

+
c

n
, (3.15)

where C0 = 8Kg−2
0 , C1 = 4K ′g−2

0 (2g2
1 + 1)κ2

∞,G, K and K ′ are constants de-

pending on fε, and c is a constant depending on fε, f and g.

As in Proposition 3.2, if ag ≤ 1/2 we only have ‖(f − f̃)1IA‖2
2 = Op(‖ℓ −

ℓ̃‖2
2 + ‖g − g̃‖2

2). If f is bounded on the compact set A, Theorem 3.2 holds with

κ∞,G replaced by ‖ f ‖∞,A.

Let us make some additional comments. As for f̂m̆ℓ,m̆g , the rate of f̃ is

given by the largest MISE of ℓ̃ and g̃. If ℓ and g belong to Saℓ,rℓ,Bℓ
(κaℓ

) and

Sag,rg,Bg(κag ), respectively, with 0 ≤ ρ ≤ 1/3 or ρ > 1/3 and rℓ, rg ≤ ρ, f̃ achieves

the rate of convergence of f̂m̆ℓ,m̆g . We have already given some indications of the

minimax properties of f̂m̆ℓ,m̆g (see comments after Theorem 3.2).

If ℓ and g belong to Saℓ,rℓ,Bf
(κaℓ

) and Sag ,rg,Bg (κag ), respectively, with rg >

ρ > 1/3 or rℓ > ρ > 1/3, there is a loss of order at most lnn (see comments after

Theorem 3.1).

The rates for all estimators depend on the noise level σ. If σ = 0, Z = X is

observed. By convention β = α = ρ = 0, hence λ1 = 1. In that case, Γ(m)/n

has the order m/n, exactly as in density and nonparametric regression without

errors. Analogously, penℓ and peng have the orderm/n, used for adaptive density

estimation and nonparametric regression without errors (at least when there is,

as here, one model per dimension).

For small σ, the procedure automatically selects a value of m close to the

one that would be selected without errors in variables.

4. Proofs

4.1. Proof of Proposition 3.1

It follows from Definition (2.1) that, for any m belonging to Mn, ℓ̂m satisfies

γn,ℓ(ℓ̂m) − γn,ℓ(ℓ
(n)
m ) ≤ 0. Denote by νn(t) the centered empirical process,

νn(t) =
1

n

n
∑

i=1

(

Yiu
∗
t (Zi) − 〈t, ℓ〉

)

. (4.1)

Since t 7→ u∗t is linear, we get the following decomposition

γn,ℓ(t) − γn,ℓ(s) = ‖t− ℓ‖2
2 − ‖s− ℓ‖2

2 − 2νn(t− s). (4.2)
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Since ‖ℓ − ℓ
(n)
m ‖2

2 = ‖ℓ − ℓm‖2
2 + ‖ℓm − ℓ

(n)
m ‖2

2, we get ‖ℓ − ℓ̂m‖2
2 ≤ ‖ℓ − ℓm‖2

2 +

‖ℓm − ℓ
(n)
m ‖2

2 + 2νn(ℓ̂m − ℓ
(n)
m ). Using âm,j(ℓ) − am,j(ℓ) = νn(ϕm,j), we obtain

νn(ℓ̂m − ℓ(n)
m ) =

∑

|j|≤kn

(âm,j(ℓ) − am,j(ℓ))νn(ϕm,j) =
∑

|j|≤kn

[νn(ϕm,j)]
2. (4.3)

Consequently,

E‖ℓ− ℓ̂m‖2
2 ≤ ‖ℓ− ℓm‖2

2 + ‖ℓm − ℓ(n)
m ‖2

2 + 2
∑

j∈Z

Var[νn(ϕm,j)]. (4.4)

Since the (Yi, Zi)’s are independent, Var[νn(ϕm,j)] = n−1Var[Y1u
∗
ϕm,j

(Z1)]. By

Parseval’s formula (see Comte et al. (2006)), we get that

∑

j∈Z

Var[νn(ϕm,j)] ≤ n−1 ‖
∑

j∈Z

|u∗ϕm,j
|2 ‖∞ E(Y 2

1 ) ≤ E(Y 2
1 )∆(m)

n
, (4.5)

where ∆(m) is defined in Proposition 3.1.

Let us study the residual term ‖ℓm − ℓ
(n)
m ‖2

2. We have

‖ℓm − ℓ(n)
m ‖2

2 =
∑

|j|≥kn

a2
m,j(ℓ) ≤ (sup

j
jam,j(ℓ))

2
∑

|j|≥kn

j−2.

Now, by definition,

jam,j(ℓ) = j
√
m

∫

ϕ(mx− j)ℓ(x)dx

≤m
3
2

∫

|x||ϕ(mx− j)||ℓ(x)|dx +
√
m

∫

|mx− j||ϕ(mx − j)||ℓ(x)|dx

≤m
3
2

(

∫

|ϕ(mx− j)|2dx
)

1
2
κ

1
2
L +

√
m sup

x
|xϕ(x)|‖ℓ‖1.

Thus jam,j≤m‖ϕ‖2κ
1/2
L +

√
m‖ℓ‖1/π and ‖ℓm − ℓ

(n)
m ‖2

2≤(κL + ‖ℓ‖2
1)(πm)2/kn.

4.2. Proof of Proposition 3.2

The proof of Proposition 3.2 is similar to the proof of Theorem 3.2 and is

omitted. We refer to Comte and Taupin (2004) for further details.

4.3. Proof of Theorem 3.1

Point (1) is proved in Comte and Taupin (2004). We prove Point (2) with

E(Y 2) in the penalty, this only requires E|ξ1|6 < ∞. The complete proof with

m̂2(Y ) in the penalty is obtained as an application of Rosenthal’s inequality
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(see Rosenthal (1970)) and requires the stronger condition E|ξ1|8 < ∞ (see

Comte and Taupin (2004) for a complete proof).
For the study of ℓ̃, the main difficulty compared with the study of g̃ lies in

the fact that the ξi’s are not necessarily bounded. By definition, ℓ̃ satisfies, for

all m ∈ Mn,ℓ, γn,ℓ(ℓ̃) + penℓ(m̂ℓ) ≤ γn,ℓ(ℓ
(n)
m ) + penℓ(m). Therefore, (4.2) yields

‖ ℓ̃− ℓ ‖2
2≤‖ ℓ− ℓ(n)

m ‖2
2 +2νn(ℓ̃− ℓ(n)

m )+ penℓ(m)− penℓ(m̂ℓ). (4.6)

Next, we use that, if t = t1 + t2 with t1 in S
(n)
m and t2 in S

(n)
m′ , then t is such that

t∗ has its support included in [−πmax(m,m′), πmax(m,m′)]. Therefore t belongs

to S
(n)
max(m,m′). Let Bm,m′(0, 1) = {t ∈ S

(n)
max(m,m′)/‖t‖2 = 1}. For νn(t) defined

by (4.1), we get |νn(ℓ̃ − ℓ
(n)
m )| ≤ ‖ℓ̃ − ℓ

(n)
m ‖2 supt∈Bm,m̂(0,1) |νn(t)|. Consequently,

using that 2ab ≤ x−1a2 + xb2, we have

‖ℓ̃− ℓ‖2
2 ≤ ‖ℓ(n)

m − ℓ‖2
2 +

1

x
‖ℓ̃− ℓ(n)

m ‖2
2 + x sup

t∈Bm,m̂(0,1)
ν2
n(t) + penℓ(m) − penℓ(m̂ℓ).

Therefore, we can write ‖ℓ̃− ℓ
(n)
m ‖2

2 ≤ (1 + y−1)‖ℓ̃− ℓ‖2
2 + (1 + y)‖ℓ− ℓ

(n)
m ‖2

2, with
y = (x+ 1)/(x − 1) for x > 1. Thus,

‖ℓ̃− ℓ‖2
2 ≤

(x+ 1

x− 1

)2
‖ℓ− ℓ(n)

m ‖2
2 +

x(x+ 1)

x− 1
sup

t∈Bm,m̂ℓ
(0,1)

ν2
n(t)

+
x+ 1

x− 1

(

penℓ(m) − penℓ(m̂ℓ)
)

.

Choose a positive function pℓ(m,m
′) such that xpℓ(m,m

′) ≤ penℓ(m)+penℓ(m
′).

Setting κx = (x+ 1)/(x− 1), we obtain

‖ℓ̃− ℓ‖2
2 ≤ κ2

x‖ℓ− ℓ(n)
m ‖2

2 + xκx[ sup
t∈Bm,m̂(0,1)

|νn|2(t) − p(m, m̂ℓ)]+

+κx(xpℓ(m, m̂ℓ) + penℓ(m) − penℓ(m̂)). (4.7)

If we set

Wn(m
′) =

[

sup
t∈Bm,m′ (0,1)

|νn(t)|2 − pℓ(m,m
′)
]

+
, (4.8)

(4.7) can be written as

‖ℓ̃− ℓ‖2
2 ≤ κ2

x‖ℓ− ℓ(n)
m ‖2

2 + 2κxpenℓ(m) + xκxWn(m̂ℓ). (4.9)

The key point of the proof lies in the study of Wn(m
′). More precisely, we search

for pℓ(m,m
′) such that, for C a constant,

E(Wn(m̂ℓ)) ≤
∑

m′∈Mn,ℓ

E(Wn(m
′))) ≤ C

n
. (4.10)
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Now, combining (4.9) and (4.10) we have, for all m in Mn,ℓ,

E‖ℓ− ℓ̃‖2
2 ≤ κ2

x‖ℓ− ℓ(n)
m ‖2

2 + 2κxpenℓ(m) +
xκxC

n
.

This is also

E‖ℓ−ℓ̃‖2
2 ≤ Cx inf

m∈Mn,ℓ

[

‖ℓ−ℓm‖2
2+

(κL+ ‖ ℓ ‖2
1)(πm)2

kn
+penℓ(m)

]

+
CxC

′

n
, (4.11)

where Cx = max(κ2
x, 2κx) suits. Hence Theorem 3.1 will hold if (4.10) is proved.

It remains thus to find pℓ(m,m
′) such that (4.10) holds.

The process Wn(m
′) is studied using the decomposition of νn(t) = νn,1(t) +

νn,2(t) with

νn,1(t) =
1

n

n
∑

i=1

(f(Xi)u
∗
t (Zi) − 〈t, ℓ〉) and νn,2(t) =

1

n

n
∑

i=1

ξiu
∗
t (Zi). (4.12)

So Wn(m
′) ≤ 2Wn,1(m

′) + 2Wn,2(m
′) where for i = 1, 2,

Wn,i(m
′) =

[

sup
t∈Bm,m′ (0,1)

|νn,i(t)|2 − pi(m,m
′)
]

+
, and

pℓ(m,m
′) = 2p1(m,m

′) + 2p2(m,m
′). (4.13)

• Study of Wn,1(m′).
Under (A3), f is bounded on the support of g. So we apply a standard Talagrand
(1996) inequality recalled in Lemma 4.1 below.

Lemma 4.1. Let U1, . . . , Un be independent random variables and νn(r) =
(1/n)

∑n
i=1[r(Ui)−E(r(Ui))] for r belonging to a countable class R of uniformly

bounded measurable functions. Then for ǫ > 0,

E

[

sup
r∈R

|νn(r)|2 − 2(1 + 2ǫ)H2
]

+
≤ 6

K1

( v

n
e−K1ǫ

nH2

v +
8M2

1

K1n2C2(ǫ)
e
−K1C(ǫ)

√
ǫ√

2
nH
M1

)

,

(4.14)
with C(ǫ) =

√
1 + ǫ− 1, K1 is a universal constant, and where

sup
r∈R

‖r‖∞ ≤M1, E

(

sup
r∈R

|νn(r)|
)

≤ H, sup
r∈R

1

n

n
∑

i=1

Var(r(Ui)) ≤ v.

Inequality (4.14) is a straightforward consequence of Talagrand (1996) in-
equality given in Ledoux (1996) (or Birgé and Massart (1998)). The application
of (4.14) to νn,1(t) gives

E

[

sup
t∈Bm,m′ (0,1)

|νn,1(t)|2 −2(1+2ǫ1)H
2
1

]

+
≤κ1

(v1
n
e
−K1ǫ1

nH
2
1

v1 +
M2

1

n2
e
−K2

√
ǫ1C(ǫ1)

nH1
M1

)

,

(4.15)



1080 F. COMTE AND M.-L. TAUPIN

whereK2 = K1/
√

2 and H1, v1 and M1 are defined by E(supt∈Bm,m′ (0,1) |νn,1(t)|2)
≤ H

2
1,

sup
t∈Bm,m′ (0,1)

Var(f(X1)u
∗
t (Z1)) ≤ v1, and sup

t∈Bm,m′ (0,1)
‖f(X1)u

∗
t (Z1)‖∞ ≤M1.

According to (3.4) and (4.5), we can take

M1 = M1(m,m
′) = κ∞,G

√

λ1Γ(m∗), where m∗ = max(m,m′). (4.16)

To compute v1, we set Pj,k(m) = E[f2(X1)u
∗
ϕm,j

(Z1)u
∗
ϕm,k

(−Z1)], and write

sup
t∈Bm,m′ (0,1)

Var(f(X1)u
∗
t (Z1)) ≤

(

∑

j,k∈Z

|Pj,k(m∗)|2
)

1
2
.

Following Comte et al. (2006), take

∆2(m,Ψ)=m2

∫∫

∣

∣

∣

ϕ∗(x)ϕ∗(y)
f∗ε (mx)f∗ε (my)

Ψ∗(m(x−y))
∣

∣

∣

2
dxdy≤λ2

2(‖Ψ‖2)Γ
2
2(m),(4.17)

with

Γ2(m) = (πm)2α+min[( 1
2
− ρ

2
),(1−ρ)] exp{2βσρ(πm)ρ}, (4.18)

λ2(‖Ψ‖2) =

{

λ1(α, κ0, β, σ, ρ) if ρ > 1,

κ−1
0 (2π)−

1
2λ

1
2
1 (α, κ0, β, σ, ρ)(1 + σ2)

α
2 ‖Ψ‖2 if ρ ≤ 1.

(4.19)

Now, write Pj,k(m) =
∫∫

f2(x)u∗ϕm,j
(x+y)u∗ϕm,k

(−(x+y))g(x)fε(y)dxdy so that

Pj,k(m)

=m

∫∫

f2(x)

∫∫

e−i(x+y)um
ϕ∗(u)eiju

f∗ε (mu)
ei(x+y)vm

ϕ∗(v)eikv

f∗ε (mv)
dudvg(x)fε(y)dxdy

=m

∫∫

eiju+ikvϕ∗(u)ϕ∗(v)
f∗ε (mu)f∗ε (mv)

(

∫∫

e−i(x+y)(u−v)mf2(x)g(x)fε(y)dxdy
)

dudv

=m

∫∫

eiju+ikvϕ∗(u)ϕ∗(v)
f∗ε (mu)f∗ε (mv)

[(f2g) ∗ fε]∗((u− v)m)dudv.

By Parseval’s formula, we get that
∑

j,k |Pj,k(m)|2 equals

m2

∫∫

∣

∣

∣

ϕ∗(u)ϕ∗(v)
f∗ε (mu)f∗ε (mv)

[(f2g) ∗ fε]∗((u− v)m)
∣

∣

∣

2
dudv = ∆2(m, (f

2g) ∗ fε).

Since ‖(f2g) ∗ fε‖2 ≤ ‖f2g‖2‖fε‖2 = E
1/2(f2(X1))‖fε‖2, and λ2(‖f2g‖2‖fε‖2) ≤

µ2, with µ2 defined in (3.13), we can take

v1 = v1(m,m
′) = µ2Γ2(m

∗). (4.20)
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Lastly, we have E[supt∈Bm,m′ (0,1) |νn,1(t)|2] ≤ E(f2(X1))λ1Γ(m∗)/n. Thus,

H
2
1 = H

2
1(m,m

′) =
E(f2(X1))λ1Γ(m∗)

n
. (4.21)

From (4.15), (4.16), (4.20) and (4.21) we choose p1(m,m
′) = 2(1 + 2ǫ1)H

2
1 =

2(1 + 2ǫ1)E(f2(X1))λ1Γ(m∗)/n. Then,

E(Wn,1(m
′)) ≤ E

[

sup
t∈Bm,m′ (0,1)

|νn,1(t)|2 − 2(1 + 2ǫ1)H
2
1

]

+

≤ A1(m
∗) +B1(m

∗), (4.22)

with

A1(m) =K3
µ2Γ2(m)

n
exp

(

−K1ǫ1E(f2(X1))
λ1Γ(m)

µ2Γ2(m)

)

, (4.23)

B1(m) =K3

κ2
∞,Gλ1Γ(m)

n2
exp

{

−K2
√
ǫ1C(ǫ1)

√

E(f2(X1))

κ∞,G

√
n
}

. (4.24)

Since for all m in Mn,ℓ, Γ(m) ≤ n and |Mn,ℓ| ≤ n, there exist some constants

K4 and c such that

∑

m∈Mn,ℓ

B1(m
∗) ≤ K3‖f‖2

∞,Gλ1 exp
[

− K4

√

E(f2(X1))
√
n

κ∞,G

]

≤ c

n
.

Let us now study of A1(m
∗).

(1) Case 0 ≤ ρ < 1/3. Here ρ ≤ (1/2 − ρ/2)+ and the choice ǫ1 = 1/2

ensures the convergence of
∑

m′∈Mn,ℓ
A1(m

∗). Indeed, set ψ = 2α + min[(1/2 −
ρ/2), (1 − ρ)], ω = (1/2 − ρ/2)+, and K ′ = κ2λ1/µ2. For a, b ≥ 1,

max(a, b)ψe2βσ
ρπρ max(a,b)ρ

e−K
′ξ2 max(a,b)ω

≤ (aψe2βσ
ρπρaρ

+ bψe2βσ
ρπρbρ)e−(K′ξ2

2
)(aω+bω)

is bounded by

aψe2βσ
ρπρaρ

e−(K′ξ2
2

)aω
e−(K′ξ2

2
)bω + bψe2βσ

ρπρbρe−(K′ξ2
2

)bω . (4.25)

Since the function a 7→ aψe2βσ
ρπρaρ

e−(K ′ξ2/2)aω
is bounded on R

+ by a constant

only depending on α, ρ and K ′, and since Akρ−βkω ≤ −(β/2)kω for any k ≥ 1,

it follows that
∑

m′∈Mn,ℓ
A1(m

∗) ≤ C/n.

(2) Case ρ = 1/3. Here ρ = (1/2 − ρ/2)+, and ω = ρ. We choose ǫ1 =

ǫ1(m,m
′) such that 2βσρπρm∗ρ − K ′

E(f2(X1))ǫ1m
∗ρ = −2βσρπρm∗ρ. Since

K ′ = K1λ1/µ2, ǫ1 = ǫ1(m,m
′) = (4βσρπρµ2)/(K1λ1E(f2(X1))).
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(3) Case ρ > 1/3. Here ρ > (1/2 − ρ/2)+. According to (4.25), we choose

ǫ1 = ǫ1(m,m
′) such that 2βσρπρm∗ρ−K ′

E(f2(X1))ǫ1m
∗ω = −2βσρπρm∗ρ. Since

K ′ = K1λ1/µ2, ǫ1 = ǫ1(m,m
′) = (4βσρπρµ2)/(K1λ1E(f2(X1)))m

∗ρ−ω.

For all these choices,
∑

m′∈Mn,ℓ
A1(m

∗) ≤ C/n.

• Study of Wn,2(m′).
Let

H
2
ξ(m,m

′) =

(

n−1
n
∑

i=1
ξ2i

)

λ1Γ(m∗)

n
, (4.26)

with (n−1
∑n

i=1 ξ
2
i )λ1Γ(m)/n = (n−1

∑n
i=1 ξ

2
i −σ2

ξ )λ1Γ(m)/n+σ2
ξλ1Γ(m)/n. The

latter term is less than

(

n−1
n
∑

i=1

ξ2i − σ2
ξ

)

1I{n−1|
Pn

i=1(ξ2i −σ2
ξ )|≥σ2

ξ/2}
λ1Γ(m)

n
+

3σ2
ξλ1Γ(m)

(2n)
.

Consequently H
2
ξ(m,m

′) ≤ Hξ,1(m,m
′) + Hξ,2(m,m

′) where

Hξ,1(m,m
′) =

(

n−1
n
∑

i=1

ξ2i − σ2
ξ

)

1I{n−1|
Pn

i=1 ξ
2
i −σ2

ξ |≥σ2
ξ/2}

λ1Γ(m∗)
n

and Hξ,2(m,m
′) = 3σ2

ξλ1Γ(m∗)/(2n). By (4.12), E[supt∈Bm,m′ (0,1) |νn,2(t)|2 −
p2(m,m

′)]+ is bounded by

E

[

2 sup
t∈Bm,m′ (0,1)

(

n−1
n
∑

i=1

ξi(u
∗
t (Zi) − 〈t, g)〉

)2
− 4(1 + 2ǫ2)H

2
ξ(m,m

′)
]

+

+2‖g‖2
2E

[(

n−1
n
∑

i=1

ξi

)2]

+ E[4(1 + 2ǫ2)H
2
ξ(m,m

′) − p2(m,m
′)]+.

Hence, we obtain

E[ sup
t∈Bm,m′ (0,1)

|νn,2(t)|2 − p2(m,m
′)]+

≤ 2E

[

sup
t∈Bm,m′ (0,1)

(

n−1
n
∑

i=1

ξi(u
∗
t (Zi) − 〈t, g〉)

)2
− 2(1 + 2ǫ2)H

2
ξ(m,m

′)
]

+

+
2‖g‖2

2σ
2
ξ

n
+ 4(1 + 2ǫ2)E|Hξ,1(m,m

′)|
+E[4(1 + 2ǫ2)Hξ,2(m,m

′) − p2(m,m
′)]+. (4.27)
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Since we only consider m such that Γ(m)/n is bounded by some constant κ, we

get that for some p ≥ 2, E|Hξ,1(m,m
′)| is bounded by

κλ1E

[

| 1
n

n
∑

i=1

ξ2i − σ2
ξ |1I{n−1|

Pn
i=1(ξ

2
i −σ2

ξ )|≥σ2
ξ/2}

]

≤
κλ12

p−1
E

[

|n−1
n
∑

i=1
ξ2i − σ2

ξ |p
]

σ
2(p−1)
ξ

.

According to Rosenthal’s inequality (see Rosenthal (1970)), we find that, for

σpξ,p := E(|ξ|p), σ2
ξ,2 = σ2

ξ ,

E

∣

∣

∣
n−1

n
∑

i=1

ξ2i − σ2
ξ

∣

∣

∣

p
≤ C ′(p)

(

σ2p
ξ,2pn

1−p + σ2p
ξ,4n

− p
2

)

.

Note that, α > 1/2 since f∗ε in L2(R). Therefore |Mn,ℓ| ≤
√
n. The choice

p = 3 leads to
∑

m′∈Mn,ℓ
E|Hξ,1(m,m

′)| ≤ C(σξ,6, σξ)/n. The last term in (4.27)

vanishes as soon as

p2(m,m
′) = 4(1 + 2ǫ2)Hξ,2(m,m

′) =
6(1 + 2ǫ2)λ1σ

2
ξΓ(m∗)

n
. (4.28)

With this choice for p2(m,m
′), (4.27) leads to

E

[

sup
t∈Bm,m̂ℓ

(0,1)
|νn,2(t)|2 − p2(m, m̂ℓ)

]

+

≤ 2
∑

m′∈Mn,ℓ

E

[

sup
t∈Bm,m′ (0,1)

(

n−1
n
∑

i=1

ξi(u
∗
t (Zi) − 〈t, g〉)

)2

−2(1 + 2ǫ2)H
2
ξ(m,m

′)
]

+
+

2‖g‖2
2σ

2
ξ

n
+

4C(1 + 2ǫ2)

n
. (4.29)

To deal with the right-hand side of (4.29), we apply the following lemma.

Lemma 4.2. Under the assumptions of Theorem 3.1, if E|ξ1|6 < ∞, then for

some given ǫ2 > 0:

∑

m′∈Mn,ℓ

E

[

sup
t∈Bm,m′ (0,1)

( 1

n

n
∑

i=1

ξi(u
∗
t (Zi) − 〈t, g〉

)2
− 2(1 + 2ǫ2)H

2
ξ(m,m

′)
]

+

≤K1

{

∑

m′∈Mn,ℓ

[σ2
ξµ2Γ2(m

∗)

n
exp

(

−K1ǫ2
λ1Γ(m∗)
µ2Γ2(m∗)

)]

+
(

1+
ln4(n)√

n

) 1

n

}

, (4.30)

where µ2 and Γ2(m) are defined by (3.13) and (4.18), and K1 is a constant

depending on the moments of ξ. The constant µ2 can be replaced by λ2(‖fZ‖2)

where λ2 is defined by (4.19) and fZ denotes the density of Z.
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In analogy with (4.23), set

A2(m
∗) =

K1σ
2
ξµ2Γ2(m

∗)

n
exp

(

− κ2ǫ2
λ1

µ2
m∗( 1

2
− ρ

2
)+
)

. (4.31)

With (4.28), (4.15) and (4.30), we find, for Wn,2 (see (4.13)),

E(Wn,2(m̂ℓ)) ≤ K
∑

m′∈Mn,ℓ

A2(m
∗) +

C(1+ln(n)6

n )

n
+
K ′

n
.

Now
∑

m′∈Mn,ℓ
A2(m

∗) is bounded as is the analogous sum
∑

m′∈Mn,ℓ
A1(m

∗)

with ǫ2 = ǫ1 = 1/2 if 0 ≤ ρ < 1/3, and ǫ1(m,m
′) replaced by ǫ2 = ǫ2(m,m

′) =

E(f2(X1))ǫ1(m,m
′), when ρ≥1/3, that is ǫ2(m,m

′)=(4βσρπρµ2)/(K1λ1)m
∗ρ−ω.

These choices ensure that
∑

m′∈Mn,ℓ
A2(m

∗) is less than C/n. As announced in

(4.13), we take

pℓ(m,m
′) = 2p1(m,m

′) + 2p2(m,m
′)

= 4
[

(1 + 2ǫ1(m,m
′))E(f2(X1)) + 3(1 + 2ǫ2(m,m

′))σ2
ξ

]λ1Γ(m∗)
n

.

More precisely, if 0 ≤ ρ < 1/3,

pℓ(m,m
′) =

24E(Y 2
1 )λ1Γ(m∗)
n

. (4.32)

If ρ ≥ 1/3,

pℓ(m,m
′) = 4

[

3E(Y 2
1 ) +

32βσρπρµ2m
∗ρ−ω

k1λ1

]λ1Γ(m∗)
n

. (4.33)

Consequently if 0 ≤ ρ < 1/3, we take penℓ(m) = κE(Y 2
1 )λ1Γ(m)/n. If ρ ≥ 1/3 we

take penℓ(m) = κ[E(Y 2
1 )+βσρπρµ2m

ρ−ω/k1λ1]λ1Γ(m)/n, where κ is a universal

constant. Note that for ρ = 1/3, ρ− ω = 0 and both penalties have same order.

4.4. Proof of Lemma 4.2

We work conditionally on σ(ξi, i = 1, · · · , n), and we denote by Eξ and Pξ

the conditional expectation and probability given ξ1, . . . , ξn.

Conditioning on σ(ξi, i = 1, · · · , n), we apply Lemma 4.1 to the random

variables ft(ξi, Zi) = ξiu
∗
t (Zi), which are independent but non-identically dis-

tributed. Let Qj,k = E[u∗ϕm,j
(Z1)u

∗
ϕm,k

(−Z1)]. Straightforward calculations give

that, for Hξ(m,m
′) defined in (4.26), we have

E
2
ξ

[

sup
t∈Bm,m′ (0,1)

n−1
n
∑

i=1

ξi(u
∗
t (Zi) − 〈t, g〉)

]

≤ H
2
ξ(m,m

′).
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As in Comte et al. (2006), we write that
∑

j,k |Qj,k|2 ≤ ∆2(m, fZ) ≤ λ2(‖fZ‖2)

Γ2(m, ‖fε‖2) with ‖fZ‖2 ≤ ‖fε‖2, where ∆2(m, fZ) is defined by (4.17), λ2 by

(4.19), Γ2(m) by (4.18), µ2 by (3.13). We now write that

sup
t∈Bm,m′ (0,1)

(

n−1
n
∑

i=1

Varξ(ξiu
∗
t (Zi))

)

≤
(

n−1
n
∑

i=1

ξ2i

)

µ2Γ2(m
∗, ‖fε‖2),

and thus we take vξ(m,m
′) = (n−1

∑n
i=1 ξ

2
i )µ2Γ2(m

∗, ‖fε‖2). Lastly, since

sup
t∈Bm,m′ (0,1)

‖ft‖∞ ≤ 2 max
1≤i≤n

|ξi|
√

∆(m∗) ≤ 2 max
1≤i≤n

|ξi|
√

λ1Γ(m∗)

we take M1,ξ(m,m
′) = 2max1≤i≤n |ξi|

√

λ1Γ(m∗). Applying Lemma 4.1, we get

for some constants κ1, κ2, κ3,

Eξ

[

sup
t∈Bm,m′ (0,1)

ν2
n,1(t) − 2(1 + 2ǫ)H2

ξ

]

+

≤ κ1

[µ2Γ2(m
∗)

n2

(

n
∑

i=1

ξ2i

)

exp
{

− κ2ǫ
λ1Γ(m∗)
µ2Γ2(m∗)

}

+
λ1Γ(m∗)

n2

(

max
1≤i≤n

ξ2i

)

exp
{

− κ3

√
ǫC(ǫ)

√

∑n
i=1 ξ

2
i

maxi |ξi|
}]

.

To conclude we integrate the above expression with respect to the law of the ξi’s.

The first term σ2
ξµ2Γ2(m

∗) exp[−κ2ǫλ1Γ(m∗)/(µ2Γ2(m
∗)])/n has the same order

as in the study of Wn,1. The second term is bounded by

λ1Γ(m∗)
n2

E

[

(max |ξi|2) exp
(

− κ3

√
ǫC(ǫ)

√

∑n
i=1 ξ

2
i

max1≤i≤n |ξi|
)]

. (4.34)

Since we only consider m such that the penalty term is bounded, we have

Γ(m)/n ≤ K and the sum for m ∈ Mn,ℓ and |Mn,ℓ| ≤ n is less than

λ1E

[(

max
1≤i≤n

ξ2i

)

exp
(

− κ3

√
ǫC(ǫ)

√

∑n
i=1 ξ

2
i

max1≤i≤n |ξi|
)]

.

We need to prove that this is less than c/n for some constant c. We bound

maxi |ξi| by b on the set {maxi |ξi| ≤ b} and the exponential by 1 on the set

{maxi |ξi| ≥ b}. Setting µǫ = κ3
√
ǫC(ǫ), we get

E

[

max
1≤i≤n

ξ2i exp
(

− µǫ

√

∑n
i=1 ξ

2
i

max1≤i≤n ξ2i

)]
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≤ b2E

(

exp
(

− µǫ

√

∑n
i=1 ξ

2
i

b

)

)

+ E

(

max
1≤i≤n

ξ2i 1I{max1≤i≤n |ξi|≥b}
)

≤ b2

[

E

(

exp
(

− µǫ

√

nσ2
ξ

(2b2)

)

)

+ P

(∣

∣

∣

1

n

n
∑

i=1

ξ2i − σ2
ξ

∣

∣

∣
≥
σ2
ξ

2

)

]

+b−rE
(

max
1≤i≤n

|ξi|r+2
)

≤ b2e
−µǫ

√
nσξ

(
√

2b) + b22pσ−2p
ξ E

(
∣

∣

∣

1

n

n
∑

i=1

ξ2i − σ2
ξ

∣

∣

∣

p)

+ b−rE
(

max
1≤i≤n

|ξi|r+2
)

.

Again by Rosenthal’s inequality, we obtain

E

[

max
1≤i≤n

ξ2i exp
(

− µǫ

√

∑n
i=1 ξ

2
i

max1≤i≤n ξ2i

)]

≤ b2e
−µǫ

√
nσξ

(
√

2b) + b2
2p

σ2p
ξ

C(p)

np

[

nE(|ξ21 − σ2
ξ |p) + (nE(ξ41))

p
2

]

+ nE(|ξ1|r+2)b−r.

This is bounded by

b2e
−µǫ

√
nσξ

(
√

2b) + C ′(p)b2σ2p
ξ,2p2

pσ−2p
ξ [n1−p + n−

p
2 ] + nσr+2

ξ,r+2b
−r.

Since E|ξ1|6 <∞, we take p = 3, r = 4, b = σξ
√
ǫC(ǫ)κ3

√
n/[2

√
2(ln(n)−ln lnn)].

For any n ≥ 3, and for C1 and C2 constants depending on the moments of ξ, we

find that

E

{

(

max
1≤i≤n

ξ2i

)

exp
(

− κ3
√
ǫC(ǫ)

√

∑n
i=1 ξ

2
i

max1≤i≤n ξ2i

)

}

≤ C1√
n

+ C2

( ln4(n)√
n

) 1√
n
.

We sum (4.34) over Mn,ℓ with cardinality less than
√
n. The result is bounded

by C(1 + ln(n)4/
√
n)/n for some constant C, since Γ(m∗)/n is bounded.

4.5. Proof of Theorem 3.2

Consider the event Ẽn = {‖ g − g̃ ‖∞,A≤ g0/2}. Since g(x) ≥ g0 for all x in

A, g̃(x) ≥ g0/2 for all x in A on Ẽn as well. It follows that

E‖(f − f̃)1IA1IẼn
‖2
2 ≤ 8g−2

0 E‖ℓ̃− ℓ‖2
2 + 8‖ℓ‖2

∞,Ag
−4
0 E‖g̃ − g‖2

2, (4.35)

where ‖ℓ‖∞,A ≤ g1κ∞,G. Using that ‖f̃‖∞,A ≤ an, we obtain

E[‖(f − f̃)1IA1IẼc
n
‖2
2] ≤ 2(a2

n + ‖f‖2
∞,A)λ(A)P(Ẽcn), (4.36)
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where λ(A) =
∫

A dx. So, for m̂ℓ = m̂ℓ(n) and m̂g = m̂g(n), if anP(Ẽcn) = o(n−1),

(3.15) is proved by applying Theorem 3.1. We now come to the study of P(Ẽcn).

We write P(Ẽcn) = P(‖g − g̃‖∞,A > g0/2) = P(‖g − g
(n)
m̂g

+ g
(n)
m̂g

− g̃‖∞,A > g0/2)

and use the following lemma.

Lemma 4.3. Let g belongs to Sag,νg,Bg(κag ), defined by (3.1) with ag > 1/2.

Then for t ∈ Sm, ‖t‖∞ ≤ √
m‖t‖2 and ‖g − gm‖∞ ≤ (2π)−1√πm((πm)2 +

1)−ag/2 exp(−Bg|πm|rg )A1/2
g .

Hence, we get that (see the study of ‖ ℓm − ℓ
(n)
m ‖2

2),

‖g − g
(n)
m̂g

‖∞,A

≤ ‖g − gm̂g‖∞ + ‖gm̂g − g
(n)
m̂g

‖∞

≤
√

κ(κG + 1)m̂
3
2
g√

kn
+ (2π)−1

√

πm̂g((πm̂g)
2 + 1)−

ag
2 exp(−Bg|πm̂g|νg)A

1
2
g .

For g in Sag ,νg,Bg(κag ) with ag > 1/2 if rg = 0, since kn ≥ n3/2 and m̂g = o(
√
n)

for α > 1/2, ‖g − g
(n)
m̂g

‖∞ tends to zero. It follows that, for n large enough,

‖g − g
(n)
m̂g

‖∞,A ≤ g0/4 and consequently P(Ẽcn) ≤ P[‖g(n)
m̂g

− g̃‖∞ > g0/4]. Again,

by Lemma 4.3, since g
(n)
m̂g

− g̃ belongs to Sm̂g , we get that

P(Ẽcn) ≤ P

[

‖g(n)
m̂g

− g̃‖2 >
g0

(4
√

m̂g)

]

. (4.37)

Hence,

‖g(n)
m̂g

− g̃m̂g‖2
2 =

∑

|j|≤kn

(âm̂g ,j − am̂g,j)
2 =

∑

|j|≤kn

ν2
n,g(ϕm̂g ,j)

= sup
t∈Bm̂g (0,1)

ν2
n,g(t). (4.38)

Consequently,

P(Ẽcn) ≤ P

[

sup
t∈Bm̂g (0,1)

|νn,g(t)|≥
g0

(4
√

m̂g)

]

≤ sup
m∈Mn,ℓ

P

[

sup
t∈Bm̂g (0,1)

|νn,g(t)|≥
g0

(4
√
m)

]

≤
∑

m∈Mn,ℓ

P

[

sup
t∈Bm̂g (0,1)

|νn,g(t)| ≥
g0

(4
√
m)

]

.

We use Lemma 4.1 with M1 =
√
nH2, H ≥ E(supt∈Bm,m′ (0,1) |νn,g(t|)) and v ≥

supt∈Bm,m′ (0,1) Var(u∗t (Z1)). If we take λ = g0/(8
√
m) and ensure that 2H <
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g0/(8
√
m), then P[supt∈Bm(0,1) |νn,g(t)| ≥ g0/(4

√
m)] ≤ 3 exp[−K ′

1n(min[(mv)−1,

(M1
√
m)−1])]. This yields

P(Ẽcn) ≤ K
∑

m∈Mn,ℓ

{

exp
[

− K ′
1n

(M1
√
m)

]

+ exp
[

− K ′
1n

(mv)

]}

. (4.39)

Since we only consider m ≤ √
n,

an|Mn,ℓ| exp
[

− K ′
1n

(M1
√
m)

]

≤ an|Mn,ℓ| exp(−K”n
1
4 ) = o(n−1).

We also consider m such that Γ(m)/n tends to zero. Consequently, when ρ > 0,

πm≤(lnn/(2βσρ+1))1/ρ. We combine this with v≤(πm)2α+1−ρ exp(2βσρπρmρ)

and obtain the bound an|Mn,ℓ| exp(−K ′
1n/(mv)) = o(1/n).

When ρ = 0, v = µ1(πm)2α+1/2. Since πm ≤ (n/ ln(n))1/(2α+1) ≤ n1/(2α+1),

we get that

exp
(

− K ′
1n

(mv)

)

≤ exp
(

− K”n

(m2α+ 3
2 )

)

≤ exp
(

−K”n
1

(4(α+1))

)

= o(n−1).

To control
√
mH, the worst case is ρ = 0. In that case, for πm≤(n/ ln(n))1/(2α+2),

we get that
√
mH≤1/

√

ln(n), which tends to zero. Therefore
√
mH≤1/

√

ln(n)

is bounded by g0/8 for n large enough. We conclude that anP(Ẽcn) = o(1/n).

The result follows by the inequalities (4.35) and (4.36).

Proof of Lemma 4.3. For t ∈ Sm, t(x) =
∑

j∈Z
〈t, ϕm,j〉ϕm,j(x) and |t(x)|2 ≤

∑

j∈Z
|〈t, ϕm,j〉|2

∑

j∈Z
|(ϕ∗

m,j)
∗(−x)|2/(2π)2. By Parseval’s Formula,

∑

j∈Z

|〈t, ϕm,j〉|2
∑

j∈Z

|(ϕ∗
m,j)

∗(−x)|2
(2π)2

= ‖t‖2
2m

∫

ϕ∗(u)2du
(2π)

= m‖t‖2
2.

Let b be such that 1/2 < b < ag. Since ‖g−gm‖∞ ≤ (2π)−1
∫

|x|≥πm |g∗(x)|dx,
we get that

‖g − gm‖∞
≤ (2π)−1((πm)2 + 1)−

(ag−b)

2 e−Bg |πm|rg

∫

|x|≥πm
|g∗(x)|(x2 + 1)

(ag−b)

2 eBg|x|rg
dx

and so

1

2π
((πm)2 + 1)−

(ag−b)

2 exp(−Bg|πm|rg )κ
1
2
ag

√

∫

|x|≥πm
(x2 + 1)−bdx

≤ (2π)−1((πm)2 + 1)−
(ag−b)

2 exp(−Bg|πm|rg )κ
1
2
ag (πm)

1
2
−b
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≤ (2π)−1√πm((πm)2 + 1)−
ag
2 exp(−Bg|πm|rg )κ

1
2
ag .
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IUT de Paris V et Université d’Orsay, Laboratoire de Probabilités, Statistique et Modélisation,

UMR 8628, Bâtiment 425,91405 Orsay Cedex, France.

E-mail: Marie-Luce.Taupin@math.u-psud.fr

(Received October 2004; revised January 2006)


	1. Introduction
	2. Description of the estimators
	2.1. Projection spaces
	2.2. Constructing minimum contrast estimators for
	2.3. Minimum penalized contrast estimators for
	2.4. Estimation of

	3. Rates of convergence and adaptivity
	3.2. Risk bounds for the minimum contrast estimators
	3.3. Risk bounds of the minimum penalized contrast estimators

	4. Proofs
	4.2. Proof of Proposition 3.2
	4.3. Proof of Theorem 3.1
	4.4. Proof of Lemma 4.2
	4.5. Proof of Theorem 3.2


