
Statistica Sinica 17(2007), 1047-1064

ASYMPTOTIC NORMALITY UNDER TWO-PHASE

SAMPLING DESIGNS

Jiahua Chen and J. N. K. Rao

University of British Columbia and Carleton University

Abstract: Large sample properties of statistical inferences in the context of finite

populations are harder to determine than in the i.i.d. case due to their dependence

jointly on the characteristics of the finite population and the sampling design em-

ployed. There have been many discussions on special inference procedures under

special sampling designs in the literature. General and comprehensive results are

still lacking. In this paper, we first present a surprising result on the weak law of

large numbers under simple random sampling design: the sampling mean is not

necessarily consistent for the population mean even if the population first absolute

moment is bounded by a constant not depending on the evolving population size.

Instead, a sufficient condition requires the boundedness of the (1 + δ)th absolute

population moment for some δ > 0. Based on this result, we prove asymptotic

normality of a class of estimators under two-phase sampling design. We show that

these estimators can typically be decomposed as a sum of two random variables

such that the first one is conditionally asymptotically normal and the second one

is asymptotically normal. A theoretical result is derived to combine these two

conclusions to prove the asymptotic normality of the estimators.

Key words and phrases: Asymptotic normality, non-response, PPS sampling, ratio

estimator, regression estimator, simple random sampling, stratified sampling, weak
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1. Introduction

Finite population parameters are functionals of characteristics of interest as-

sociated with sampling units in the finite population under consideration. The

fundamental problem in survey sampling is to make inferences on these param-

eters based on a sample selected according to a specified probability sampling

design from the finite population.

In the design based approach, inferences are made according to the probabil-

ity measure induced by the sampling design. The design specifies a probability

distribution on a collection of subsets of the finite population. Even in sim-

ple situations, the induced exact distribution of the relevant estimators can be

too complex to be determined analytically. Asymptotic theory provides a useful

alternative for making inferences.
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Some well known results on asymptotic normality of estimators include

Erdös and Rényi (1959), Hájek (1960) and Scott and Wu (1981) for simple ran-

dom sampling without replacement, Krewski and Rao (1981) and Bickel and

Freedman (1984) for stratified random sampling, and Hájek (1964) and Prášková

(1984) for unequal probability sampling without replacement For a review of

asymptotic results in survey sampling, see Sen (1988). Surprisingly, some fun-

damental problems, such as the weak law of large numbers, are not discussed

in depth in survey sampling. Asymptotic normality results for many commonly

used estimators under completely general sampling designs are still not available.

Large sample properties in finite population problems are obtained under a

special framework. We generally assume that both sample size and population

size increase to infinity as some index increases to infinity. Under this framework

and simple random sampling without replacement(SRS), one would expect the

sampling mean to be consistent for the population mean if the population mean

remains bounded by a constant. In Section 2, we show that this is not true.

Instead, a sufficient condition for the consistency of the sample mean is that the

(1 + δ)th population centralized absolute moment is bounded for some δ > 0.

In Section 3 we prove a central limit theorem. The result is particularly useful

in studying asymptotic properties related to two-phase sampling discussed in

subsequent sections.

In Section 4, we study the asymptotic normality of a class of estimators

for the population mean or total under a two-phase design with SRS in both

phases. We find that the estimators can be decomposed into a sum of two

random variables such that one is conditionally asymptotic normal, and the other

is asymptotically normal. This structure is then utilized to prove asymptotic

normality. In the rest of the paper, we discuss asymptotic normality under

variations of two-phase sampling, and under situations that can be viewed as two-

phase sampling. In all cases, asymptotic normality of the estimators is established

using the Section 3 result.

2. Weak Law of Large Numbers in SRS

Let X1, . . . ,Xn, . . . be a sequence of independent and identically distributed

(i.i.d.) random variables. It is well known that if E|X1| exists, n−1
∑n

i=1 Xi →
E(X1) almost surely. Although similar results are often taken for granted in the

context of finite populations, no such theorems, even week law of law of large

numbers, seem to be available in the sampling literature. In the case of SRS,

we prove a particularly useful weak law of large numbers under very general

conditions.

Suppose that {Y1, . . . , Yn} is a simple random sample drawn without replace-

ment from a finite population {y1, . . . , yN}, and that {X1, . . . ,Xn} is a simple
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random sample drawn with replacement from the same population. Thus, Xi,

i = 1, . . . , n, are i.i.d. random variables. Further, X1 and Y1 have the same

marginal distribution. If the finite population is fixed so that N is a constant,

then we must have n ≤ N . We consider the case when both n and N increase as

an index ν attached to n and N increases to ∞; for simplicity we suppress the

index ν. The corresponding asymptotic results are meaningful in the sense that

they provide guidelines in situations when both n and N are large.

In Lemma 1 below, we prove a convergence result for Y1, . . . , Yn by linking

them to X1, . . . ,Xn. Let ȲN = N−1
∑N

i=1 yi be the finite population mean.

Clearly, ȲN changes with ν in general. Without loss of generality we assume

that ȲN = 0.

Lemma 1. Let Y1, . . . , Yn be a simple random sample without replacement from

a finite population with population mean ȲN = 0. Suppose that n and N increase

to infinity as some index ν → ∞. Assume that nN−1
∑N

i=1 I(|yi| > n) = o(1) as

ν → ∞. Then n−1
∑n

i=1[Yi − E{YiI(|Yi| < n)}] → 0 in probability as ν → ∞.

Proof. Let Y ′
i = YiI(|Yi| ≤ n) be truncated versions of the random variables Yi.

Note that Y ′
i = Yi unless |Yi| > n. Hence,

P (

n
∑

i=1

Y ′
i 6=

n
∑

i=1

Yi) ≤
n
∑

i=1

P (Y ′
i 6= Yi)

= nN−1
N
∑

i=1

I(|yi| > n) = o(1).

Thus, we need only show n−1
∑n

i=1{Y ′
i − E(Y ′

i )} → 0 in probability as ν → ∞.

Define X ′
i = XiI(|Xi| ≤ n) as the mirror version of Y ′

i obtained from Xi.

Since {X ′
1, . . . ,X

′
n} is a simple random sample with replacement, we have

Var (
n
∑

i=1

Y ′
i ) = (1 − n

N
)Var (

n
∑

i=1

X ′
i) ≤ Var (

n
∑

i=1

X ′
i).

Following Chow and Teicher (1997, p.128),

Var (
n
∑

i=1

X ′
i) = nVar (X ′

1) ≤ nE(X ′
1)

2

≤ n
n
∑

j=1

j2{P (|X1| > j − 1) − P (|X1| > j)}

= n[P (|X1| > 0) − n2P (|X1| > n) +

n−1
∑

j=1

{(j + 1)2 − j2}P (|X1| > j)]
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≤ 3n{1 +
n−1
∑

j=1

jP (|X1| > j)} = o(n2),

noting that limn→∞ n−1
∑n−1

j=1 jP (|X1| > j) = limn→∞ nP (|X1| > n) = 0.

Hence, for all ǫ > 0,

P
{

n−1|
n
∑

i=1

(Y ′
i − EY ′

i )| ≥ ǫ
}

≤ Var (
∑n

i=1 Y ′
i )

n2ǫ2
= o(1).

That is, n−1
∑n

i=1(Y
′
i − EY ′

i ) → 0 in probability. This proves the result.

Surprisingly, for finite populations, the condition N−1
∑∞

i=1 |yi| < C < ∞
for some constant C not depending on the index ν is not sufficient.

Example. Assume that the nth finite population consists of copies of two values

n2/(1 − n2) and n2 such that P (Y1 = n2) = n−2 where Y1 is a random sample

from the population. It is seen that P (Y1 > n) = o(n−1) and E(Y1) = 0.

Further, E|Y1| = 2 < ∞. However, EY1I(|Y1| < n) = −1 for n ≥ 2. Hence,

n−1
∑n

i=1 Yi → −1 in probability instead of the population mean 0.

Clearly, this example is possible because the distribution of Y1 depends on ν

which is the nature of the triangle array: when ν = 10 the observations are drawn

from one finite population; when ν = 11 the observations are drawn from another

finite population. Thus, the former sample is not part of the latter sample.

Theorem 1. Assume the conditions of Lemma 1. A sufficient condition for

E{Y1I(|Y1| > n)} → 0 as n → ∞ in the finite population problem is that

N−1
∑N

i=1 |yi|1+δ ≤ C < ∞ for some constants δ > 0 and C, and the sample

mean is a consistent estimator of the population mean under this condition.

Proof. By the Cauchy inequality,

E{|Y1|I(|Y1| > n)} ≤ {E|Y1|1+δ}
1

1+δ {P (|Y1| > n)}
δ

1+δ .

By the moment condition, we have {E|Y1|1+δ}1/(1+δ) ≤ C1/(1+δ) < ∞ and we

have P (|Y1| > n) → 0 by the Markov inequality. Thus E{|Y1|I(|Y1| > n)} → 0.

This completes the proof.

It is a common belief that the sample variance based on a simple random

sample without replacement is a consistent estimator of the population variance.

Our result shows that this is not true in general unless the finite population

satisfies additional conditions, such as having finite (2 + δ)th moment.

Without assuming ȲN = 0, the condition in Theorem 1 should be replaced by

N−1
∑N

i=1 |yi − ȲN |1+δ ≤ C < ∞. Hence, if a finite population sequence satisfies
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this condition, then any finite population sequence obtained by an arbitrary

location shift still satisfies the condition.

3. Central Limit Theorem for Two-Phase Sampling

Estimators of the finite population means or totals in two-phase sampling

can often be decomposed into a sum of two random variables such that one

depends only on the first phase sample and finite population parameters, and

the other on the second phase design and the outcome of the first phase sample.

The following result is useful for studying their asymptotic properties.

Theorem 2. Let Un, Vn be two sequences of random variables and Bn be a

σ-algebra. Assume that

1. there exists σ1n > 0 such that σ−1
1n Vn → N(0, 1) in distribution as n → ∞,

and Vn is Bn measurable;

2. E{Un|Bn} = 0 and Var (Un|Bn) = σ2
2n such that

sup
t

|P (σ−1
2n Un ≤ t|Bn) − Φ(t)| = op(1), (1)

where Φ(t) is the cumulative distribution function of the standard normal ran-

dom variable;

3. γ2
n = σ2

1n/σ2
2n → γ2 in probability as n → ∞.

Then
Un + Vn

√

σ2
1n + σ2

2n

→ N(0, 1) (2)

in distribution as n → ∞.

Remark. The σ-algebra allows us to study the asymptotic normality of Un

by regarding Vn as a non-random constant. It is often taken as the σ-algebra

generated by a random variable or a random subset of the finite population in

the case of survey sampling.

Since cumulative distribution functions are monotone and bounded, and the

distribution of the standard normal random variable is continuous, Condition (1)

is equivalent to the condition that for each t, |P (σ−1
2n Un ≤ t|Bn) − Φ(t)| = op(1).

This result is often referred as Polya’s theorem (Schenker and Welsh (1988)).

Proof. Note that

P{(σ2
1n + σ2

2n)−
1

2 (Un + Vn) ≤ t} = P{Un ≤ t
√

σ2
1n + σ2

2n − Vn}

= E

{

P (σ−1
2n Un ≤ t

√

1 +
σ2

1n

σ2
2n

− σ−1
2n Vn|Bn)

}
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= E
{

Φ(t
√

1 + γ2
n − σ−1

2n Vn)
}

+ E[∆n(t)], (3)

where ∆n(t) = P (σ−1
2n Un ≤ t

√

1 + σ2
1n/σ2

2n −σ−1
2n Vn|Bn)−Φ(t

√

1 + γ2
n −σ−1

2n Vn).

By Condition 2, ∆n(t) = op(1) uniformly in t. Further, ∆n(t) is bounded, imply-

ing E∆n(t) = o(1). Let Zn = σ−1
1n Vn so by Condition 1, Zn → Z in distribution

for some standard normal random variable Z. Since Φ(·) is a bounded continuous

function, we have

E{Φ(t
√

1 + γ2
n − γnZn)} → E{Φ(t

√

1 + γ2 − γZ)},

For mathematical simplicity, let U be a standard normal random variable inde-

pendent of Z. We have

E{Φ(t
√

1 + γ2 − γZ)} = E{P (U ≤ t
√

1 + γ2 − γZ|Z}
= P (U + γZ ≤ t

√

1 + γ2) = Φ(t),

noting that U +γZ is a normal random variable with mean 0 and variance 1+γ2.

This completes the proof.

Our result is different from Lemma 1 of Schenker and Welsh (1988) or Nielsen

(2003). They require almost sure convergence in (1). In finite population prob-

lems, each sample is part of a triangular array. As we have seen in our Theorem

1, even a weak law of large numbers is difficult to establish in finite population

problems. Establishing almost sure convergence may require conditions on higher

order moments. In comparison, Condition (1) in Theorem 2 is more convenient

to verify in applications.

In most applications, the parameters in σ2
1n and σ2

2n are replaced by their

consistent estimators, resulting in studentized statistics. For simple random sam-

pling, Theorem 1 shows that consistent estimators are readily obtained by the

method of moments, under mild conditions.

4. Two-Phase Sampling: SRS in Both Phases

Assume there is a finite population consisting of N sampling units with

measurements (xi, yi) for i = 1, . . . , N . A two-phase sampling design with SRS

in both phases is as follows.

Phase 1. A simple random sample S1 of size n1 without replacement is drawn

from {1, 2, . . . , N} and all the xi, i ∈ S1 are obtained.

Phase 2. A simple random sample S of size n without replacement from S1 is

drawn and all the yi, i ∈ S are obtained.

A two-phase design is often used when the measurement of the characteristic

of interest, y, is more expensive than the measurement of an auxiliary variable,
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x, related to y. In this design, covariate x is measured on a large sample of the

population in the first phase. In the second phase, the characteristic of interest

y is measured on a random subset of the sample in the first phase (see Cochran

(1977, Chap. 12)). We discuss the asymptotic normality of a number of two-

phase estimators of the population mean Ȳ in this section, under simple random
sample without replacement in both phases. First, we specify some assumptions.

4.1. Finite population assumptions

In order for the asymptotic results to be applicable, the finite population and

the corresponding design must satisfy certain conditions. Due to marked differ-

ences in sampling designs, we only attempt to specify some general conditions

that are required for a two-phase design with SRS in both phases.

We assume that each unit in the population has a pair of characteristics

(xi, yi), i = 1, . . . , N . Denote the finite population means, variances and the

covariance of x and y as

X̄ = N−1
N
∑

i=1

xi, Ȳ = N−1
N
∑

i=1

yi,

σ2
X = (N − 1)−1

N
∑

i=1

(xi − X̄)2, σ2
Y = (N − 1)−1

N
∑

i=1

(yi − Ȳ )2,

σXY = (N − 1)−1
N
∑

i=1

(xi − X̄)(yi − Ȳ ).

Let ρXY = σXY /(σXσY ) be the correlation coefficient. The population totals are

denoted as X = NX̄ and Y = NȲ .

As before, we assume that there exists an index ν such that when ν increases,

the finite population evolves, but some conditions remain satisfied. Let us denote

Pν = {(xi, yi) : i = 1, 2, . . . , Nν}. Suppressing index ν we list some commonly

assumed conditions on Pν .

A1. N → ∞ as ν → ∞.

A2. There exist some generic constants M1,M2, δ > 0 and ρ0, such

that for all ν,

0 < M1 ≤ σ2
X , σ2

Y ≤ M2 < ∞,

νx = N−1
N
∑

i=1

|xi|2+δ ≤ M2 < ∞,

νy = N−1
N
∑

i=1

|yi|2+δ ≤ M2 < ∞,
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|ρXY | ≤ ρ0 < 1.

A3. As ν → ∞, σ2
Y /σ2

X and σXY /σ2
X converge to some constants.

The above conditions require that the finite population consists of units

whose characteristics are not severely skewed, and that X and Y are not perfectly

correlated. The former makes the normal approximation hold with reasonable

precision, while the latter makes the problem under consideration non-trivial. Ac-

cording to Bickel and Freedman (1984), under simple random sampling without

replacement (SRS), sample means are asymptotically normal under Conditions

A1−A3 if n and N − n both tend to infinity as ν → ∞.

Let the sample means in the second phase be x̄=n−1
∑

i∈Sxi, ȳ=n−1
∑

i∈Syi,

and in the first phase be x̄1 = n−1
1

∑

i∈S1
xi, ȳ1 = n−1

1

∑

i∈S1
yi. Also, denote the

sample variance and covariances as

s2
1x = (n1 − 1)−1

∑

i∈S1

(xi − x̄1)
2; s2

1y = (n1 − 1)−1
∑

i∈S1

(yi − ȳ1)
2,

s2
x = (n − 1)−1

∑

i∈S

(xi − x̄)2; s2
y = (n − 1)−1

∑

i∈S

(yi − ȳ)2,

s1xy = (n − 1)−1
∑

i∈S1

(xi − x̄1)(yi − ȳ1); sxy = (n − 1)−1
∑

i∈S

(xi − x̄)(yi − ȳ).

4.2. Regression estimator

The finite population mean Ȳ can be estimated by a difference estimator

given by
ˆ̄Yb = ȳ + b(x̄1 − x̄). (4)

Note that for any given constant b, we have E[ ˆ̄Yb] = Ȳ . An optimal choice b

minimizes the variance. Recalling that S is a sample from S1, we have

E{Var ( ˆ̄Yb|S1)} = (n−1 − n−1
1 )E(s2

1y + b2s2
1x − 2bs1xy)

= (n−1 − n−1
1 )(σ2

Y + b2σ2
X − 2bσXY ). (5)

In addition Var {E( ˆ̄Yb|S1)} = Var (ȳ1) = (n−1
1 − N−1)σ2

Y , so Var ( ˆ̄Yb) = (n−1 −
N−1)σ2

Y + (n−1 − n−1
1 )(b2σ2

X − 2bσXY ), see Cochran (1977, p.239). The optimal

choice of b is given by bopt = σXY /σ2
X . In applications, b is chosen as b̂ = sxy/s

2
x,

the least squares regression coefficient of yi on xi computed from the second

phase sample. When b is estimated, the variance formula is an approximation.

Under Conditions A1−A3, b̂ − bopt = sxy/s
2
x − bopt = op(1) by Theorem 1.

Hence, the asymptotic normality of ˆ̄Yb to be developed remains valid when b is

replaced by b̂. We thus assume that b is a pre-chosen non-random constant.
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We use the following decomposition of ˆ̄Yb − Ȳ :

ˆ̄Yb − Ȳ = {(ȳ − ȳ1) + b(x̄1 − x̄)} + (ȳ1 − Ȳ ) =: Un + Vn, (6)

where Un = (ȳ − ȳ1) + b(x̄1 − x̄) and Vn = ȳ1 − Ȳ . Both Un and Vn are asymp-

totically normal after rescaling. The asymptotic normality of their sum can be

thus established by verifying conditions in Theorem 2.

Lemma 2. Let Un be defined as in (6) and denote σ2
2n = Var (Un|S1) = (n−1 −

n−1
1 )(s2

1y − 2bs1xy + b2s2
1x). Under Conditions A1−A3, we have supt |P (σ−1

2n Un ≤
t|S1) − Φ(t)| = op(1) as n and n1 − n tend to infinity.

Proof. For each ν, a subset S1 = S1,ν is obtained in the first phase sample.

Given S1, {(xi, yi), i ∈ S}ν is a simple random sample without replacement from

the finite population {(xi, yi), i ∈ S1}. Thus we are considering a sequence of

finite populations P1,ν = {(xi, yi), i ∈ S1} for the purpose of asymptotics. Given

any sequence of finite populations P1,ν , ν = 1, 2, . . ., satisfying Conditions A1−A3

for some M1, M2 and δ, and under the condition that n and n1 − n both tend

to infinity, we have (Bickel and Freedman (1984)) σ−1
2n Un → N(0, 1). Applying

Polya’s theorem, this result implies that

sup
t

|P (σ−1
2n Un ≤ t|S1) − Φ(t)| → 0 (7)

for this specified realization of the first phase sample.

Since P1,ν is random there is a small chance that the first phase sample forms

a population sequence which does not satisfy Conditions A1−A3. However, this

chance tends to zero as ν → ∞ as seen in following. Note that the original

population sequence Pν , ν = 1, 2, . . ., from which the first phase sample is drawn,

satisfies Conditions A1−A3. By the weak law of large numbers for SRS proved

in Theorem 1 and the condition that νx and νy are finite for some δ > 0, we have

that for each 0 < δ′ < δ,

n−1
1

∑

i∈S1

|xi|2+δ′−N−1
N
∑

i=1

|xi|2+δ′ → 0, n−1
1

∑

i∈S1

|yi|2+δ′−N−1
N
∑

i=1

|xi|2+δ′ → 0,

in probability. Thus, with probability tending to one, n−1
1

∑

i∈S1
|xi|2+δ′ and

n−1
1

∑

i∈S1
|yi|2+δ′ are asymptotically bounded. The random population sequence

P1,ν hence satisfies Conditions A1−A3 with the generic constant δ′. That is, (7)

holds in probability which implies that as a random variable, supt |P (σ−1
2n Un ≤

t|S1) − Φ(t)| → 0 in probability.

We now use this result to obtain the asymptotic normality of the regression

estimator ˆ̄Yb.
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Theorem 3. Assume n, n1−n and N −n1 tend to infinity as ν goes to infinity,

and Conditions A1−A3 hold for the finite population. We have σ−1
n ( ˆ̄Yb − Ȳ ) →

N(0, 1) in distribution where σ2
n = (n−1 − n−1

1 )(s2
1y + b2s2

1x + 2bs1xy) + (n−1
1 −

N−1)σ2
Y .

Proof. Let Un = {(ȳ − ȳ1) + b(x̄ − x̄1)}, Vn = ȳ1 − Ȳ . Also, let σ2
2n = (n−1 −

n−1
1 )(s2

1y + b2s2
1x + 2bs1xy) and σ2

1n = (n−1
1 − N−1)σ2

Y . By the weak law of large

numbers and Condition A3, σ2
2n/σ2

1n converges to a constant. Thus Un, Vn satisfy

the conditions of Theorem 2, and the asymptotic normality of ˆ̄Yb is proved.

The condition that n1−n tends to infinity is not restrictive. If n1−n remains

finite, then Un converges to zero faster than Vn. Thus, the limiting distribution

of ˆ̄Yb is determined by that of Vn. Further, one motivation of the two-phase

sampling plan is to save the cost through a large sample size difference. Hence

large n1 − n is also a practical requirement.

In applications, σ2
1n depends on unknown population parameters, and σ2

2n

is a function of the first phase sample which includes the unobserved y-values.

Thus, both of them have to be estimated before making statistical inference.

The asymptotic result, is not affected when σ2
1n + σ2

2n is replaced by a consistent

estimator, in view of Slutsky’s theorem.

4.3. Ratio estimator

When a proportional relationship is suspected between the response variable

y and the covariate x, a ratio estimator might be used for estimating the popu-

lation mean, Ȳ . In this case, the ratio estimator of Ȳ is given by ˆ̄YR = (ȳ/x̄)x̄1.

Let B = Ȳ /X̄ . In this section, we assume that the limits of Ȳ and X̄ both exist

as ν → ∞ in addition to A1−A3.

We have

ˆ̄YR − Ȳ =
x̄1(ȳ − Ȳ ) + Ȳ (x̄1 − x̄)

x̄

=
X̄(ȳ1 − Ȳ ) + X̄(ȳ − ȳ1) + Ȳ (x̄1 − x̄)

X̄
+ op(n

− 1

2 ). (8)

Let Vn = ȳ1 − Ȳ and Un = (ȳ− ȳ1)−B(x̄− x̄1). Similar to case of the regression

estimator, Vn is asymptotically normal since ȳ1 is the sample mean of a simple

random sample without replacement. Its asymptotic variance is given by σ2
1n =

(n−1
1 − N−1)σ2

Y .

Further, given the sample from the first phase, X̄ȳ− Ȳ x̄ can be regarded the

sample mean of a simple random sample without replacement from a population

consist of X̄yi − Ȳ xi, i ∈ S1. Similar to Section 4.1, the finite population formed

by the sample units in S1 satisfies Conditions A1−A3 in probability. Thus,
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with probability converging to 1, Un is conditionally asymptotically normal with
conditional asymptotic variance σ2

2n = (n−1 − n−1
1 ){s2

y − 2Bsxy + B2s2
x}. Thus,

Vn and Un defined above satisfy the conditions of Theorem 2. Consequently,

( ˆ̄YR − Ȳ )/
√

σ2
1n + σ2

2n is asymptotically N(0, 1).
In this section, we assumed that the sampling schemes in Phases 1 and 2 are

both simple random sampling without replacement. Our technique, however, is
applicable to situations in which Un is conditionally asymptotically normal and
Vn is asymptotically normal. Some of those cases will be discussed further in
Sections 5 and 6.

5. Two-Phase Sampling: PPS Sampling in the First Phase

Consider the case where each population unit has three characteristics (x, y,
z), with “sizes” z1, . . . , zN assumed to be known. A sample S1 of size n1 is
drawn in the first phase with probability proportional to size (PPS) zi, with
replacement, and the x-values of sampled units are observed. A simple random
sample S of size n from S1 is then drawn without replacement in the second
phase and y-values are observed.

Unbiased estimators of the population means X̄ and Ȳ based on the first
phase sample are the usual PPS estimators

ˆ̄X1 = n−1
1

∑

i∈S1

xi

Npi
and ˆ̄Y1 = n−1

1

∑

i∈S1

yi

Npi
,

where pi = zi/Z and Z is the known population total of z. As usual, ˆ̄Y1 is
unknown to us. Let

ˆ̄X =
1

n

∑

i∈S

xi

Npi
, and ˆ̄Y =

1

n

∑

i∈S

yi

Npi

be the estimators of ˆ̄X1 and ˆ̄Y1 based on the second phase sample. The difference

estimator of the population mean Ȳ is given by ˆ̄Yb = ˆ̄Y + b( ˆ̄X1 − ˆ̄X) for some
constant b. The optimal choice of b can be estimated from the sample. As before,
we regard b as a constant for the purpose of asymptotics.

To establish the asymptotic normality of ˆ̄Yb under the current design, the
finite population must satisfy an additional condition. Let Λ and Γ be two
random variables such that

P

(

Λ =
yi

Npi
,Γ =

xi

Npi

)

= pi

for i = 1, . . . , N . Hence E(Λ) = Ȳ , E(Γ) = X̄, and

σ2
λ = Var (Λ) =

N
∑

i=1

pi(
yi

Npi
− Ȳ )2, σ2

γ = Var (Γ) =

N
∑

i=1

pi(
xi

Npi
− X̄)2,
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σλ,γ = Cov(Λ,Γ) =

N
∑

i=1

pi(
xi

Npi
− X̄)(

yi

Npi
− Ȳ ).

We now state conditions regarding (Λ,Γ).

A4. There exist generic constants M1,M2, δ > 0 and ρ0 such that, for
all ν,

0 < M1 ≤ σ2
λ, σ2

γ < M2 < ∞; |σλ,γ |/σλσγ ≤ ρ0 < 1,

E|Λ|2+δ < M2, E|Γ|2+δ < M2.

A5. As ν → ∞, σ2
λ/σ2

γ and σ2
λ,γ/σ2

γ converge to some constants.

Assume A1, A4 and A5. Decompose ˆ̄Yb − Ȳ as ˆ̄Yb − Ȳ = { ˆ̄Y − ˆ̄Y1 + b( ˆ̄X1 −
ˆ̄X)} + ( ˆ̄Y1 − Ȳ ). Let Un = ˆ̄Y − ˆ̄Y1 + b( ˆ̄X1 − ˆ̄X) and Vn = ˆ̄Y1 − Ȳ . Due to PPS

with replacement, we can write ˆ̄Y1 = n−1
1

∑n1

i=1 Λi with Λi being i.i.d. copies of
Λ. Applying central limit theory for triangular arrays of i.i.d. random variables

(Serfling (1980, p.32)), Vn = ˆ̄Y1 − Ȳ is asymptotically normal after standardiza-
tion. The asymptotic variance of Vn is given by σ2

1n = n−1
1 σ2

λ.
We now examine the asymptotic distribution of Un. Define γi = (Npi)

−1(yi−
bxi) for i ∈ S1, µγ = n−1

1

∑

i∈S1
γi and σ2

γ = (n1 − 1)−1
∑

i∈S1
(γi − µγ)2. Given

S1, Un is the mean of a simple random sample without replacement of size n
from the population {γi : i ∈ S1}. Due to Condition A4, {γi : i ∈ S1} satisfies
Conditions A1−A3 with probability approaching 1. Hence, Un is conditionally
asymptotically normal with asymptotic variance σ2

2n = (n−1 − n−1
1 )σ2

γ .
In conclusion, our decomposition of Un and Vn meets the conditions of The-

orem 2. Thus, ( ˆ̄Yb − Ȳ )/
√

σ2
1n + σ2

2n asymptotically N(0, 1).

6. Two-Phase Sampling: PPS in the Second Phase

We now consider PPS sampling in the second phase. Here the first phase is a
simple random sample without replacement of size n1 and x-values are measured.
The second phase sample is drawn with probability proportional to xi and with
replacement from the first phase sample.

Let p1i = xi/
∑

j∈S1
xj = xi/(n1x̄1) where x̄1 is the first-phase sample mean

of x. Then the population mean Ȳ is estimated by

ˆ̄Y =
1

n1

{ 1

n

∑

i∈S

yi

p1i

}

=
x̄1

n

∑

i∈S

yi

xi
.

We now seek a decomposition. It is readily seen that

E

[

∑

i∈S

yi

xi
|S1

]

=
nȳ1

x̄1
,
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where ȳ1 is the mean of the first phase sample. Hence, we decompose ˆ̄Y − Ȳ as

ˆ̄Y − Ȳ = x̄1

(

1

n

∑

i∈S

yi

xi
− ȳ1

x̄1

)

+ ȳ1 − Ȳ .

Let

Un = x̄1

(

1

n

∑

i∈S

yi

xi
− ȳ1

x̄1

)

=
1

n

∑

i∈S

(

yi

xi
x̄1 − ȳ1

)

and Vn = ȳ1 − Ȳ . Clearly, Vn is asymptotically normal with asymptotic variance

σ2
1n = (n−1

1 − N−1)σ2
Y .

Given S1, Un is a mean of independent and identically distributed random

variables. Thus, it is asymptotically normal under mild conditions similar to A4,

which we omit for the sake of space. Its conditional asymptotic variance is given

by

σ2
2n =

1

n

∑

i∈S1

p1i

(

yi

xi
x̄1 − ȳ1

)2

.

Consequently, ( ˆ̄Y − Ȳ )/
√

σ2
1n + σ2

2n is asymptotically N(0, 1).

7. Two-Phase Sampling: Stratification in the Second Phase

In some applications, a simple random sample without replacement of size

n1 is obtained in the first phase. The sample is then stratified into L strata

according to values of auxiliary variable x collected in the first phase. Let n1h

be the number of first-phase sample units in each stratum h; h = 1, . . . , L.

We assume that when n1 → ∞, P (min1≤h≤L n1h ≥ 2) → 1. This will be the

case when L is fixed and the proportion in each stratum remains non-zero. We

also assume that each stratum, when regarded as a finite population, satisfies

Conditions A1−A3 with common constants M1,M2 and δ.

Let nh = n1hνh for some fixed νh ∈ (0, 1). In the second phase of sampling,

a simple random sample without replacement of size nh is drawn from the hth

stratum (Rao (1973)). Note that if nh is not an integer, we can round it off

without affecting the asymptotic properties as n1h → ∞. Let wh = n1h/n1 be

the first-phase strata weights. The two-phase sampling estimator is then given

by the stratified mean ˆ̄Yst =
∑L

h=1 whȳh where ȳh are the second phase stratum

sample means. The estimator itself does not depend on the true stratum weights

which are likely unknown in this application.

We assume that the strata are predetermined at the population level ac-

cording to x and the same stratification rule is used for each first-phase sample.

For stratum h, let Nh be the population stratum size, Wh = Nh/N be the
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population stratum weight and ȳ1h be the first-phase stratum sample mean. Let-

ting the first phase sample mean ȳ1 =
∑L

h=1 whȳ1h, we can write ˆ̄Yst − Ȳ =
∑L

h=1 wh(ȳh − ȳ1h) + (ȳ1 − Ȳ ).

Let Vn = ȳ1 − Ȳ . Its asymptotic normality is readily verified under Con-

ditions A1−A3. The corresponding asymptotic variance is given by σ2
1n =

(n−1
1 − N−1)σ2

Y . Similarly, let Un =
∑L

h=1 wh(ȳh − ȳ1h). Given the first-phase

sample, which can be regarded as the corresponding finite population, Un is the

stratified (and centered) sample mean.

To establish asymptotic normality, we assume that L remains a constant

as the finite population evolves. Further, we assume that each stratum, when

regarded as a finite population itself, satisfies Conditions A1−A3. Consequently,

the first phase sample forms a stratified finite population with every stratum

satisfying A1−A3 in probability. Thus, using the asymptotic normality result

in Bickel and Freedman (1984), Un is conditionally asymptotic normal with con-

ditional asymptotic variance σ2
2n =

∑L
h=1(n

−1
h − n−1

1h )w2
hs2

1h, with s2
1h being the

first phase sample variance of y-values in stratum h.

Since not all first phase sample y-values are observed, σ2
2n has to be replaced

in practice by a consistent estimator based on the second-phase sample. One

such choice is to replace s2
1h in σ2

2n by the second phase sample variance s2
2h

which is consistent by the weak law of large numbers according to Theorem 1.

Regardless of the choice, using the conclusion of Theorem 2, we conclude that

(ȳst − Ȳ )/
√

σ2
1n + σ2

2n is asymptotically N(0, 1).

8. Two-Phase Sampling in Other Contexts

In some situations, a two-phase sampling design is not used, but the analysis

resembles that of two-phase sampling. We discuss two cases here.

8.1. SRS with uniform non-response

Non-response occurs in most survey applications. If the probability of re-

sponse is uniform over the finite population, then the sample mean of respon-

dents is a good estimator of the population mean. Otherwise, more sophisticated

techniques are needed to avoid severe bias of the estimator and to obtain approx-

imately unbiased variance estimators.

In simple situations, we can view a sample containing non-response as a

sample from a two-phase sampling design. The first phase sample contains all

the sampling units according to simple random sampling. A Bernoulli experiment

is then performed so that only a subset of the sample have their response variable

measured.

Let yi, i ∈ s be the response values of the units in the sample. Let zi be the

response indicator taking the value 1 or 0 according as the unit is a respondent
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or not. The sample mean of the respondents is given by

ȳr =

∑

i∈s ziyi
∑

i∈s zi
.

We assume that zi, i ∈ s are independent of each other and that the response

mechanism is uniform, i.e., P (zi = 1) = p with 0 < p < 1.

Notice that under Conditions A1−A3,

ȳr − Ȳ =
1

np

∑

i∈s

zi(yi − ȳ) + (ȳ − Ȳ ) + op(n
− 1

2 ),

where ȳ is the sample mean for the full sample s. Clearly, ȳ − Ȳ is asymptoti-

cally normal with asymptotic variance n−1(1− f)σ2
Y where σ2

Y is the population

variance and f is the sample fraction. We now establish the asymptotic normal-

ity of
√

n(ȳr − Ȳ ) through that of n−1/2
∑

i∈s zi(yi − ȳ). Given the sample s,

n−1/2
∑

i∈s zis
−1
y (yi − ȳ) is a sum of independent random variables with mean

0, where s2
y is the full sample variance. It satisfies the Lindberg condition when

∑

i∈s |yi−Ȳ |2+δ/(ns2+δ
y ) → 0 for some δ > 0. By the law of large numbers proved

in Theorem 2 and Conditions A1−A3, this condition is satisfied in probability.

Thus, we have
∣

∣

∣
P [{np(1 − p)}−1/2

∑

i∈s

zis
−1
y (yi − Ȳ ) ≤ x|s] − Φ(x)

∣

∣

∣
→ 0

in probability.

Using Theorem 1, we conclude that ȳr − Ȳ is asymptotically normal with

mean 0 and asymptotic variance n−1(p−1 − f)σ2
Y , noting that s2

y converges in

probability to σ2
Y . A consistent estimator of the asymptotic variance is given by

(r−1 − N−1)s2
2y, where r is the number of respondents in the sample and s2

2y is

the sample variance of the respondents.

8.2. Sampling on two occasions

In practice, the same population is often sampled on two or more occasions

and the same study variable is measured on each occasion. In this section, we

confine attention to sampling on two occasions and denote the study variable as

x and y for occasions 1 and 2, respectively. A simple random sample without

replacement of size n1 is drawn from the finite population on the first occasion

and x-values are obtained. On the second occasion, we take a simple random

sample without replacement of size nm from the first occasion sample, where

nm = n1 − nu. An additional sample of size nu is obtained without replacement

from the rest of the finite population. The samples are then combined to estimate

the population mean.
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Let ȳm and ȳu be sample means from the second occasion sample correspond-

ing to the matched and un-matched sample units. Let x̄1 be the sample mean of

x from the first occasion sample, and x̄m be the sample mean of x based on the

matched sample.

The population mean Ȳ on the second occasion is then estimated by a linear

combination of the regression estimator ȳm + b(x̄1 − x̄) and the unmatched mean

ȳu:

ˆ̄Y = α{ȳm + b(x̄1 − x̄m)} + (1 − α)ȳu,

for some constants α and b. The optimal choice of b is the regression coefficient of

y on x. The optimal choice of α minimizes the variance of the linear combination.

When either or both of them are replaced by consistent estimators, the limiting

distribution of ˆ̄Y will not be affected. Thus, for simplicity we assume that α and

b are both non-random constants.

Under the above sampling design, the finite population is divided into two

strata: The first stratum consists of all units in the first occasion sample, and the

remaining units in the population form the second stratum. Hence, stratification

here is random.

Among the terms in ˆ̄Y , x̄1 is completely defined by the first occasion sample.

A decomposition of ˆ̄Y − Ȳ is given by

ˆ̄Y − Ȳ = α(ȳ1 − Ȳ ) + [α{(ȳm − ȳ1) + b(x̄1 − x̄m)} + (1 − α)(ȳu − Ȳ )],

where ȳ1 is the unobserved mean of y for the first occasion sample. Let Vn =

α(ȳ1 − Ȳ ) and Un = α{(ȳm − ȳ1) + b(x̄1 − x̄m)} + (1 − α)(ȳu − Ȳ ). Since

ȳ1 is the sample mean of a simple random sample drawn without replacement,

it follows that Vn is asymptotically normal with mean 0 and variance σ2
1n =

(n−1
1 − N−1)α2σ2

Y .

We next consider the asymptotic normality of Un given the first occasion

sample. Note that Un is a linear combination of two conditionally independent

terms given the first occasion sample. The first term is the usual difference

estimator based on the matched sample. Thus, it is conditionally asymptotically

normal. The second term is equivalent to a sample mean from a simple random

sample without replacement and hence it is also conditionally asymptotically

normal. With the conditional independence, we arrive at the conclusion that Un

is conditionally asymptotically normal with asymptotic conditional variance

σ2
2n = α2(n−1

m −n−1
1 ){s2

1y−2bs1xy + b2s2
1x} + (1 − α)2{n−1

u −(N − n1)
−1}s2

y,
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where s2
1y, s1xy and s2

1x are sample variances and covariance based on the first

occasion sample, and s2
y is population variance of y when the first phase sam-

ple is excluded. By Theorem 2 again, we claim that ( ˆ̄Y − Ȳ )/
√

σ2
1n + σ2

2n is

asymptotically N(0, 1).

9. Conclusion

In this paper, the asymptotic normality of estimators of totals and means

under several two-phase sampling designs is studied. The case of simple random

sampling with uniform non-response is also considered. Extensions to imputation

for missing item values under a two-phase sampling approach will be reported in

a separate paper.
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