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Abstract: In this paper we investigate (d+1)-point D-optimal designs for dth degree

polynomial regression with weight function ω(x) ≥ 0 on the interval [a, b]. We

propose an algebraic approach and provide a numerical method for the construction

of optimal designs. Thus if ω′(x)/ω(x) is a rational function and the information

of whether the optimal support contains the boundary points a and b is available,

the problem of constructing (d + 1)-point D-optimal designs can be transformed

into a differential equation problem. One is led to a matrix that includes a finite

number of auxiliary unknown constants, and the differentiation can be solved from

a system of polynomial equations in those constants. Moreover, the (d + 1)-point

D-optimal interior support points are the zeros of a polynomial whose coefficients

can be computed from a linear system.
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1. Introduction

This paper is concerned with the weighted polynomial regression model of

degree d

E[Y |x] = βT f(x),
(1.1)

Var(Y |x) =
σ2

ω(x)
,

where β = (β0, . . . , βd)
T denotes the vector of unknown parameters, f(x) =

(1, x, . . . , xd)T the vector of monomials up to order d, σ2 a fixed unknown pa-

rameter, ω(x) ≥ 0 a weight function on the design interval I = [a, b] ⊆ R. For

each x ∈ I, a random variable Y with mean βT f(x) and variance σ2/ω(x) > 0

can be observed. The model (1.1) is widely used in situations where the response
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is curvilinear, because complex nonlinear relationships can be adequately mod-

eled by polynomials over reasonably small range of the x’s, and the variance of an

observation depends on the explanatory variable in the hypothesized model, as

is the case with some econometric models. For example, if the response variable

is household expenditure and one explanatory variable is household income, then

the variance of the observations may be a function of household income.

An approximate design ξ is a probability measure on I with finite support.

The Fisher information matrix of a design ξ for the parameters β can be expressed

as

M(ξ) =

∫

I
ω(x)f(x)fT (x) dξ(x).

A design ξ∗ is called D-optimal for β if ξ∗ maximizes the determinant of the

information matrix M(ξ) among the set of all designs on I. Note that a D-

optimal design minimizes the volume of the ellipsoid of concentration for β. Addi-

tional background reading on approximate design theory can be found in Fedorov

(1972), Silvey (1980), Atkinson and Donev (1992) and Pukelsheim (1993).

Weighted polynomial regression models have played a central role in the

development of optimal design theory. Smith (1918) was the first to study op-

timal design problems for polynomial regression. Guest (1958) and Hoel (1958)

obtained the G- and D-optimal designs for polynomial regression. The pioneer-

ing work of Kiefer and Wolfowitz (1960) established the famous D-Equivalence

Theorem, a powerful tool to verify whether an approximate design is D-optimal.

Karlin and Studden (1966) were the first to investigate the D-optimal designs for

weighted polynomial regression. The problem of determining D-optimal designs

for weighted polynomial regression models has also been extensively investigated

by several authors (see Huang, Chang and Wong (1995), Chang and Lin (1997),

Imhof, Krafft and Schaefer (1998), Dette, Haines and Imhof (1999), Fang (2002),

Antille, Dette and Weinberg (2003) and Chang (2005), among many others).

The theory of differential equations is a powerful tool for determining the D-

optimal designs for weighted polynomial regression. It makes use of the Stieltjes-

Schur approach to maximizing a discriminant via an appropriate differential equa-

tion, and leads directly to a solution of the D-optimal design problem (see, for

example, Szegö (1975, p.140).

This approach was first used by Guest (1958) to determine the G-optimal

designs for polynomial regression models. In the following period numerous au-

thors employed the technique to derive D-optimal designs for (1.1) with spe-

cific weight functions (see Karlin and Studden (1966), Huang, Chang and Wong

(1995), Chang and Lin (1997), Imhof, Krafft and Schaefer (1998), Dette, Haines

and Imhof (1999) and Antille, Dette and Weinberg (2003), among many others).
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Chang (2005) proves that for the model (1.1) if ω′(x)/ω(x) is a rational

function and the length of design interval b−a is sufficiently small, then D-optimal

designs are equally supported at d+1 points, and that the problem of constructing

D-optimal support points can be transformed into a differential equation problem

leading us to a certain matrix including a finite number of auxiliary unknown

constants. Those auxiliary unknown constants can be approximated by Taylor

polynomials whose coefficients can be computed recursively. Then the interior

support points of the optimal design coincide with the zeros of a polynomial whose

coefficients can be obtained from a linear system. These computations can be

done very efficiently. The disadvantage of this approach is that in general, it is

not applicable when b − a is not close to zero.

The number of the approximate D-optimal support points for the model

(1.1) must be at least d + 1; when optimal designs are found from the class of

designs supported on d+1 points, they are called minimally-supported D-optimal

designs. These designs are optimal within the class of (d + 1)-point designs and

may or may not be optimal within the class of all designs, depending on the weight

functions and the design interval. Most of the D-optimal designs for the model

(1.1) in the literature are minimally supported, for example, see Theorem 2.3.2

of Fedorov (1972) and Lemma 2.1 of Chang (2005). In such a case, (d + 1)-point

D-optimal designs are also the approximate D-optimal designs. Furthermore, the

D-optimality of a (d+1)-point design can be checked by D-Equivalence Theorem

(Kiefer and Wolfowitz (1960)). The theorem states that a design ξ∗ is D-optimal

for β if and only if

d(x, ξ∗) = ω(x)fT (x)M−1(ξ∗)f(x) ≤ d + 1 (1.2)

for all x ∈ I, henceforth abbreviated as the DET. Here equality holds if x belongs

to the support of ξ∗.

The purpose of this paper is to extend the differential equation approach of

Chang (2005) for (1.1), with ω′(x)/ω(x) a rational function on I, to determine

the (d + 1)-point D-optimal design for β. In contrast to Chang (2005), who

finds numerical D-optimal designs by using Taylor approximation, we adopt an

algebraic method to solve polynomial equations for the auxiliary unknown con-

stants used in Chang (2005). Our choice of the class of weight function is useful

since it is quite flexible and includes many well-known weight functions in design

literature (Fedorov (1972)).

This paper is organized in the following way. In Section 2, the differential

equation for the (d + 1)-point D-optimal support points for (1.1) is derived. An

algebraic method for solving polynomial equations to compute the D-optimal
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support points is given in Section 3. In Section 4, several examples are presented.

Finally, proofs of lemmas in Sections 2 are deferred to the Appendix.

2. The Differential Equation

There are two requirements for using the Stieltjes-Schur approach (Chang

(2005)). The first is that the weight function must satisfy

ω′(x)

ω(x)
=

p(x)

q(x)
=

pmxm + pm−1x
m−1 + · · · + p0

qnxn + qn−1xn−1 + · · · + q0
(2.1)

is a rational function on I, where the greatest common divisor of p(x) and q(x)

is 1, and q(x) 6= 0 for all x ∈ I. Chang (2005) then shows that ω(x) has the form
(

∏

i

|ri(x)|αi

)

er(x)+
P

i βi tan−1 γi(x+δi), (2.2)

where ri(x) is either a monic linear or quadratic real polynomial, r(x) is a rational

function and αi, βi, γi, δi are real.

One also requires the knowledge of whether the boundary points a and b

are optimal support points. This information for (1.1) exists for many com-

monly used weight functions, by an argument using DET. For example, the

optimal support contains the two boundary points if ω(x) = (1 + x2)−n and

n = 0, 1, . . . , d − 1, I = [a, b] or d > n, n(n − 1) · · · (n − d) > 0, I = [−b, b] (see

Dette, Haines and Imhof (1999)).

Let ξd+1 denote a design supported at xi with weight wi > 0, i = 0, . . . , d,
∑d

i=0 wi = 1. Then detM(ξd+1) = (
∏d

i=0 wi)(
∏d

i=0 ω(xi)
∏

0≤i<j≤d(xi − xj)
2)

by a direct application of the Vandermonde determinant formula. Thus the

maximum of det M(ξd+1) occurs only if
∏d

i=0 wi attains its maximum of 1/(d +

1)d+1 when w0 = · · · = wd = 1/(d + 1). Then the approximate (d + 1)-point

D-optimal design for (1.1) has the form

ξd+1 =

{

x0 x1 · · · xd
1

(d+1)
1

(d+1) · · · 1
(d+1)

}

,

where a ≤ x0 < · · · < xd ≤ b (see Pukelsheim (1993), Corollary 8.12). The

following lemma characterizes some situations that the information on x0 = a or

x0 > a and xd = b or xd < b is available. The proof is deferred to an Appendix.

Lemma 2.1. Consider the (d + 1)-point D-optimal design ξ∗d+1 for dth degree

polynomial regression with weight function ω(x) on [a, b]. Then

(i) if ω(a) = 0, then x0 > a, and if ω(b) = 0, then xd < b;

(ii) if a is a global maximum point of ω(x) on [a, b], then x0 = a, and if b a global

maximum point of ω(x) on [a, b], then xd = b;
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(iii) if g(a) > 0, then x0 > a, and if g(b) < 0, then xd < b, where g(x) =

p(x)/q(x) + s′′(x)/s′(x) with s(x) =
∏d

i=0(x − xi).

For example, if ω(x) = x/(1+x) and I = [0, b], b > 0, then Lemma 2.1 shows

x0 > 0 and xd = b. This weight function is considered by Imhof, Krafft and

Schaefer (1998). Note that the conditions of (i) and (ii) are more easier verified

and applicable than those of (iii).

Let u(x) =
∏

a<xi<b(x−xi) =
∑ℓ

i=0 uix
i, uℓ = 1, denote a monic polynomial

of degree ℓ which has the ℓ interior support points of design ξ∗d+1 as its zeros.

Then

ℓ =







d − 1 if x0 = a and xd = b,

d if x0 = a and xd < b, or x0 > a and xd = b,

d + 1 if x0 > a and xd < b.

Let δz(x) = x − z if z ∈ {x0, xd}, δz(x) = 0 otherwise. Then the following

result characterizes the supporting polynomial u(x) via a second order differential

equation. For this, let deg(h) denote the degree of a polynomial h.

Lemma 2.2. Consider the (d + 1)-point D-optimal design ξ∗d+1 for dth degree

polynomial regression with weight function ω(x) on [a, b]. Then the following

second-order nonhomogeneous linear differential equation with polynomial coeffi-

cients holds with

L(x)=δa(x)δb(x)q(x)u′′(x)+
[

δa(x)δb(x)p(x)+2(δa(x)δb(x))′q(x)
]

u′(x). (2.3)

One has the second-order nonhomogeneous linear equation,

L(x) = v(x)u(x), (2.4)

where v(x) = vkx
k +vk−1x

k−1 + · · ·+v0, k = max(m−1, n−2)+deg(δa(x)δb(x)),

v0, v1, . . . , vk−1 are unknown real constants, and vk is the leading coefficient of

L(x).

3. Algebraic Method

In this section we present an algebraic method to solve for the zeros of u(x),

a polynomial solution of (2.4). Substituting u(x) =
∑ℓ

i=0 uix
i into (2.4) and

comparing the coefficients on both sides, we obtain an equation in matrix-vector

form

(1, x, . . . , xk+ℓ−1)Au = 0, (3.1)
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where A = (aij) = D − V, u = (u0, u1, . . . , uℓ)
T , and

D =













































































0 d0,1 d0,2 0 · · · · · · · · · 0

0 d1,1 d1,2 d1,3
. . .

...

0 d2,1 d2,2 d2,3
. . .

. . .
...

...
...

. . .
. . .

. . .
. . .

. . .
...

...
...

. . . dℓ−3,ℓ−2 dℓ−3,ℓ−1 0
...
...

. . . dℓ−2,ℓ−1 dℓ−2,ℓ
...
...

. . . dℓ−1,ℓ
...
...

...

0 dk,1
...

0 dk+1,1 dk+1,2
...

0 0 dk+2,2 dk+2,3
...

...
...

. . .
. . .

. . .
. . .

. . .
...

...
...

. . .
. . . dk+ℓ−3,ℓ−2 dk+ℓ−3,ℓ−1 dk+ℓ−3,ℓ

...
...

. . . dk+ℓ−2,ℓ−2 dk+ℓ−2,ℓ−1 dk+ℓ−2,ℓ

0 0 · · · · · · · · · 0 dk+ℓ−1,ℓ−1 dk+ℓ−1,ℓ













































































(k+ℓ)×(ℓ+1)

(3.2)

is a band matrix with bandwidth k + 3, di,j is the coefficient of xiuj in L(x), and

V is a lower band matrix which has the bandwidth k + 1 and constant values

along negative-sloping diagonals of the form

V =





































v0 0 · · · · · · 0

v1 v0
. . . 0

...
. . .

. . .
. . .

...

vk−1
. . .

. . . 0

vk vk−1
. . . v0

0 vk
. . . v1

...
. . .

. . .
. . .

...

0 · · · 0 vk vk−1





































(k+ℓ)×(ℓ+1)

. (3.3)

Note that the first column of D is a zero vector since u0 does not appear in L(x).
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The ijth entry of D can be expressed as

di,j =



























































j[(j − 1)(qi−j − (a + b)qi−j+1 + abqi−j+2) + pi−j−1 − (a + b)pi−j

+abpi−j+1+4qi−j−2(a + b)qi−j+1]

if δa(x) = x − a and δb(x) = x − b,

j[(j − 1)(qi−j+1 − aqi−j+2) + pi−j − api−j+1 + 2qi−j+1]

if δa(x) = x − a and δb(x) = 1,

j[(j − 1)(qi−j+1 − bqi−j+2) + pi−j − bpi−j+1 + 2qi−j+1]

if δa(x) = 1 and δb(x) = x − b,

j[(j − 1)qi−j+2 + pi−j+1] if δa(x) = 1 and δb(x) = 1,

(3.4)

where pi = 0 if i 6∈ {0, . . . ,m} and qi = 0 if i 6∈ {0, . . . , n}.
Now the D-optimal design problem is reduced to determining the k + ℓ

unknown constants v = (v0, . . . , vk−1)
T and {u0, . . . , uℓ−1} such that

Au = (0, . . . , 0)T , (3.5)

by (2.4) and (3.1). This implies that u is orthogonal to the row space of A. Note

that the entries of A are functions of v only. Moreover, the number of rows of A is

greater than or equal to the number of columns of A. The solution of D-optimal

design can be done in three steps. At the first step, we compute v if k ≥ 1;

the second step is to find u; the third step determines the zeros of u(x). If v is

available, then it is clear that u can be calculated by a backward-substitution

process since A is a special band matrix. The most difficult task is to solve for

v.

Here is an algebraic method to compute v for k ≥ 1. If there exists a

real solution for u in (3.5), then the following
(k+ℓ
ℓ+1

)

polynomial equations in k

variables, v0, . . . , vk−1,

det A(i1, . . . , iℓ+1) = 0, 1 ≤ i1 < · · · < iℓ+1 ≤ k + ℓ, (3.6)

must have real solutions, where

A(i1, . . . , iℓ+1) =











ai11 ai12 · · · ai1(ℓ+1)

ai21 ai22 · · · ai2(ℓ+1)
...

...
. . .

...

aiℓ+11 aiℓ+12 · · · aiℓ+1(ℓ+1)











denotes a square matrix composed of the i1, . . . , iℓ+1th rows of A. Then v can

be easily determined by standard numerical software, for example the function

NSolve in Mathematica (Wolfram (2003)). For the system of polynomial equa-

tions, one constructs a Gröbner basis for detA(i1, . . . , iℓ+1), 1 ≤ i1 < · · · < iℓ+1 ≤
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k + ℓ, to find the solutions (Geddes, Czapor and Labahn (1992, Chap. 10)). The

complexity of computing v depends on both k and ℓ.

Now we can derive the approximate (d + 1)-point D-optimal designs as fol-

lows. Suppose there exist r real solutions of v in (3.6), say Vi, i = 1, . . . , r. Then

substitute each Vi into (3.5) and find the solution of u by a backward-substitution

process, say Ui. For each Ui determine the zeros of u(x), say Zi. Then select

those Zi’s which have all points lying between a and b, say Sj, j = 1, . . . , s. If

the endpoint a or b is a D-optimal point, then add it to each Sj . Let ξj denote

a (d + 1)-point design with equal mass on Sj . Then the design among ξj whose

information matrix has the largest determinant is the (d+1)-point D-optimal de-

sign. The following algorithm generates the approximate (d+1)-point D-optimal

designs for dth degree polynomial regression with weight function ω(x) on the

interval [a, b], where ω′(x)/ω(x) = p(x)/q(x) is a rational function.

Algebraic Algorithm

INPUT regression function f(x); endpoints a, b; weight function ω(x); knowl-

edge of whether x0 = a and xd = b.

OUTPUT (d + 1)-point D-optimal designs.

Step 1 Set p/q = ω′(x)/ω(x), and compute k by Lemma 2.2 and A by (3.1).

Step 2 With k ≥ 1, do Steps 3−8.

Step 3 Find all real solutions of v in (3.6), say Vi, i = 1, . . . , r.

Step 4 Substitute each Vi into (3.5) and find solution of u, say Ui.

Step 5 Substitute each Ui into u(x) and find the zeros of u(x), say Zi.

Step 6 Select those Zi’s which have all points lying between a and b, say

Sj, j = 1, . . . , s.

Step 7 Compute det M(ξj) where ξj is a (d + 1)-point design with equal

masses on Sj and boundary points (if necessary).

Step 8 Output ξ(s) where det M(ξ(s)) = max1≤j≤s detM(ξj) and stop.

Step 9 Solve u at (3.5), then find the zeros S of u(x).

Step 10 Output ξ where ξ is a (d + 1)-point design with equal mass on S and

endpoints (if necessary) and stop.

Lemma 2.1 only provides a partial solution on answering whether the end-

point a or b belong to the support of the (d + 1)-point D-optimal designs. For

those cases in which knowledge of whether x0 = a and xd = b is unavailable, we

can still use the same algorithm to find the optimal designs. Run the algorithm

with (i) x0 = a and xd = b; (ii) x0 = a and xd < b; (iii) x0 > a and xd = b; (iv)
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x0 > a and xd < b. Then select a design from four outputs with the information
matrix having largest determinant.

4. Examples

Take ω(x) = 1 + x2 on I = [a, b]. We construct the (d + 1)-point D-optimal
designs ξ∗d+1 for three cases: (i) I = [−b, b], (ii) I = [0, b] with b > 0, and (iii)
I = [5, 10]. The designs ξ∗d+1 will be compared with the approximate D-optimal
designs η∗d as b varies. From Lemma 2.1 (ii), xd = −x0 = b if I = [−b, b], and
xd = b if I = [0, b] and I = [5, 10].

This model with I = [−b, b] is investigated by Dette, Haines and Imhof
(1999) and Chang (2005). Dette, Haines and Imhof (1999), Lemma 2.1 (iii)
shows that if d is odd, then the approximate D-optimal designs put equal masses
at symmetric d+1 points including ±b, and the closed-form for the optimal sup-
port points is unavailable. Chang (2005) studies the radius of convergence for
Taylor polynomials of auxiliary parameters via a differential equation approach.

Case (i): I = [−b, b], b > 0.
First suppose d = 1. The preceding results yield that the unique two-point

D-optimal design is ξ∗2 =

{

−b b

1/2 1/2

}

. It is easy to see that the weighted variance

function

d(x, ξ∗2) = ω(x)fT (x)M−1(ξ∗2)f(x) =

(

1 + x2
) (

b2 + x2
)

b2 + b4
≤ 2, for all x ∈ I,

since d(x, ξ∗2) is a convex function with minimum 1/(1 + b2) at x = 0, and
maximum 2 at x = ±b. Then the design ξ∗2 is an approximate D-optimal η∗1 by
DET.

In the quadratic regression model, the three-point D-optimal design has the

form ξ∗3 =

{

−b x1 b

1/3 1/3 1/3

}

. Then p(x) = 2x and q(x) = x2+1. The second-order

differential equation in (2.4) reduces to 2x(3x2−b2+2)u1 = (6x2+v1x+v0)(u1x+
u0), with u1 = 1. We can rewrite the above equation in the matrix-vector form
(1, x, x2)A(u0, u1)

T = 0, where

A =





−v0 0

−v1 4 − 2b2 − v0

−6 −v1



 .

The three polynomial equations for v0 and v1 in (3.6) are

v0(v0 + 2b2 − 4) = 0,

v0v1 = 0,

v2
1 − 6(v0 + 2b2 − 4) = 0.
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The system has one real solution (v0, v1) = (4 − 2b2, 0) if 0 < b ≤ τ
(2)
2 , where

τ
(2)
2 =

√
2, and three real solutions (v0, v1) = (0,±

√

12(b2 − 2)), (4 − 2b2, 0) if

b >
√

2. Then u0 = 0 if 0 < b ≤
√

2, and u0 = ±
√

12(b2 − 2)/6, 0 if b >
√

2.

Thus it is straightforward to verify that there is a unique optimal design ξ∗3 with

x1 = 0 if 0 < b ≤
√

2, and two optimal designs ξ∗3 with x1 = ±
√

12(b2 − 2)/6 if

b >
√

2.

Numerical results show that ξ∗3 equals the unique approximate D-optimal

design η∗2 if b ≤ τ
(1)
2 , where τ

(1)
2 ≈ 1.35014. If b > τ

(1)
2 , then the design η∗2 is

unique and has the form

{

−b −x2 x2 b

1/2 − w w w 1/2 − w

}

. This interesting relation-

ship between ξ∗3 and η∗2 is supported by Figure 1 which is a plot of the weighted

variance function d(x, ξ∗3) for some b.

Figure 1. Weighted variance function d(x, ξ∗3 ) on [−b, b] for b = 1.30, 1.33, . . . , 1.54.

In general the optimal design ξ∗d+1 can be computed from the algebraic al-

gorithm presented in Section 3. For the case d of odd, ξ∗d+1 is the same as η∗d
and has symmetric support points including boundary points ±b. For the case

of d even, the structure of ξ∗d+1 depends on b and is more complicated. Every

ξ∗d+1 has symmetric support points including boundary points ±b and the origin

0 if b ≤ τ
(2)
d , whereas ξ∗d+1 has asymmetric support points including boundary

points ±b and excluding the origin if b > τ
(2)
d . On the other hand, η∗d is the same

as ξ∗d+1 if b ≤ τ
(1)
d , whereas η∗d is a symmetric design with d + 2 support points

including boundary points ±b if b > τ
(1)
d . Table 1 lists the critical values of τ

(1)
d
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and τ
(2)
d for even d. Note that τ

(1)
d < τ

(2)
d , and that τ

(i)
d increases as d increases

for i = 1, 2.

Table 1. Critical values of τ
(1)
d

and τ
(2)
d

.

d 2 4 6 8 10

τ
(1)
d

1.350 2.108 2.788 3.429 4.045

τ
(2)
d

√
2 2.312 3.150 3.963 4.760

Let d(x, ξ∗d+1) = ω(x)fT (x)M−1(ξ∗d+1)f(x). The values of τ
(1)
d and τ

(2)
d are

the solutions of the system of nonlinear equations














d
dxd(x, ξ∗d+1)

∣

∣

x=xi
= 0, for i = 1, 2, . . . , d − 1,

d2

dx2 d(x, ξ∗d+1)
∣

∣

∣

x=xd/2

= 0,

x0 = −b, xd = b,

and the constrained optimization problem

Maximize b

subject to ∂
∂xi

|M(ξ∗d+1)| = 0, for i = 1, 2, . . . , d − 1,

xd/2 = 0, x0 = −b, xd = b,

respectively. The following well known formulae are very useful in reducing the

preceding computational task

d(x, ξ∗d+1) = (d + 1)ω(x)
d
∑

i=0

1

ω(xi)





∏

j 6=i

x − xj

xi − xj





2

, and

|M(ξ∗d+1)| =
1

(d + 1)d+1

(

d
∏

i=0

ω(xi)

)





∏

0≤i<j≤d

(xi − xj)
2



 .

Given two designs ξ1 and ξ2, we can measure the D-efficiency of design ξ1

with respect to design ξ2 by

ed =

(

det M(ξ1)

det M(ξ2)

) 1
(d+1)

(Pukelsheim (1993)). The graph of the D-efficiency e∗d of the design ξ∗d+1 with

respect to the design η∗d for 0 < b ≤ 10 and d = 2, 4, 6, is given in Figure 2. It

shows that e∗d decreases as b increases for any d even. It decreases quickly at

first, then converges to a limit. All efficiencies are greater than 0.978.
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Figure 2. Graph of e∗
d

for 0 < b < 10 and d = 2, 4, 6.

Case (ii): I = [0, b], b > 0.

For d = 1, the unique two-point D-optimal design is ξ∗2 =

{

0 b

1/2 1/2

}

if

b ≤ σ
(2)
1 , and ξ∗2 =

{

x0 b

1/2 1/2

}

if b > σ
(2)
1 , where σ

(2)
1 =

√

(11 + 5
√

5)/2 ≈

3.33019. If b > σ
(2)
1 , then the second-order differential equation in (2.4) can

expressed as 2(2x2 − bx + 1)u1 = (4x + v0)(u1x + u0). We can rewrite this as

(1, x, x2)A(u0, u1)
T = 0, where

A =

(

−v0 2

−4 −2b − v0

)

.

There is only a polynomial equation v2
0 +2bv0 +8 = 0 in (3.6) which has two real

solutions v0 = −b ±
√

b2 − 8. Then it yields that u0 = −(v0 + 2b)/4. Thus

it is straightforward to verify that there is a unique optimal design ξ∗2 with

x1 = (b +
√

b2 − 8)/4. Figure 2 is a plot of the weighted variance function

d(x, ξ∗2).

Figure 3. Weighted variance function d(x, ξ∗2 ) on [0, b] for b = 3.1, 3.2, . . . , 3.8.



MINIMALLY-SUPPORTED D-OPTIMAL DESIGNS 1017

Numerical results show that η∗2 is equally supported at boundary points 0 and

b if b≤σ
(1)
1 , where σ

(1)
1 ≈3.2318. The design η∗2 has the form

{

0 x1 b

w0 w1 1−w0−w1

}

if σ
(1)
1 < b < σ

(3)
1 , and

{

x0 b

1/2 1/2

}

if b ≥ σ
(3)
1 , where σ

(3)
1 ≈ 3.41828. Note that

ξ∗2 equals η∗1 if 0 < b ≤ σ
(1)
1 or b ≥ σ

(3)
1 .

In general the optimal support of ξ∗d+1 includes boundary points 0 and b if

0 < b ≤ σ
(2)
d , and only right boundary point v if b > σ

(2)
d . The approximate

D-optimal design η∗d has the form
{

0 x1 · · · b
1

d+1
1

d+1 · · · 1
d+1

}

if 0 < b ≤ σ
(1)
d ,

{

0 x1 · · · xd b

w0 w1 · · · wd 1 − w0 − · · · − wd

}

if σ
(1)
d < b < σ

(3)
d ,

{

x0 x1 · · · b
1

d+1
1

d+1 · · · 1
d+1

}

if b ≥ σ
(3)
d .

Table 2 lists the critical values of σ
(1)
d , σ

(2)
d and σ

(3)
d . The designs ξ∗d+1 coincide

with η∗d if 0 < b ≤ σ
(1)
d or b ≥ σ

(3)
d . Note that σ

(1)
d < σ

(2)
d < σ

(3)
d , and σ

(2)
d is

closer to σ
(3)
d than to σ

(1)
d . The value of σ

(i)
d is an increasing function in d for

i = 1, 2, 3.

Table 2. Critical values of σ
(1)
d

, σ
(2)
d

and σ
(3)
d

.

d 1 2 3 4 5

σ
(1)
d

3.232 6.888 11.695 17.685 24.864

σ
(2)
d

3.330 7.273 12.472 18.953 26.723

σ
(3)
d

3.418 7.604 13.132 20.029 28.298

The values of σ
(1)
d , σ

(2)
d and σ

(3)
d are the solutions of the system of nonlinear

equations


















d
dxd(x, ξ∗d+1)

∣

∣

x=xi
= 0, for i = 1, . . . , d − 1,

d
dxd(x, ξ∗d+1)

∣

∣

x=x∗
= 0,

d(x, ξ∗d+1)
∣

∣

x=x∗
= d + 1,

x0 = a, xd = b,

the constrained optimization problem maxx0=0,xd=b |M(ξ∗d+1)| = maxx0>0,xd=b

|M(ξ∗d+1)|, and










d
dxd(x, ξ∗d+1)

∣

∣

x=xi
= 0, for i = 0, . . . , d − 1,

d(x, ξ∗d+1)
∣

∣

x=0
= d + 1,

xd = b,
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respectively.

The graph of the D-efficiency function e∗d of the design ξ∗d+1 with respect to

the design η∗d for σ
(1)
d ≤ b ≤ σ

(3)
d and d = 1, 2, 3, is given in Figure 4.It shows

that e∗d decreases on (σ
(1)
d , σ

(2)
d ) and increases on (σ

(2)
d , σ

(3)
d ). All efficiencies are

greater than 0.994.

Figure 4. Graph of e∗
d

for σ
(1)
d

≤ b ≤ σ
(3)
d

and d = 1, 2, 3.

Case (iii): I = [5, 10].

If d = 1, the D-optimal design is equally supported at two boundary points

5 and 10 which can be shown by DET. Numerical results show that x0 = 5

and xd = 10. Table 3 lists the optimal support of ξ∗d+1. All of them are also

approximate D-optimal supports.

Table 3. D-optimal support of ξ∗
d+1 on [5, 10].

d x0 x1 x2 x3 x4 x5

1 5 10
2 5 7.881 10

3 5 6.636 8.804 10

4 5 6.010 7.703 9.235 10

5 5 5.675 6.950 8.353 9.469 10

5. Remark

All computations discussed in this article were performed on an IBM com-

patible PC with Intel Pentium 4 CPU 3GHz and RAM 1GB, using the numeric

and symbolic computational software Mathematica 5.0 (Wolfram (2003)). The

CPU time to compute a ξ∗d+1 design for the model in Section 4 is within 5 seconds

if d ≤ 10 and within 25 seconds if d ≤ 20.

Appendix

A.1. Proof of Lemma 2.1

Case (i): If ω(a) = 0 and x0 = a, then M(ξ∗d+1) is singular, since its rank is

less than or equal to d. Thus ξ∗d+1 cannot be (d + 1)-point D-optimal. The same

argument holds for the case ω(b) = 0.
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Case (ii): Suppose that a is a global maximum point of ω(x) on [a, b]. Let

∆(x0, . . . , xd) = detM(ξ∗d+1). Then ∆(x0, . . . , xd) =
∏d

i=0 ω(xi)
∏

0≤i<j≤d(xi −
xj)

2/(d+1)d+1 by a direct application of the Vandermonde determinant formula.

Note that if x0 > a, then
∏d

j=1(x0 − xj)
2 <

∏d
j=1(a − xj)

2. Combining this fact

with ω(a) = maxx∈[a,b] ω(x) shows that ∆(x0, . . . , xd) < ∆(a, x1, . . . , xd). Thus

ξ∗d+1 cannot be (d + 1)-point D-optimal. The proof for the other case is similar.

Case (iii): If x0 = a, then h(x) = ∆(x, x1, . . . , xd) is decreasing on [a, a + ǫ]

for some ǫ > 0. It follows that

g(a) =
d

dx
log h(x)

∣

∣

∣

∣

x=a

=
ω′(a)

ω(a)
+ 2

(

1

a − x1
+ · · · + 1

a − xd

)

< 0.

Notice that s′′(a)/s′(a) = 2/(a−x1)+· · ·+2/(a−xd) and ω′(a)/ω(a) = p(a)/q(a),

and the result is proved. The proof for the other case is similar.

A.2. Proof of Lemma 2.2

The following is a proof for the case δa(x) = (x − a) and δb(x) = (x − b).

The proofs for the other three cases are omitted. They can be proved similarly.

For the given case the design is of the form

ξ =

{

x0 x1 · · · xd

1/(d + 1) 1/(d + 1) · · · 1/(d + 1)

}

,

where a = x0 < x1 < · · · < xd = b. The determinant of the information matrix

of ξ can be expressed as detM(ξ) = (b − a)2ω(a)ω(b)/(d + 1)d+1φ(x1, . . . , xd−1),

where

φ(x1, . . . , xd−1) =

d−1
∏

i=1

ω(xi)

d−1
∏

i=1

(xi − a)2(xi − b)2
∏

1≤i<j≤d−1

(xi − xj)
2.

It is clear that maximizing detM(ξ) is equivalent to maximizing log φ(x1, . . . ,

xd−1). Then the following conditions must be satisfied

∂ log φ

∂xi
=

ω′(xi)

ω(xi)
+

(

2

xi − a
+

2

xi − b

)

+

d−1
∑

j=1,j 6=i

2

xi − xj

= 0,

for i = 1, . . . , d − 1. It is easy to verify that

u′′(xi)

u′(xi)
=

d−1
∑

j=1,j 6=i

2

xi − xj
,
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(see Fedorov (1972), Section 2.3). Then

ω′(x)

ω(x)
+

2(2x − a − b)

(x − a)(x − b)
+

u′′(x)

u′(x)
= 0 (A.1)

for x = x1, . . . , xd−1.

Substituting ω′(x)/ω(x) = p(x)/q(x) into (A.1) and multiplying the equation

by the common denominator, we obtain L(x) = 0 for x = x1, . . . , xd−1, where

L(x) = (x − a)(x − b)q(x)u′′(x) + ((x − a)(x − b)p(x)

+2(2x − a − b)q(x))u′(x), (A.2)

is a second order differential function. Note that L(x) is a polynomial of degree

k + d − 1 and vanishes at x = x1, . . . , xd−1, where k = max(m + 1, n). This

implies that u(x) is a factor of L(x). Thus there exists an auxiliary polynomial

v(x) = vkx
k +vk−1x

k−1 + · · ·+v0 such that L(x) = v(x)u(x), where vk equals the

leading coefficient of L(x) and v0, . . . , vk−1 are k unknown constants. Moreover,

all of v0, . . . , vk must be real since both L(x) and u(x) are real polynomials.
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