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Abstract: The Cox model with the gene effect for age at onset was introduced

and studied by Li, Thompson and Wijsman (1998) and Li and Thompson (1997).

This paper concerns the numerical performance of the nonparametric maximum

likelihood estimate of the environmental effects and the genetic effect in this model.

Based on the self-consistency equations derived from the score functions, we propose

a fast iterative algorithm for the computations of the nonparametric maximum

likelihood estimate and its asymptotic variance. Simulation studies conducted using

these algorithms indicate that the profile likelihood-based normal approximations

for the estimates are valid with reasonable sample sizes, and the bootstrap methods

work well also for smaller sample sizes, and are computationally feasible.
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1. Introduction

Analysis of familial diseases with variable age at onset is common in hu-

man genetics. Several papers have considered regression models where age at

onset depends on observed individual environment effects and unobserved gene

effect. See, for example, Vaupel, Manton and Stallard (1979), Meyer and Eaves

(1988), Elston and George (1989), Abel and Bonney (1990), Mack, Langholz and

Thomas (1990), Gauderman and Thomas (1994), Yashin and Iachine (1995), Li

and Thompson (1997), etc. In particular, Li et al. (1998) and Siegmund and

McKnight (1998) proposed maximum likelihood estimation of the gene effect for

age at onset with semiparametric models for right censored data. These models

study genetic effect at an individual level and extend classical semiparametric

hazard models by the introduction of a binary frailty allowing for shared frailty

within families. In order to implement this likelihood approach, Li et al. (1998)

and Siegmund and McKnight (1998) studied Monte Carlo methods based on the
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EM algorithm,then did some simulation studies. The model in Li et al. (1998) is

called the Cox-gene model and is the main concern of the present paper.

Chang, Hsiung, Wang and Wen (2005) gave a theoretical justification of the

maximum likelihood estimates in Li et al. (1998) and some of those in Siegmund

and McKnight (1998). More precisely, it indicated conditions under which the

parameters are identifiable and the estimate is consistent, asymptotically normal

and efficient. Furthermore, it suggested that the characterization of the score

functions developed for the asymptotic theory provides an alternative approach

to the calculation of the nonparametric maximum likelihood estimates, hence-

forth NPMLE, and that asymptotic variances can be estimated consistently using

the theory of observed profile information. In this paper, we present numerical

methods suggested by this theory and use them to illustrate the above likelihood

methods through simulation studies.

The basis of our algorithms for the computations of the NPMLE and the

asymptotic variance is a class of self-consistency equations derived from the

score functions. That these are fast algorithms, as compared with the EM-

algorithm implemented in Li et al. (1998) and Siegmund and McKnight (1998),

is seen clearly in the simulation studies. The simulation studies in Li et al. (1998)

involved one replicate only, and those in Siegmund and McKnight (1998) did not

calculate variances.

To make the discussion more focused, we only consider families consisting

of siblings. For this type of family, Chang et al. (2005) showed that the the-

ory is valid when there are three or more siblings in each family and, in case

there are observable environmental effects, it is valid even if there is only one

member in each family. Our simulation studies indicate clearly that the normal

approximation of the NPMLE holds with reasonable sample sizes.

To indicate that the likelihood methods do not require a fixed family size,

we show by simulations that asymptotic normality seems also to hold for families

with varying sizes. We note that Chang et al. (2005) assumes every family has

the same number of individuals.

To take advantage of the speed of our algorithms, we also conducted boot-

strap studies, and found that the bootstrap methods may provide better confi-

dence interval when sample size is smaller and the normal approximation is not

adequate.

This paper is organized as follows. Section 2 recapitulates the main results

in Chang et al. (2005) and presents the self-consistency equations that lead to

the algorithms presended in Section 3. Section 4 presents the simulations stud-

ies, that examine the normal approximations for the NPMLE, the performance

of the bootstrap methods for the Cox-gene model, and other properties of the
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algorithms. Section 5 has some discussion. We give results concerning the con-

vergence of the algorithms in the Appendix.

2. The Model and the Score

The notations and assumptions in this paper are consistent with those in

Chang et al. (2005). In order to have a concise presentation, some of the regu-

larity conditions are not stated here.

Let Tik, Cik, and Zik denote, respectively, the age at onset, the censoring

time, and the covariate of the ith individual in the kth family. Here i = 1, . . . ,mk,

k = 1, . . . ,K. Let gik be the genotype of the ith individual in the kth family at

a certain locus. Assume that there are two alleles at this locus and denote them

by A and a. Thus the genotype takes one of the three values, aa, aA or AA. Let

Sik = I[gik=aA or AA] denote the susceptibility type. Denote by q0 the population

allele frequency of A.

Let Tk = (T1k, . . . , Tmkk), Ck = (C1k, . . . , Cmkk), Zk = (Z1k, . . . , Zmkk) and

Sk = (S1k, . . . , Smkk). Assume that, given Zk and Sk, T1k, . . . , Tmkk, C1k, . . .,

Cmkk are conditionally independent, and for an individual having covariate z

and susceptibility type s, the hazard of disease onset at age t is

λ0(t) exp(βT
0 z + µ0s). (1)

Here, λ0(·) is a non-negative deterministic baseline function, β0 ∈ ℜD, Zik ∈ ℜD,

and µ0 > 0. Assume further that (Ck, Zk) and Sk are independent, and that the

distribution of (Ck, Zk) does not involve λ0(·), β0, µ0, and q0. Assume Zik is

non-degenerate for every i and k. Let Xik = Tik ∧ Cik, the minimum of Tik and

Cik, and δik = I[Tik≤Cik].

Assume that the (Tk, Ck, Zk, Sk) are independent, k = 1, . . . ,K. The statis-

tical problem is to estimate (Λ0, β0, µ0, q0) based on {Xk, δk, Zk|k = 1, . . . ,K},
where Xk = (X1k, . . . ,Xmkk), δk = (δ1k, . . . , δmkk), and Λ0(t) =

∫ t

0 λ0(u)du.

The NPMLE (Λ̂, β̂, µ̂, q̂) studied in Li et al. (1998), Siegmund and McKnight

(1998) and Chang et al. (2005) is the maximizer of the likelihood

LK(Λ, β, µ, q)

≡
K∏

k=1

∑

s∈S

p(s, q)

(
mk∏

i=1

[△Λ(Xik)eβT Zik+µSik ]δik exp[−Λ(Xik)e
βT Zik+µSik ]

)
. (2)

Here △Λ(t) = Λ(t) − Λ(t−), Λ is a non-decreasing function with Λ(0) = 0,

p(s, q) ≡ p(s1, . . . , smk
, q) is the probability that the susceptibility vector takes

the value (s1, . . . , smk
) when the dominant allele A has frequency q, and S is the

set of all possible values of Sk = (S1k, . . . , Smkk). We note that p(s, q) depends
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on the family structure and is calculated here under the assumptions of random

mating and Mendelian segregation. To simplify the notation, we suppress the
subscript k in p(s, q). For the purpose of computation, the parameter space we

consider is Θc = { (Λ, β, µ, q) | Λ ∈ Lc, β ∈ B, µ ∈ U , q ∈ Q }. Here,

Lc = { Λ : [0, τ ] → [0,∞) | Λ(0) = 0, Λ(τ) ≤ c, Λ is non-decreasing and right

continuous } for some τ > 0 and c > 0; B and U are compact subsets of ℜD and

(0,∞), respectively; and Q is a closed subinterval of (0, 1). The true parameters
β0, µ0, and q0 are assumed to be interior points of B, U , and Q, respectively, and

Λ0(τ) is assumed to be less than c.

It follows from Theorem 4.1 and Theorem 5.1 in Chang et al. (2005) that
√

K
(
(β̂K − β0)

T , µ̂K − µ0, q̂K − q0

)T

is asymptotically normal with mean 0 and

variance Σ−1, and that Σ can be estimated consistently as follows. Let

MK(β, µ, q) =
1

K
sup
Λ∈Lc

log LK(Λ, β, µ, q). (3)

Then νT Σν is approximately

−2
MK((β̂T

K , µ̂K , q̂K)T + γKνK) − MK((β̂T
K , µ̂K , q̂K)T )

γ2
K

(4)

for every sequence νK , in ℜD+2, converging in probability to ν, and for every

sequence γK satisfying (
√

KγK)−1 = Op(1) and γK = op(1).
We now introduce notations so that we can state several equations that are

useful in proposing the algorithms. These equations are derived from the score

functions.

Let

fk(Λ, β, µ, q, s) = p(s, q)

(
mk∏

i=1

eµsiδikexp[−Λ(Xik)eβT Zik+µsi ]

)
,

WK(Λ, β, µ, q;u) =
1

K

K∑

k=1

mk∑

i=1

∑
s fk(Λ, β, µ, q, s)eβT Zik+µsi

∑
s fk(Λ, β, µ, q, s)

I(0,Xik ](u),

GK(u) =
1

K

K∑

k=1

mk∑

i=1

I[Tik,∞)(u ∧ Cik),

bk(Λ, β, µ, q, s) = fk(Λ, β, µ, q, s)/p(s, q).

Knowing that ∂
∂q

p(s, q) is a polynomial in q, we delete the monomials in ∂
∂q

p(s, q)

having negative coefficients and denote the resulting polynomial by p
′

+(s, q). Let

p
′

−(s, q) = p
′

+(s, q) − ∂
∂q

p(s, q). Let eT
1 = (1, 0, 0, . . . , 0), eT

2 = (0, 1, 0, . . . , 0), . . .,

eT
D = (0, 0, 0, . . . , 1). The NPMLE (Λ̂, β̂, µ̂, q̂) satisfies the following.
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Proposition 1.

(i)

Λ̂(t) =

∫ t

0

1

WK(Λ̂, β̂, µ̂, q̂;u)
dGK(u); (5)

(ii)

β̂T ej =log




K∑
k=1

mk∑
i=1

δike
T
j Zik

K∑
k=1

mk∑
i=1

P

s fk(Λ̂,β̂,µ̂,q̂,s)(eT
j

ZikΛ̂(Xik)exp(β̂T (Zik−ej)+µ̂si))
P

s fk(Λ̂,β̂,µ̂,q̂,s)




for j = 1, . . . ,D; (6)

(iii)

µ̂ = log




K∑
k=1

mk∑
i=1

P

s fk(Λ̂,β̂,µ̂,q̂,s)(δiksi)
P

s fk(Λ̂,β̂,µ̂,q̂,s)

K∑
k=1

mk∑
i=1

P

s fk(Λ̂,β̂,µ̂,q̂,s)(siΛ̂(Xik)exp(β̂Zik+µ̂(si−1)))
P

s fk(Λ̂,β̂,µ̂,q̂,s)


 ; (7)

(iv)

q̂ =

K∑
k=1

P

s q̂p
′

+(s,q̂)bk(Λ̂,β̂,µ̂,q̂,s)
P

s fk(Λ̂,β̂,µ̂,q̂,s)

K∑
k=1

P

s p
′

−
(s,q̂)bk(Λ̂,β̂,µ̂,q̂,s)

P

s fk(Λ̂,β̂,µ̂,q̂,s)

. (8)

Remarks. We note that part (i) in Proposition 1 is just the first part of Lemma

2.1 in Chang et al. (2005), and (ii), (iii), and (iv) are derived, respectively, from

the score functions (2.4), (2.5), and (2.6) there. Although the proof of Proposition

1 is straightforward and hence omitted, we would like to point out that it is

the basis of the following algorithms, the main ideas of which are explained in

the Appendix. In fact, part (ii), (iii), and (iv) of Proposition 1 are motivated

by Proposition 3 in the Appendix. Specifically, suppose the score function is

represented as the derivative η′1 of a function η1, with η′1(α0) = 0 and α0 > 0.

If η′1 = η2 − η3 for two positive functions η2 and η3, α1 is close to α0, and

αJ+1 = αJ [η2(αJ )/η3(αJ )], then αJ converges to α0 under certain regularity

conditions. With suitably chosen η2 and η3, we get (ii), (iii), and (iv). Consider

(iv), for example. We set

η2 =

K∑

k=1

∑
s q̂p

′

+(s, q̂)bk(Λ̂, β̂, µ̂, q̂, s)
∑

s fk(Λ̂, β̂, µ̂, q̂, s)
, η3 =

K∑

k=1

∑
s p

′

−(s, q̂)bk(Λ̂, β̂, µ̂, q̂, s)
∑

s fk(Λ̂, β̂, µ̂, q̂, s)
.

Then η2−η3 is the score function and step (5) in Algorithm 3.1 is an implementa-

tion of αJ+1 = αJ [η2(αJ)/η3(αJ )]. We note that although the Newton-Ralphson
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method is also an iterative procedure and applicable here, our (unreported) sim-

ulation studies indicate that it is very slow.

3. Algorithm

Let L(Λ̂, β̂, µ̂, q̂)(t), Bj(Λ̂, β̂, µ̂, q̂), M(Λ̂, β̂, µ̂, q̂), and Q(Λ̂, β̂, µ̂, q̂) denote,

respectively, the right hand sides of (5), (6), (7) and (8). Let B(Λ̂, β̂, µ̂, q̂) =

(B1(Λ̂, β̂, µ̂, q̂), . . . ,BD(Λ̂, β̂, µ̂, q̂))T .

3.1. Algorithm for Estimating Λ̂, β̂, µ̂, q̂, and Σ̂

(1) Choose starting values Λ1, β1, µ1, and q1.

(2) Set J = 1.

(3) βJ+1 = B(ΛJ , βJ , µJ , qJ).

(4) µJ+1 = M(ΛJ , βJ+1, µJ , qJ).

(5) qJ+1 = Q(ΛJ , βJ+1, µJ+1, qJ).

(6) ΛJ+1(t) = L(ΛJ , βJ+1, µJ+1, qJ+1)(t).

(7) J = J + 1.

(8) Repeat (3) for a suitable number N of iterations once there is evidence of

convergence.

(9) The estimates of Λ, β, µ, q are given by Λ̂ = ΛN , β̂ = βN , µ̂ = µN , q̂ = qN ,

respectively.

(10) Set γK = 1/
√

K.

(11) The (i, j)-entry of Σ̂ is

−
[
MK((β̂T , µ̂, q̂)T + γKei + γKej) − MK((β̂T , µ̂, q̂)T + γKei)

−MK((β̂T , µ̂, q̂)T +γKej)+MK((β̂T , µ̂, q̂)T )
]/

γ2
K .

3.2. Algorithm for Computing MK(β, µ, q)

(1) Choose a starting value Λ1, set L1 =logLK(Λ1, β, µ, q).

(2) Set J = 1.

(3) ΛJ+1(t) = L(ΛJ , β, µ, q)(t), set LJ+1 =logLK(ΛJ+1, β, µ, q).

(4) J = J + 1.

(5) Repeat (3) for a suitable number N of iterations once there is evidence of

convergence.

(6) MK(β, µ, q) = LN/K.

4. Simulation Studies

The purpose of this section is to assess the numerical performance of the

NPMLE computed using the algorithms in Section 3. There are four parts

in this section. The first part examines the normal approximation claimed in
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Chang et al. (2005), the second part studies the bootstrap methods, the third

part gives some idea of the dependence of the estimates on the starting values

used in the algorithms, and the fourth part remarks on the computations needed

for large pedigrees.

All the data are generated according to (1) with
∫ t

0 λ0(s)ds = log(100/(100−
t)), for t ∈ [0, 100), and several different values of β0, µ0, and q0; the censoring

variable is uniform(0,100); and P (Zik = 0) = P (Zik = 1) = 1/2. Except for the

studies in Table 2, the number of iterations in using Algorithm 3.1 is set at 100,

and that for Algorithm 3.2 is 10. In Table 2, we consider bootstrap coverage and

the number of iterations in using Algorithm 3.1 is set at 50.

4.1. Normal Approximation

Our simulation studies indicate that the normal approximations for β̂, µ̂,

and q̂ are generally quite satisfactory. They also suggest that a relatively larger

sample size is needed when q0 is near 0 or µ0 is small, and a much smaller sample

size is needed in case there are more siblings in each family. Among other things,

Table 1A seems to suggest that if the total number of individuals is fixed, studies

having larger family size tend to provide better estimates in terms of mean-

squared error and confidence interval coverage. In fact, the purpose of Table 1A

is to demonstrate this phenomenon.

Each study in this subsection consists of 1, 000 random samples of different

sample sizes. For each sample, we first use the algorithms in Section 3 to compute

β̂, µ̂, q̂, and Σ̂, and then use the asymptotic normality to get a 0.95 confidence

interval. The number of these 1, 000 samples for which the true parameter falls

in its 0.95 confidence interval is recorded; these numbers are then used to get the

95% confidence interval coverage, which is expressed in percentiles in the seventh,

eighth and ninth columns of Table 1. We use CIβ, CIµ, and CIq to indicate the

columns for β, µ, and q, respectively. The percentages of the samples for which

the true parameter β0, µ0, and q0 falls below (above) its 0.95 confidence interval

are also contained in these columns and denoted by Lβ (Uβ), Lµ (Uµ), and Lq (Uq)

respectively. Each row in Table 1 represents the results for one simulation study

scenario. We use Scen-a to denote the study presented in the ath row in Table

1. Here a = 1, . . . , 15.

Each family in our studies consists of siblings. The second and third columns

are, respectively, the sample size K and the number m of siblings in each family.

The next three columns contain, respectively, the true parameter values β0, µ0

and q0 used in the data generation. The tenth, eleventh, and twelfth columns give

the sample mean, sample standard deviation (SD), averaged standard deviation

computed by profile likelihood (SDProf ) of the 1,000 estimates, and sample mean-

squared error (MSE) for β0, µ0, and q0, respectively.
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We note that the family sizes in the last two rows in Table 1B are random,

2 + Bi(4, 0.3) where Bi(4, 0.3) is the binomial random variable with parameters

4 and 0.3, implying that the average family size is 3.2.

The starting values used in the algorithms for each study in this section are

Λ1(t) = t/80, β1 = 0.9, µ1 = 3.55, and q1 = 0.16.

In some of the studies, µ0 is equal to 4.6052. We note that exp(4.6052) = 100,

which is the genetic relative risk used in Siegmund and McKnight (1998), and

studied in Mack et al. (1990).

Figure 1 presents the Q-Q plots for the experiment in Scen-14. Figure 1

strongly suggests an asymptotic normality theory for family with varying sizes,

which was not discussed in Chang et al. (2005).

Table 1. 0.95 confidence interval coverage, expressed in percentile, sample

mean, sample standard deviation (SD), averaged standard deviation com-
puted by profile likelihood (SDProf ), and sample mean-squared error (MSE),

for 15 simulation study scenarios.

Scen K m β0 µ0 q0 Lβ(%) Lµ(%) Lq(%) mean(bβ) mean(bµ) mean(bq)
CIβ(%) CIµ(%) CIq(%) (SD) (SD) (SD)

Uβ(%) Uµ(%) Uq(%) (SDProf ) (SDP rof ) (SDP rof )
MSE MSE MSE

1 150 2 1 3 0.1 12.3 11.3 11.7 1.0131 3.0081 0.0996
85.5 87.3 87.0 (0.1885) (0.4876) (0.0302)
2.2 1.4 1.3 (0.1895) (0.5432) (0.0374)

0.0357 0.2378 0.0009

2 100 3 1 3 0.1 6.1 5.8 4.8 1.0164 3.0157 0.0998
92 92.3 93.6 (0.1843) (0.4487) (0.0295)
1.9 1.9 1.6 (0.1846) (0.4785) (0.0361)

0.0342 0.2016 0.0009

3 200 2 1 3 0.1 7.5 5.4 6.6 1.0154 2.9955 0.1006
90.5 92.2 91.6 (0.1658) (0.4082) (0.0272)
2.0 2.4 1.8 (0.1632) (0.4601) (0.0310)

0.0277 0.1666 0.0007

4 133 3 1 3 0.1 3.2 3.2 2.4 1.0011 3.0250 0.0992
94.6 95.4 96.5 (0.1573) (0.3788) (0.0247)
2.2 1.4 1.1 (0.1593) (0.3935) (0.0294)

0.0247 0.1441 0.0006

5 300 2 1 3 0.1 4.8 3.0 3.6 1.0117 3.0043 0.1015
93.4 94.0 94.6 (0.1324) (0.3505) (0.0222)
1.8 3.0 1.8 (0.1324) (0.3624) (0.0245)

0.0177 0.1229 0.0005

6 200 3 1 3 0.1 2.4 2.2 2.0 1.0023 3.0037 0.0999
94.2 95.4 96.1 (0.1323) (0.3055) (0.0212)
3.4 2.4 1.9 (0.1285) (0.3042) (0.0229)

0.0175 0.0933 0.0004

7 450 2 1 3 0.1 3.6 2.6 1.4 1.0031 2.9996 0.1005
93.6 95.4 95.8 (0.1088) (0.2755) (0.0170)
2.8 2.0 1.8 (0.1071) (0.2839) (0.0189)

0.0118 0.0759 0.0003

8 300 3 1 3 0.1 2.6 2.0 2.1 1.0023 3.0133 0.1005
95.4 95.3 95.1 (0.1025) (0.2456) (0.0169)
2.0 2.7 2.8 (0.1046) (0.2426) (0.0179)

0.0105 0.0605 0.0003
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Table 1B.

Scen K m β0 µ0 q0 Lβ(%) Lµ(%) Lq(%) mean(bβ) mean(bµ) mean(bq)
CIβ(%) CIµ(%) CIq(%) (SD) (SD) (SD)

Uβ(%) Uµ(%) Uq(%) (SDP rof ) (SDProf ) (SDP rof )
MSE MSE MSE

9 1400 1 1 3 0.1 3.1 16.3 6 1.0076 3.0184 0.1018
94 74.7 92.4 (0.0897) (0.3025) (0.0187)
2.9 9 1.6 (0.0886) (0.2713) (0.0182)

0.0081 0.0918 0.0004

10 2400 1 1 3 0.1 2.8 12.5 4.5 1.0031 3.0118 0.1008
94.4 78.5 93.2 (0.0678) (0.2287) (0.0133)
2.8 9 2.3 (0.0676) (0.2319) (0.0141)

0.0046 0.0524 0.0002

11 300 3 1 4.6052 0.05 2.1 4 0.7 1.0077 4.6319 0.0495
96.1 93.2 98.5 (0.0902) (0.3830) (0.0087)
1.8 2.8 0.8 (0.0950) (0.3649) (0.0107)

0.0082 0.1474 0.0001

12 500 3 1 4.6052 0.01 2.3 3.4 1.1 1.0082 4.5278 0.0105
94.9 90.3 97.5 (0.0732) (0.6233) (0.0042)
2.8 6.3 1.4 (0.0714) (0.4115) (0.0065)

0.0054 0.3945 0.0000

13 700 3 1 4.6052 0.01 2.4 3.2 1.1 1.0009 4.5955 0.0103
95.6 92.5 98.7 (0.0571) (0.4565) (0.0037)
2.0 4.3 0.2 (0.0602) (0.3340) (0.0050)

0.0033 0.2085 0.0000

14 300 3.2 1 3 0.1 2.5 2.4 1.6 0.9991 3.0033 0.0994
95.1 95.9 96 (0.1032) (0.2210) (0.0159)
2.4 1.7 2.4 (0.1004) (0.2257) (0.0171)

0.0107 0.0489 0.0003

15 400 3.2 1 4.6052 0.01 2.6 3.3 2.3 1.0024 4.5421 0.0107
95.2 90.9 96.5 (0.0770) (0.6650) (0.0051)
2.2 5.8 1.2 (0.0770) (0.4186) (0.0071)

0.0059 0.4462 0.0000

4.2. Bootstrap

These studies confirm the expected benefits of the bootstrap (Efron and
Tibshirani (1993)): when the normal approximation is satisfactory, bootstrap
methods seem to perform as well; when the normal approximation fails, bootstrap
methods may still offer reasonable solutions.

The bootstrap results are reported in Table 2. In Table 2, the first column
is the sample size; the second, fourth, and sixth columns report, respectively, the
same statistics reported in the seventh, eighth, and ninth columns in Table 1; the
third, fifth, and seventh columns are, respectively, the bootstrap counterparts of
the second, fourth, and sixth columns; the eighth, ninth, and tenth columns, re-
spectively, report the same statistics in the tenth, eleventh, and twelfth columns
in Table 1, except for the replacement of MSE by SDBoot, which is the aver-
aged standard deviation calculated by the bootstrap method. We note that the
bootstrap sample size is 1,000 and the coverage is based on 200 replicates.

It is seen from Table 2 that normal approximation and bootstrap are compa-
rable and satisfactory for β, normal approximation is less satisfactory than the
bootstrap for µ and q; in particular, SDBoot is much closer to SD for µ than is
SDProf .
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Figure 1. Q-Q plots for the study in Scen-14. (a) Q-Q plot of β̂ vs. standard
normal. (b) Q-Q plot of µ̂ vs. standard normal. (c) Q-Q plot of q̂ vs.
standard normal. (d) Q-Q plot of normalizer of β̂ vs. standard normal. (e)
Q-Q plot of normalizer of µ̂ vs. standard normal. (f) Q-Q plot of normalizer
of q̂ vs. standard normal.
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Table 2. Comparison of normal approximation and the bootstrap methods

for m = 3, β0 = 1, µ0 = 4.6052, q0 = 0.01.

K Lβ(%) LBoot
β (%) Lµ(%) LBoot

µ (%) Lq(%) LBoot
q (%) mean(bβ) mean(bµ) mean(bq)

CIβ(%) CIBoot
β (%) CIµ(%) CIBoot

µ (%) CIq(%) CIBoot
q (%) (SD) (SD) (SD)

Uβ(%) UBoot
β (%) Uµ(%) UBoot

µ (%) Uq(%) UBoot
q (%) (SDProf ) (SDProf ) (SDProf )

(SDBoot) (SDBoot) (SDBoot)

100 2.8 2.9 10.7 0.0 15.0 2.5 1.0217 3.6796 0.0182

95.3 95.8 51.1 78.4 72.0 97.3 (0.1624) (1.8351) (0.0189)

1.9 1.3 38.2 21.6 13.0 0.2 (0.1639) (0.6250) (0.0232)

(0.1718) (1.5103) (0.0195)

150 3.0 3.6 7.7 0.0 9.7 2.3 1.0156 4.0204 0.0149

95.5 95.6 64.6 82.6 83.2 97.7 (0.1312) (1.4715) (0.0115)

1.5 0.8 27.7 17.4 7.1 0.0 (0.1327) (0.5932) (0.0173)

(0.1377) (1.3693) (0.0147)

200 3.5 3.1 5.9 0.1 8.2 1.3 1.0082 4.1378 0.0134

92.2 93.9 70.3 91.0 86.9 98.7 (0.1201) (1.2763) (0.0087)

4.3 3.0 23.8 8.9 4.9 0.0 (0.1122) (0.5044) (0.0141)

(0.1181) (1.2669) (0.0121)

4.3. Starting Values

Since the NPMLE and the algorithms we use are local in nature, the esti-

mates may depend on the starting values β1, µ1, and q1. Based on our simulation

studies, it seems that the dependence on the starting values is not a serious prob-

lem for β and µ, and even for q we need only set the starting value less than 0.5.

Using data of Scen-8, we report the results regarding the dependence on q1.

With the starting values for Λ1, β1, and µ1 being fixed, we calculate β̂, µ̂, q̂ for

q1 = 0.01, 0.02, . . . , 0.99. Plots for (q1, β̂), (q1, µ̂), (q1, q̂), and a plot for q1 vs.

log-likelihood are presented in Figure 2.

4.4. Remarks on Pedigree Size

Examining (2) closely, we know that the numerical performance of our method

depends on pedigree structure only through the number of individuals in the pedi-

gree and the susceptibility probability p(s, q). Because p(s, q) is a polynomial in

q, the computation for sibship data is no easier than that for other pedigree data

with the same number of individuals in one pedigree. With this understanding,

we consider only sibship data in the following.

We report in Table 3 the average computing time needed for analyzing one set

of simulated sibship data under the parameter values β0 = 1, µ0 = 3, q0 = 0.1
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and Λ0(t) = log(100/(100 − t)), and using the algorithms in Section 3. More

precisely, for each replicate, we calculate the NPMLE and their asymptotical

variances; we report the average of the computing times based on ten replicates.

It seems clear from Table 3 that the computing time needed depends mainly on

the total number of individuals in the study, not on the size of the pedigree.

This, together with Table 1A, indicates that it is more desirable to conduct

studies having relatively larger pedigree when the total number of individuals in

the study is fixed. We do not recommend a study of only one pedigree, because

this offers little possibility to study the variance of the estimates.
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Figure 2. Starting value study in Scen-8. Dotted lines are the estimates;

solid lines are true parameters. (a) Plot of q1 vs. β̂. (b) Plot of q1 vs. µ̂.

(c) Plot of q1 vs. q̂. (d) Plot of q1 vs. log-likelihood.
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Table 3. Computing time needed for sibship data when β0 = 1, µ0 = 3, q0 =
0.1, and Λ0(t) = log(100/(100 − t)). Here K is the number of families and
m is the number of individuals in one family.

K m CPU time in seconds

300 4 53.57

400 3 53.56

300 5 73.74

500 3 74.75

300 6 98.30

600 3 99.23

5. Discussion

We have presented a fast algorithm for computing the NPMLE through the

Cox-gene model, and used it to study the likelihood theory and the bootstrap

methods for the Cox-gene model through simulation studies. Our simulation

studies indicate that the normal approximations of the NPMLE work well with

reasonable sample sizes. In case of smaller sample sizes for which normal ap-

proximation does not work well, we find that bootstrap methods provide a useful

alternative.

The algorithms we use in this paper are based on the self-consistency equa-

tions derived from the score functions. We studied several other algorithms based

on the score functions and found that the one in Section 3 is the best in terms of

both accuracy and speed. In particular, the algorithms that replace ii), iii), and

iv) in Proposition 1 by Newton-Ralphson methods do not perform comparably.

In fact, among the computation procedures we studied, the one in the Section 3

is the only one that makes variance estimation and bootstrap methods feasible.

The software, prepared with Matlab, is available from the author upon request.

We have also prepared software for nuclear families consisting of parents and

children.

Although this method seems satisfactory for the Cox-gene model of Li et

al. (1998), we understand this work represents only a initial study toward the

understanding of the mechanisms of genetic diseases. Serious efforts are needed

to take into account multiple genes and environmental factors.
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Appendix

In this Appendix, we provide some heuristic ideas concerning the convergence

of Algorithm 3.1 and 3.2. We do not present a rigorous and complete statement,

as this is laborious. We assume mk = m for every k to ease the presentation.

Proposition 2. For given (Λ1, β, µ, q) in its domain, let

ΛJ+1(t) =

∫ t

0

1

WK(ΛJ , β, µ, q;u)
dGK(u)

for J = 1, 2, . . ., and t ∈ [0, τ ]. Then there exists Ω1 with P (Ω1) = 1 such that

for every ω in Ω1, there exists a constant K(ω) such that for every K > K(ω),

ΛJ(·) has a convergent subsequence, and the limit Λ̃ of any of its convergent

subsequences satisfies

Λ̃(t) =

∫ t

0

1

WK(Λ̃, β, µ, q;u)
dGK(u). (A.1)

Proof. It follows from the definition of WK that there exists a constant c2 > 0

such that

WK(Λ, β, µ, q;u) ≥ c2

K

K∑

k=1

m∑

i=1

1(0,Xik ](u)

for every K and for every (Λ, β, µ, q, u) in its domain. Hence, using the Law of

Large Numbers, we get W (Λ, β, µ, q;u) ≥ c2

m∑
i=1

P (Xi1 ≥ τ), where W is the limit

of WK . This indicates that
∫ τ

0

1

W (Λ, β, µ, q;u)
dG(u) < ∞, (A.2)

for every (Λ, β, µ, q) in its domain. Using (A.2) and Lemma 3.3 in Chang et al.

(2005), we know that there exists a constant c3 such that

lim
K→∞

∫ τ

0

1

WK(Λ, β, µ, q;u)
dGK(u) < c3, (A.3)

for every (Λ, β, µ, q) in its domain. It follows from (A.3) that there exists Ω1

with P (Ω1) = 1 such that for every ω in Ω1, there is a constant K(ω) such that

for every K > K(ω),
∫ τ

0

1

WK(Λ, β, µ, q;u)
dGK(u) < c3.

Thus we know from Helly’s Lemma that ΛJ(·) has a convergent subsequence,

and hence, (A.1) holds. This completes the proof.
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Note that the convergence of Algorithm 3.2 follows from Proposition 2. Al-

though Proposition 2 does not by any means imply the convergence of Algorithm

3.1, it together with the following Proposition 3 does provide relevant informa-

tion. We note that there are extensions to Proposition 3, and they may also be

useful in other places.

Proposition 3. Let η1 : (a, b) → ℜ be a function possessing bounded continuous

second derivative. Let α0 > 0 be an isolated local maximum of η1 and η′′1(α0) < 0.

Let η2 and η3 be two positive and continuously differentiable functions satisfying

η′1 = η2 − η3. Then there exist constants ε > 0 and n0 ≥ 0, such that if

|α1 − α0| < ε and αJ+1 = αJ [(η2(αJ ) + n0)/(η3(αJ ) + n0)] for J = 1, 2, . . ., then

αJ converges to α0.

Remarks. The idea behind Proposition 3 is simple and goes as follows. If

0 < αJ < α0, then we would like to have αJ+1 > αJ . If αJ is in a suitable

neighborhood of α0 and 0 < αJ < α0, then η2(αJ) − η3(αJ) = η
′

1(αJ ) > 0, and

hence αJ+1 > αJ . Similar comments can be made for the case αJ > α0.

Proof. Let gn(x) = [(η2(x) + n)/(η3(x) + n)]. Using g′n(α0) = (η′2(α0) −
η′3(α0))/(η3(α0)+n) < 0, we let n0 > 0 satisfy g′n0

(α0) ≥ (2/3)·[(−c−1)/(α0+1)]

for some 0 < c < 1. Let 0 < ε < 1 satisfy α0 > ε, [α0 − ε, α0 + ε] ⊂ (a, b), and

|g′n0
(x) − g′n0

(α0)| < (1/2)|g′n0
(α0)| for every x in [α0 − ε, α0 + ε]. Then

1

2
g′n0

(α0) > g′n0
(x) >

3

2
g′n0

(α0) ≥
−c − 1

α0 + ε
(A.4)

for every x in [α0 − ε, α0 + ε].

Using the equation [(αJ+1)/(αJ )] − 1 = gn0
(αJ ) − gn0

(α0) and the Mean-

Value Theorem, we have

αJ+1 − α0 = (αJ − α0)(1 + g′n0
(α̃J)αJ ) (A.5)

for some α̃J lying between αJ and α0.

Using (A.4), we have g′n0
(α̃1)α1 ≥ [(−c−1)/(α0 +ε)]α1 > −c−1, and hence,

1+g′n0
(α̃1)α1 ≥ −c > −1. Using (A.4) again, we have 1+g′n0

(α̃1)α1 ≤ 1+c1α1 ≤
1 + c1(α0 − ε) < 1, where 0 > c1 = max

x∈[α0−ε,α0+ε]
g′n0

(x). These, combined with

(A.5), imply that |α2 − α0| < c2|α1 − α0| for some 0 < c2 < 1. Doing these

recursively, completes the proof.
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