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Abstract: The trade-offs between survival benefits and therapeutic adverse effects

on quality of life (QOL) is always an important clinical issue for cancer and AIDS

patients. The International Breast Cancer Study Group (IBCSG) conducted a large

clinical trial, IBCSG Trial VI, to examine the duration and timing of adjuvant ther-

apy for advanced breast cancer patients after the initial removal surgery. We present

a novel joint model for longitudinal and survival data to evaluate the relationship

between QOL and breast cancer progression, and also assess issues associated with

different therapeutic procedures and baseline covariates. Multidimensional longi-

tudinal QOL measurements are modeled in a hierarchical mixed effects model to

account for psychological fluctuations and measurement errors, provide estimates

for time points where QOL data are not available, and to explicitly allow for direct

inferences about different dependence structures in the QOL data over time and

over different QOL measures (indicators). A parametric survival model is also pro-

posed for disease-free survival (DFS) to incorporate the underlying smooth QOL

trajectories and prognostic factors. This survival model is attractive and capable

of accommodating both zero and nonzero cure fractions. With advances in modern

medicine, a positive cure fraction is often tenable for breast cancer patients since

many are completely cured after surgery, and are no longer susceptible to relapse.

A Bayesian paradigm is adopted to facilitate the estimation process and ease the

computational complexity.

Key words and phrases: Breast cancer clinical trial, Cure rate model, random

effects.

1. Introduction

In cancer and AIDS clinical trials, it is becoming increasingly common to re-

peatedly collect one or more biologic markers during the follow-up for the primary

endpoint, the time to an event. These longitudinal markers are often important

indicators for disease progression, but are prone to measurement error and ran-

dom fluctuations, and thus their direct use as time-varying covariates in a survival

model is inappropriate (see Ibrahim, Chen and Sinha (2001, Chap.7)). Jointly

modeling the longitudinal markers and survival data provides a way to account
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for errors in the longitudinal measurements, and allows the presence of treat-

ment and baseline covariates, unbalanced observations of biomarkers over time,
and censoring information associated with survival time. The model building

often starts from models for the longitudinal component and then characteris-

tics of the longitudinal model are incorporated into the model for the survival

component. Both Frequentist and Bayesian approaches have been examined in
the literature. Tsiatis and Davidian (2004) and Ibrahim, Chen and Sinha (2001,

Chap.7) provide a detailed discussion of joint modeling.

The model proposed here was primarily motivated by a clinical trial con-

ducted by the International Breast Cancer Study Group (IBCSG). IBCSG di-
rected a large clinical trial, IBCSG Trial VI, in premenopausal women with node-

positive breast cancer to examine the efficacy of post-surgery chemotherapy pro-

cedures. The therapeutic procedure is hypothesized to affect breast cancer pro-

gression, monitored in terms of disease free survival (DFS) which corresponds to
time to breast cancer relapse, through two paths, either directly or indirectly with

an intermediate time-dependent factor, patients’ quality of life (QOL). The toxi-

city of a therapeutic procedure may adversely affect a patient’s QOL and QOL is
typically associated with DFS. A joint modeling framework for longitudinal and

survival data not only allows investigation for both paths, but accommodates all

important data features and complications associated with them. Particularly in

response to the characteristics of the IBCSG data, a new Bayesian joint modeling
with a multivariate extension for the longitudinal component and the possible

presence of cure for the survival component DFS, is therefore proposed.

In the IBCSG trial, four distinct QOL indicators were assessed repeatedly

over time with a self-reported QOL questionnaire. A multivariate longitudinal
model is required to incorporate treatment and baseline covariates, and account

for psychological fluctuations, measurement errors and unbalanced observations.

Ibrahim, Chen and Sinha (2004), Xu and Zeger (2001) and Song, Davidian and

Tsiatis (2002) have proposed various types of joint models with a multivariate
longitudinal component. Here, we present a hierarchical mixed effects model to

explicitly allow for direct inferences about different dependence structures in the

QOL data over time as well as over different indicators.

Due to advances in cancer research, particularly breast cancer, a significant
proportion of patients after the initial surgery are not susceptible to cancer re-

lapse, that is, they are “cured” of the disease. Figure 1 shows the Kaplan-Meier

curves for DFS for all patients. A plateau appears to occur in the survival curve

after approximately 10 years of follow-up, hence suggesting a possible cure frac-
tion in the population. Joint longitudinal-survival-cure models have been inves-

tigated by several authors (see Brown and Ibrahim (2003), Law, Taylor and San-

dler (2002) and Yu, Law, Taylor and Sandler (2004)). The joint model we pro-

pose here is quite different from what has been proposed in the literature. First
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and foremost, the proposed survival model does not impose a boundary value on

the parameter space, as is the case for the classic mixture (Berkson and Gage

(1952)) and non-mixture cure models (Yakovlev and Tsodikov (1996)). The in-

corporation of longitudinal QOL assessments in the survival model helps de-

termine the proportion of cured and non-cured patients in the trial, and hence

allows the flexibility for either zero or nonzero cure fractions in the joint model.

In addition, our survival model maintains a proportional hazards structure when

only baseline covariates are considered in the model. The rest of the article is

organized as follows. In Section 2, we describe the basic data structure from the

breast cancer clinical trial. In Section 3, we review the basic setup and demon-

strate some attractive properties of our model. We examine the performance and

robustness of our proposed model with a set of simulation studies in Section 4,

and then apply the model to the analysis of the IBCSG dataset in Section 5. A

brief discussion is given in Section 6 to conclude the article.
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Figure 1. Superimposed survival curves.

2. The Data Structure

The IBCSG conducted a clinical trial, IBCSG Trial VI, in premenopausal

women with node-positive breast cancer to investigate both the duration of

adjuvant chemotherapy (three vs six initial cycles of oral cyclophosphamide,

methotrexate, and fluorouracil (CMF)) and the reintroduction of three single

courses of delayed chemotherapy. Each participant was randomly assigned in a

2 × 2 factorial design to receive either six initial courses of CMF at consecutive

months 1 to 6 with (CMF6RE) or without (CMF6) three single courses of rein-

troduction CMF given on month 9, 12 and 15; or three initial courses of CMF

at consecutive months 1 to 3 with (CMF3RE) or without (CMF3) three single
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courses of reintroduction CMF given on month 6, 9 and 12. Randomization was

stratified according to participation institution, type of surgery, and estrogen re-

ceptor (ER) status. Date of relapse is defined as the time when recurrent disease

is diagnosed or first suspected, and disease-free survival (DFS) is defined as the

time from randomization to any relapse, occurrence of a second primary cancer,

or death. Different therapeutic procedures may directly affect DFS, as well as

age, ER status (negative/positive), and number of positive nodes of the tumor.

The trial is described in greater detail by the International Breast Cancer Study

Group (1996).

As part of the trial, the QOL questionnaire was assigned periodically to

all participants and included four indicators of health-related QOL that are es-

pecially relevant to breast cancer patients. Physical well-being (lousy—good),

mood (miserable—happy), appetite (none—good) and perceived coping (”How

much effort does it cost you to cope with your illness?” (a great deal—none))

were assessed with single-item linear analogue self-assessment scales. The scores

were scaled between 0 to 100 with a larger number indicating a better perceived

QOL. Measurement errors may occur by possible imperfect reliability of the ques-

tionnaire and are assumed to take place independently over time. Different QOL

indicators may be related to each other and the correlation is most likely to be

positive. For example, a happy mood mostly goes with a good appetite and

physical well-being, and vice versa. These QOL measurements were important

in the investigation of breast cancer progression since the toxicity of adjuvant

chemotherapy may have adverse effects on patients’ QOL, and hence associate

with DFS. The incorporation of longitudinal QOL measures in the model of DFS

allows for the evaluation of the indirect therapeutic effects through the interme-

diate QOL factor. In addition, the direct therapeutic effects for optimal duration

and timing of adjuvant therapy can also be examined. Both patients and physi-

cians can make their decisions about therapies after balancing the trade-offs

between survival benefits and QOL pay-offs.

We analyzed data from 831 patients from Switzerland, Sweden and New

Zealand/Australia, each with more than one complete set of QOL assessments

over time. The perceptions of QOL were assessed at the start of the study and

at months 3 and 18 after randomization. A total of 2,152 QOL observations

are included in the dataset. Figure 2 displays median QOL scores at three ob-

servational times. On average, patients perceive improvement in their QOL 18

months after the initial surgery, and the improvement is most substantial for

their mood and perceived coping. However, the perceived mood and coping are

relatively worse than perceived appetite and physical well-being over time. The

median DFS is 7.836 years for all patients, with a censoring rate of 51.62%. For

different therapeutic groups, the median DFS is 6.188 years for CMF3 therapy,
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6.045 years for CMF6 therapy, 8.033 years for CMF3RE therapy and 9.257 years

for CMF6RE therapy. The Kaplan-Meier curve for DFS in Figure 1 suggests a

nonzero cure fraction after a long follow-up. A joint model capable of accommo-

dating nonzero cure fractions for time-to-event data is essential for investigating

the association between QOL scores and the survival outcome.
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Figure 2. Median QOL scores over time.

3. A New Class of Joint Models

In this section, we review the background and setup for our model. Let Y

be the possibly censored time-to-event, X be the observed vector of longitudinal

QOL measures, Z be the vector of baseline covariates for time-to-event and R

be the vector of covariates (possibly time-varying) for the longitudinal measures.

The components of Z may be different from the components of R, which there-

fore allows different covariate information in the model of time-to-event and the

longitudinal measures. With measurement errors and psychological fluctuations

corresponding to each QOL indicator, we let a latent trajectory function X∗ rep-

resent the underlying true QOL, and R affects X only through its influence on

X∗. In the framework of joint modeling, we specifically assume that the clinical

event time Y and vector of QOL measures X are conditionally independent given

X∗. Based upon these assumptions, we have

P (Y,X|Z,R) =

∫

P (Y |Z,X∗)P (X|X∗)P (X∗|R)dX∗. (3.1)

The joint likelihood of the complete data {Y,X,X∗} requires the specification of

three components, P (Y |Z,X∗), P (X|X∗) and P (X∗|R). In the literature, several

authors have proposed methods based on different distributional assumptions for
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these three components. Our assumptions for [X|X∗] and [X∗|R] result in a

multivariate longitudinal model with explicit dependence structures among the

repeated measures, and hence allow for direct inference about each structure. We

also propose a parametric survival model accommodating both zero and nonzero

cure fractions for [Y |Z,X∗].

3.1. The multivariate longitudinal process

With more than one QOL indicator measured over time, two levels of depen-

dence structures are involved in the observations of a single patient. The first

level involves dependence over time for each indicator, while the second level in-

volves dependence over different indicators. A multivariate mixed effects model

is proposed to explicitly model these two sources of dependence structures. Let

xik(tij) be an assessment of the kth QOL indicator for the ith patient at time tij
and x∗

ik(tij) be the corresponding trajectory function representing its underlying

true value, where k = 1, . . . , q, j = 1, . . . , ni, and i = 1, . . . , n. The longitudinal

model for xik(tij) is given by

xik(tij) = x∗
ik(tij) + ǫijk, (3.2)

where ǫijk represents the residual component consisting of both the psychological

fluctuation and measurement error. Let Rik(tij) be the vector of covariates

(possibly time-varying) for the kth QOL indicator at time tij . The trajectory

function is modeled as

x∗
ik(tij) = Rik(tij)ηk + W ik(tij)bik, (3.3)

where W ik(tij) is the random effects design matrix and may be a subset of the

fixed effects design matrix Rik(tij), and ηk and bik are vectors of the correspond-

ing fixed and random effects parameters of length mk and υk, respectively. Let

ǫij· = [ǫij1, . . . , ǫijq]
T . We assume that ǫij·

i.i.d.
∼ Nq(0,Σ), bik

ind
∼ Nυk

(0,Ψk), and

ǫij· is independent of bik. The residuals of the longitudinal QOL indicators ob-

served at the same time may be correlated with each other due to psychological

fluctuation, but are assumed to be independent among observations assessed at

different time points. Due to the significant separation in time between obser-

vations, correlation (induced by psychological fluctuation) among residuals over

time is assumed to be negligible. Measurement errors are assumed to occur in-

dependently over time and over different QOL indicators. After some algebraic

derivations, the structure of Σ characterizes the association between QOL indi-

cators measured at the same time, and is assumed to be common across time

and patients. A common correlation structure among QOL indicators over time

is psychologically and biologically plausible. For instance, a better mood may
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relate to a better appetite, and the correlation is likely to be constant over time.
On the other hand, the introduction of the random effects bik in the trajectory
function induces a common factor for repeated QOL measures of the ith patient
at the kth indicator. The independence between bik’s over different QOL indica-
tors is tenable, since we assumed a distinct underlying mechanism in driving each
QOL dimension. The structure of Ψk describes the association between repeated

observations of the kth QOL indicator and is allowed to be distinct for different
indicators. In addition, QOL indicators measured at different time points are set
to be uncorrelated. An extensive set of simulations was conducted in Section 4
to assess the robustness of our joint model for these longitudinal assumptions,
such as independence and normal distribution of the random effects bik’s.

Xu and Zeger (2001) proposed a joint model to evaluate multiple surrogate
endpoints in a schizophrenia clinical trial. They assumed ǫijk ∼ N(0, σ2

k) and
bi ∼ Nυ(0,Ψ) independently, where bi = [bT

i1, . . . , b
T
iq]

T and υ = υ1 + · · · + υq.
The joint distributional assumption on the random effects bi simultaneously mod-
els the two dependence structures. The specification of Ψ alone carries all of the
information about dependence between the repeated measures, including corre-

lations between markers measured at different time points. With Xu and Zeger’s
model, making separate inferences about the different dependence structures be-
comes less straightforward. The difference between the number of covariance
parameters in their model and our model is (1/2)

∑q
k 6=k′=1 υkυk′ − q(q − 1)/2,

which increases with the dimension of the random effects and the number of
markers measured repeatedly over time. The two models are equivalent in the
case of a univariate longitudinal process.

3.2. The time-to-event model

Joint models with a survival component incorporating a nonzero cure fraction
have been established either by a two-component mixture (Law et al. (2002) and
Yu et al. (2004)) or a non-mixture (Brown and Ibrahim (2003)) approach. The
survival model we propose here is quite different from what has been presented
in the literature and, particularly, does not impose a boundary value on the
parameter space to require a nonzero cure fraction. Motivated by the promotion
time model (Yakovlev and Tsodikov (1996)), we propose a novel generalization
that allows for a zero as well as a nonzero cure fraction. We do this by specifying
the population survival function as

S(y) = exp

{

−

∫ y

0
λ(t)F̃ (y − t)dt

}

, (3.4)

where λ(t) is a non-negative function over time, and F̃ (t) is the distribution func-
tion of some non-negative random variable with F̃ (0) = 0. Aside from the statis-

tical properties of this survival function, described later in the section, this model



452 YUEH-YUN CHI AND JOSEPH G. IBRAHIM

may be derived from biological considerations characterizing tumor growth. In

the progression of cancer relapse, there exist clonogenic tumor cells (clonogens)

that are capable of producing a detectable tumor mass. These clonogens may

occur in clumps over time and, once they appear, are assumed to independently

develop into a detectable tumor mass. If any of the clonogens occur and fully

develop during the follow-up period, the patient would be observed to experience

a relapse, otherwise would be considered as a censored case. The statistical link

of this disease process to our survival function in (3.4) is through the assumptions

that the number of clonogens over time, N(t), follows a nonhomogeneous Pois-

son process with mean λ(t), and the time of a clonogen to become a detectable

tumor comes from the distribution function F̃ (t). This mechanism helps facili-

tate our estimation process and computational development. For instance, the

introduction of N∗, the total number of clonogens, makes it straightforward for

the specification of the joint likelihood in Section 3.3 and the construction of the

MCMC algorithm.

Based on its definition, the cure fraction at (3.4) is given by

S(∞) = exp

{

− lim
y→∞

∫ y

0
λ(t)F̃ (y − t)dt

}

. (3.5)

When
∫ y

0 λ(t)F (y−t)dt is bounded as y → ∞, the survival function has a nonzero

cure fraction, otherwise the survival function in (3.4) leads to a proper survival

function (i.e. S(∞) = 0). Using the properties of a distribution function F̃ (t)

and the fact that λ(t) is non-negative, we have

F̃ (
y

2
)

∫
y

2

0
λ(t)dt ≤ ≤

∫ y

0
λ(t)F̃ (y − t)dt ≤ F̃ (y)

∫ y

0
λ(t)dt.

Hence as y → ∞, the population survival function in (3.4) reduces to

S(∞) = exp

{

−

∫ ∞

0
λ(t)dt

}

= exp

{

− lim
y→∞

Λ(y)

}

, (3.6)

where Λ(y) =
∫ y

0 λ(t)dt. In other words, a cure rate model is characterized by

a bounded cumulative risk, Λ(t), while a proper survival model is characterized

by an unbounded cumulative risk. Specific demonstrations about how a cure

fraction is governed by the longitudinal trajectories and their relationship with

the survival time will be given later in the section. The hazard function of (3.4)

is given by

h(y) =

∫ y

0
λ(t)f̃(y − t)dt, (3.7)
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where f̃(y) = d
dy

F̃ (y). Equation (3.7) has the proportional hazards structure

when the baseline covariates are modeled through λ(t), and no time-varying

covariates are considered. The proposed survival function in (3.4) can also be

mathematically linked to the two-component mixture model. We can write (3.4)

as

S(y) = exp{−Λ(y)} + {1 − exp(−Λ(y))}S1(y), (3.8)

where

S1(y) =
exp{−

∫ y

0 λ(t)F̃ (y − t)dt} − exp{−Λ(y)}

1 − exp{−Λ(y)}
.

When the cure fraction is positive, exp{−Λ(y)} indicates the probability of cure,

and S1(y) represents the survival function for the “non-cured” group. We note

that S∗
1(0) = 1 and S∗

1(∞) = 0, so that S∗
1(y) is a proper survival function.

To incorporate information from both the longitudinal trajectories x∗
k(t), k =

1, . . . , q, and baseline covariates, Z, in our survival model, we let all covariates

depend on λ(t) through the relationship

λ(t) = exp

{

q
∑

k=1

γkx
∗
k(t) + Zδ

}

. (3.9)

Entering the covariates in this fashion corresponds to a canonical link in a Pois-

son generalized linear model, with N(t) being the Poisson count in the disease

process. All covariates may be assumed to affect survival biologically through

their impact on the mean number of clonogens over time. Specifically, a nega-

tive regression coefficient leads to a smaller hazard, whereas a positive coefficient

leads to a larger hazard, when the corresponding covariate takes a positive value.

As mentioned earlier, the limiting behavior of Λ(t) determines the property of our

survival function, and hence the trajectory functions x∗
k(t), and the relationship

between the longitudinal trajectories and survival outcome, that is the γk’s, to-

gether account for the presence or absence of a cure fraction. For example, with

linear trajectories x∗
k(t) = βk0 + βk1t for k = 1, . . . , q, the sign of

∑q
k=1 γkβk1

determines the limiting behavior of Λ(t) as well as the presence of a cure frac-

tion: negative
∑q

k=1 γkβk1 leads to a bounded Λ(t) and results in a positive cure

fraction, whereas a non-negative
∑q

k=1 γkβk1 leads to an unbounded Λ(t) and

results in a zero cure fraction. For positive βk1’s, when the coefficients of all the

γk’s are negative, Λ(t) is bounded and a positive cure fraction is obtained in the

model, with smaller coefficients corresponding to larger cure fractions. On the

other hand, when the coefficients of all the γk’s are positive, the model results

in an unbounded Λ(t) and a zero cure fraction. Furthermore, with quadratic
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trajectories x∗
k(t) = βk0 + βk1t + βk2t

2 for k = 1, . . . , q, the sign of
∑q

k=1 γkβk2

determines the limiting behavior of Λ(t) and the presence of a cure fraction.

3.3 Joint likelihood and priors

In this subsection, we construct the joint likelihood with a specific choice of

the trajectory functions and distribution function F̃ (t). This setup is later used

in the analysis of the IBCSG data. Let X = {xik(tij), i = 1, . . . , n, j = 1, . . . , ni,

k = 1, . . . , q}, X∗ = {x∗
ik(tij), i = 1, . . . , n, j = 1, . . . , ni, k = 1, . . . , q} and

R = (R1, . . . ,Rn), where xik(tij) and x∗
ik(tij) are the respective observed and

true kth QOL indicator for the ith patient at time tij , and Ri is the corresponding

vector of baseline covariates for longitudinal QOL indicators. For each QOL

indicator, we consider a linear trajectory function over time as

x∗
ik(tij) = Riηk + bik0 + bik1tij = τik0 + τik1tij,

where we hierarchically center (Gelfand, Sahu and Carlin (1996)) τik0 = Riηk +

bik0 and τik1 = bik1 to facilitate convergence of the MCMC algorithms. Let

τ 0 = (τ110, . . . , τnq0) and τ 1 = (τ111, . . . , τnq1). Further, let Y = (Y1, . . . , Yn),

ν = (ν1, . . . , νn), N∗ = (N∗
1 , . . . , N∗

n) and Z = (Z1, . . . , Zn), where Yi is the ob-

served DFS for the ith patient, νi is the corresponding censoring indicator which

equals to 1 if Yi is a failure time and 0 if it is right censored, N∗
i indicates the total

number of clonogens by the observed failure time for the ith patient as described

in Section 3.2, and Zi represents the corresponding vector of baseline covari-

ates for DFS. The observed data is then given by Dobs = {n, ñ,X,Y ,ν,R,Z}

and the complete data is given by D = {n, ñ,X,Y ,ν,R,Z, τ 0, τ 1,N
∗}, where

ñ = (n1, . . . , nn). As discussed in (3.1), the joint likelihood of the complete

data requires the specification of three components, P (X | X∗), P (X∗ | R)

and P (Y | X∗,Z,N ∗). The three components can be equivalently expressed

as P (X | X∗) = P (X | τ 0, τ 1), P (X∗ | R) = P (τ 0, τ 1 | R) and P (Y |

X∗,Z,N ∗) = P (Y | τ 0, τ 1,Z,N ∗), since the information carried by X∗ can be

fully recovered by τ 0 and τ 1. The introduction of the latent vector N ∗ in the

third component can facilitate the development of the MCMC algorithm, and

hence ease the estimation process.

After hierarchical centering, P (X | τ 0, τ 1) is given by

L1(θ1) ∝ |Σ|−
M
2 exp

{

−
1

2

n
∑

i=1

ni
∑

j=1

(Xij·−τ i·0−τ i·1tij)
TΣ−1(Xij·−τ i·0−τ i·1tij)

}

,

(3.10)

where M =
∑n

i=1 ni, θ1 = Σ, Xij· = [xi1(tij) · · · xiq(tij)]
T , τ i·0 = [τi10 · · · τiq0]

T

and τ i·1 = [τi11 · · · τiq1]
T . Let β = (β1, . . . ,βq), Ψ = (Ψ1, . . . ,Ψq) and η =
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(η1, . . . ,ηq), where βk = [βk0 βk1]
T . With the assumption bik = [bik0 bik1]

T ∼

N2(βk,Ψk), the second component, P (τ 0, τ 1 | R), is given by

L2(θ2) ∝

(

q
∏

k=1

|Ψk|
−n

2

)

exp

{

−
1

2

n
∑

i=1

q
∑

k=1

(τ ik−µik)
TΨ−1

k (τ ik−µik)

}

, (3.11)

where θ2 = {β,Ψ,η}, τ ik = [τik0 τik1]
T , and µik = [βk0 + Riηk βk1]

T . To

complete the last piece of the joint likelihood, we further assume that F̃ (t) =

1 − e−αt, and thus

λi(t) = exp

{

q
∑

k=1

γkx
∗
ik(t) + Ziδ

}

= exp

{

q
∑

k=1

γkτik0 + γkτik1t + Ziδ

}

.

The incorporation of patient-specific trajectory functions in the model of λi(t)

allows patients to have different cure rate structures. Given θ3 = {α,γ, δ} where

γ = (γ1, . . . , γq), and assuming independent censoring, the third component of

the complete data joint likelihood is given by

L3(θ3) =

{

n
∏

i=1

S̃i(yi)
N∗

i −νi(N∗
i f̃i(yi))

νi

}

× exp

{

n
∑

i=1

N∗
i log(Λi(yi)) − log(N∗

i !) − Λi(yi)

}

, (3.12)

where

Λi(yi) =
exp(

∑q
k=1 γkτik0 + Ziδ)
∑q

k=1 γkτik1
{exp(

q
∑

k=1

γkτik1yi) − 1}

S̃i(yi) =

∑q
k=1 γkτik1

α +
∑q

k=1 γkτik1
×

exp(
∑q

k=1 γkτik1yi) − exp(−αyi)

exp(
∑q

k=1 γkτik1yi) − 1
,

and f̃i(yi) = αS̃i(yi). Let θ = (θ1,θ2,θ3) denote the set of all the parameters.

The joint likelihood of the complete data is given by

L(θ | D) = L1(θ1)L2(θ2)L3(θ3). (3.13)

The prior specifications for θ are given as follows. We specify the joint prior as

π(θ) =

{

q
∏

k=1

π(βk)π(ηk)π(Ψk)π(γk)

}

π(Σ)π(α)π(δ). (3.14)

Priors for the βk’s, ηk’s, Ψk’s, γk’s, Σ, α and δ are assumed to be independent a

priori. For k = 1, . . . , q, we take normal priors for βk and ηk, and Wishart priors
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for Ψ−1
k and Σ−1. Priors for βk, ηk, Ψk and Σ are motivated by their conjugacy.

We take a normal prior for all the γk’s as well as the vector of survival regression

coefficients δ. Finally, we specify an inverse gamma prior for α. In the analysis

of the IBCSG data, only non-informative priors are considered.

Since we use conjugate priors for βk, ηk, Ψk, k = 1, . . . , q, and Σ, the full

conditionals of these parameters have a closed form and are thus easy to sample.

The conditional posterior distribution for an element of the latent vector N ∗

also has a closed form, and samples are easily obtained from the Poisson density.

For parameters without closed form posteriors, the adaptive rejection algorithm,

proposed by Gilks and Wild (1992), is used to get samples of δ from its log-

concave conditional posterior. An extra Metropolis step is incorporated in the

algorithm by Gilk, Best and Tan (1995), to obtain samples of γ, α and the latent

τ , whose conditional posteriors are not log-concave.

4. Simulation Study

We first conducted a set of simulation studies to evaluate the performance

and computational feasibility of our joint model. This simulation is based on two

longitudinal markers monitored over time, and a survival event in the presence

of cure. Using a total of n = 800 patients, each observed longitudinal marker

xik(tij) was simulated as the sum of the trajectory function x∗
ik(tij) and the

error term ǫijk, for i = 1, . . . , 800, k = 1, 2 and j = 1, . . . , 6. The trajectory

function was taken as x∗
ik(tij) = ηk0 + ηk1tij + ηk2ri + bik0 + bik1tij , where the

ri’s were generated from a standard normal distribution to represent a baseline

covariate in the longitudinal model. Let ηk = [ηk0 ηk1 ηk2]
T , bik = [bik0 bik1]

T

and ǫij· = [ǫij1 ǫij2]
T . We took η1 = [1.0 0.5 1.0]T , η2 = [1.0 1.0 2.0]T ,

Ψ1 =

[

1.0 0.3

0.3 1.0

]

, Ψ2 =

[

1.0 −0.3

−0.3 1.0

]

, Σ =

[

2.0 1.0

1.0 2.0

]

,

in which bik ∼ N2(0,Ψk) and ǫij· ∼ N2(0,Σ). Out of a total of 4,800 longitudinal

observations, 10% of them were randomly chosen to be missing. For the survival

time, we took λi(t) in (3.9) to be λi(t) = exp{γ1x
∗
i1(t) + γ2x

∗
i2(t) + δzi}, for

i = 1, . . . , 800, where zi is a binary baseline covariate with half of the patients

having a 0 and the other half having a 1. We also chose γ1 = −0.3, γ2 = −0.5,

and δ = 1.0. The promotion time was assumed to be an exponential distribution

with a common rate α = 1.0. This set-up leads to a cure rate structure for the

survival time.

We fit two different models to the simulated data. One was a joint model of

longitudinal and survival outcomes (model I) and the other was not (model II).

Model (I) is the model proposed in this paper that accounts for the association

between the longitudinal and survival data, while model II is the model that
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assumes longitudinal and survival data are independent. In other words, we fit

model II by specifying separate models for the longitudinal and survival compo-

nents, which is equivalent to assuming all the γk’s (k = 1, 2) are zero in (3.9).

A total of 100 replications were conducted for this simulation, with 3,000 Gibbs

samples after 500 burn-in for each replication. The convergence of each MCMC

chain was checked by a combination of trace plots and autocorrelations. The pro-

gram was run on a PC cluster configured with 352 CPUs, and the approximate

execution time was 70 hours for 100 replications.

Both models were evaluated in terms of estimation of the longitudinal co-

efficients η12 and η22, and the survival regression coefficient δ for the baseline

covariate. The Deviance Information Criterion (DIC), proposed by Spiegelhal-

ter, Best, Carlin and Van der Linde (2002) was also computed for each model as

a Bayesian measure of fit and complexity for model selection. The smaller the

DIC, the better the fit of the model. Table 1 summarizes the results of the pa-

rameter estimates (posterior means and standard deviations) and DIC statistics,

averaged over replications. The proposed joint model (Model I) appears advan-

tageous against the non-joint model (Model II), in terms of both the parameter

estimates and DIC statistics. When there is a nonzero association between the

longitudinal and survival data, ignoring this association would lead to biased

estimates for important parameters, and thus result in a lack of fit for the data.

Table 1. Posterior summaries and DIC statistics in the simulation.

η12 η22 δ1

Mean SD Mean SD Mean SD DIC

True 1.000 2.000 1.000
Model I 1.007 0.005 2.005 0.005 0.999 0.012 12632.2

Model II 1.019 0.007 2.012 0.005 0.002 0.011 14195.1

We then conducted a series of simulation studies to examine the robustness

of our joint model. Several longitudinal assumptions, such as the independence

and normality of the random effects bik’s, were relaxed. We first generated

bi ∼ N4(0,Ψ), where bi = [bT
i1 bT

i2]
T ,

Ψ =

[

Ψ1 ρI2

ρI2 Ψ2

]

,

and I2 is a 2×2 identity matrix. The proposed joint model was fit. When ρ = 0.1,

the posterior means (with standard deviations in the parenthesis) for η12, η22

and δ, averaged over 100 replications, are 0.994 (0.008), 2.004 (0.009), and 0.995

(0.017), respectively. As the correlation between bi1 and bi2 increases to ρ = 0.2,

the posterior summaries for η12, η22 and δ, averaged over 100 replications, are
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1.007 (0.009), 2.000 (0.008), and 0.997 (0.018), respectively. Given the simulation

setup for η12 = 1.0, η22 = 2.0 and δ = 1.0, our joint model performs quite well in

terms of the estimation of parameters of interest even with moderately correlated

random effects. We then relaxed the normality assumption and simulated the

random effects bi from a multivariate t distribution with mean zero, a = 10

degrees of freedom, and scale matrix (a − 2)Ψ/a to ensure V ar(bi) = Ψ. When

ρ = 0.1, the posterior summaries for η12, η22 and δ are 1.009 (0.010), 2.001

(0.008), and 0.966 (0.016), respectively. The proposed joint model is robust with

respect to the independence and normality assumptions for all random effects.

5. Application to the IBCSG data

We applied the methodology to data from the breast cancer clinical trial.

Before incorporating the patients’ QOL information in the model of DFS, we

first examined the performance of our proposed time-to-event model. Figure 1

shows two superimposed plots for time to breast cancer relapse. The solid line

corresponds to the Kaplan-Meier estimate of survival, while the dashed line cor-

responds to the maximum likelihood estimate of the marginal survival function

based on our model. No covariates were used in constructing the plots. We see

that the two curves are nearly identical and appear to plateau after approxi-

mately 10 years of follow-up. In the proposed survival model, λ(t) decreases over

time, and thus suggests a positive cure fraction in the population.

We then applied our joint model to the data to investigate the relationship

between QOL and DFS. To satisfy the normality assumption for each longitu-

dinal QOL indicator, we transformed the observed QOL to
√

(100 − QOL) (see

Hurny et al. (2000)). With this transformation, the transformed QOL decreased

over time and was scaled between 0 and 10, with smaller values reflecting better

QOL. For each transformed indicator, an individual linear trajectory was consid-

ered to account for patient-specific perception of QOL over time. After visually

inspecting the individual changes of the transformed QOL over time, a linear tra-

jectory function for each indicator appears to be a reasonable choice, especially

based on a maximum of three observations over time. The same baseline co-

variates were incorporated (time after randomization, adjuvant therapy, age and

residency) in the prediction of each QOL assessment. Residency is thought of as a

proxy for “culture”, and thus may affect the patients’ perception of QOL. For the

model of DFS, QOL measures are included as time-varying covariates, and ad-

juvant therapy, age, number of positive nodes and estrogen receptor (ER) status

are included as baseline covariates. The derivation of the joint likelihood as well

as the assumptions are described in Section 3.3. The selections of the baseline

covariates in the longitudinal and survival model were essentially science-driven.
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We use noninformative priors for all the parameters. With G standing

for gamma and W standing for Wishart distribution, the prior specifications

are βk ∼ N2(0, 1000I2), ηk ∼ N6(0, 1000I6), Ψ−1
k

∼ W2(5, 1000I2), Σ−1 ∼

W4(7, 1000I4), α−1 ∼ G(0.01, 0.01), γk ∼ N(0, 1000) and δ ∼ N6(0, 1000I6), for

k = 1, . . . , 4. Four parallel MCMC chains of 25,000 iterations with overdispersed

starting points and with 5,000 iterations as burn-in were run. We visually in-

spected these chains by overlaying their sampled values on a common graph for

each parameter. Each parameter is annotated with the shrinkage factor proposed

by Gelman and Rubin (1992). In order to eliminate autocorrelation among sam-

ples within a sequence, we selected every 10th iteration in each chain. The results

are then presented from the combined chain with 10,000 iterations. All Highest

Posterior Density (HPD) intervals were computed using a Monte Carlo method

proposed by Chen and Shao (1999).

Table 2. Posterior means (with 95% HPD intervals in parentheses) for pa-

rameters in the longitudinal model.

Appetite Coping Mood Physical

Intercept 0.354 0.535 0.434 0.403

( 0.324, 0.370) ( 0.503, 0.550) ( 0.405, 0.448) ( 0.374, 0.417)

Time (in year) -0.044 -0.083 -0.048 -0.012
(-0.060, -0.037) (-0.097, -0.076) (-0.063, -0.040) (-0.025, -0.006)

# Initial cycle -0.005 0.030 0.037 0.013

(-0.033, 0.009) (0.000, 0.044) ( 0.010, 0.050) (-0.013, 0.025)

Reintroduction -0.013 0.007 0.008 -0.021

(-0.041, 0.001) (-0.023, 0.021) (-0.020, 0.021) (-0.047, -0.009)
# Initial cycle 0.006 -0.020 -0.028 0.010

×Reintroduction (-0.034, 0.025) (-0.061, 0.000) (-0.065, -0.001) (-0.025, 0.027)

AGE > 40 0.042 0.022 0.046 0.054

( 0.017, 0.054) (-0.004, 0.033) ( 0.023, 0.057) ( 0.031, 0.065)
Residency: Swiss 0.010 0.037 0.029 0.005

(-0.012, 0.021) ( 0.013, 0.049) ( 0.007, 0.039) (-0.016, 0.014)

Residency: Sweden 0.0167 0.046 0.094 0.059

(-0.008, 0.029) ( 0.020, 0.058) ( 0.070, 0.105) ( 0.036, 0.070)

Table 2 displays posterior summary statistics for parameters related to the

QOL assessments. All transformed indicators for health-related quality of life

decrease over time with HPD intervals excluding 0, suggesting improvement of

QOL after initial surgery. A longer duration of the initial therapy adversely

affects a patient’s mood and coping score, but the reintroduction of a delayed

therapy helps improve a patient’s physical well-being. Younger patients (under

40) have a better quality of life than older patients, and the differences reach
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significance for assessments of appetite, mood and physical well-being. Residency

also plays a role in influencing a patient’s perception of QOL. In general, patients

living in Australia and New Zealand have a better quality of life than patients

living in Switzerland or Sweden. Finally, given the positive estimates for all off-

diagonal elements of Σ (not displayed in Table 2), there is evidence that all QOL

indicators are positively correlated to each other. Better physical well-being, for

instance, leads to a better appetite, mood and coping.

Table 3. Posterior summaries for parameters in DFS model.

Mean HPD interval

Appetite 1.163 (-0.227, 1.825)

Coping score 0.833 ( 0.044, 1.220)

Mood 0.114 (-0.456, 1.298)

Physical well-being 1.087 ( 0.431, 2.501)

# Initial cycle -0.141 (-0.427, -0.002)
Reintroduction -0.528 (-0.816, -0.390)

# Initial cycle×Reintroduction 0.194 (-0.233, 0.397)

AGE > 40 -0.503 (-0.759, -0.378)

# positive nodes > 4 0.930 ( 0.725, 1.027)
ER (1=Positive) -0.423 (-0.637, -0.321)

Table 3 summarizes posterior distributions for parameters related to DFS.

With positive regression coefficients of the transformed QOL measures, patients

having a better quality of life are less likely to have cancer relapse, and the effects

reach significance for coping and physical well-being. All posterior distributions

of the γk’s appear quite symmetric with positive modes. Increased duration of

initial adjuvant chemotherapy and reintroduction of a single course of delayed

chemotherapy are able to delay time to cancer relapse with 95% HPD intervals

excluding zero. Younger patients are more likely to have a relapse than older

patients. Different mechanisms of cancer progression may work for patients under

40 and patients over 40. A positive ER status may reduce the risk of cancer

relapse; however, a greater number of positive nodes may increase the risk of

relapse. Both the effect of ER status and the number of positive nodes are

important effects as indicated by the exclusion of zero in their 95% HPD intervals.

The positive regression coefficients of the transformed QOL indicators (which

decrease over time) in the model of DFS imply a bounded cumulative hazard, and

suggest a nonzero cure fraction in the population. We note that when covariates

are included in the model, each patient has an individual cure fraction. Figure 3

shows the distribution of posterior means of cure rate fractions for all patients.

The mean cure fraction for time to relapse is 0.316 and the standard deviation
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is 0.134. On average, 31.6% of patients are cured and thus are not susceptible to

cancer relapse after surgery.
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Figure 3. Boxplot of the posterior means of the cure rates for all patients.

6. Discussion

With more studies being conducted that repeatedly take measures over time

in an effort to evaluate a patient’s health or risk to some event, a joint modeling

approach is essential. We have presented a latent process model for multivariate

repeated measures and a flexible survival model to incorporate the characteristics

of the longitudinal model. Our longitudinal model explicitly acknowledges two

sources of dependence among multidimensional repeated measures and allows

direct inferences on both association over time and over different markers. A

parametric survival model is proposed and is able to accommodate both a zero

and nonzero cure fraction in the population. Aside from the biological motivation,

our time-to-event model is suitable for any type of event time data as long as

the data can be thought of as being generated by a process of latent potential

risks. Thus the model can be useful for analyzing various types of survival data,

including time to relapse, time to death, time to first infection, and so forth.

Future work with this model includes developing methods for hypothesis testing,

model selection and model adequacy assessment.
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